diff options
Diffstat (limited to 'intl/icu/source/i18n/collationbuilder.cpp')
-rw-r--r-- | intl/icu/source/i18n/collationbuilder.cpp | 1723 |
1 files changed, 1723 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/collationbuilder.cpp b/intl/icu/source/i18n/collationbuilder.cpp new file mode 100644 index 0000000000..d8fb89738c --- /dev/null +++ b/intl/icu/source/i18n/collationbuilder.cpp @@ -0,0 +1,1723 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* Copyright (C) 2013-2014, International Business Machines +* Corporation and others. All Rights Reserved. +******************************************************************************* +* collationbuilder.cpp +* +* (replaced the former ucol_bld.cpp) +* +* created on: 2013may06 +* created by: Markus W. Scherer +*/ + +#ifdef DEBUG_COLLATION_BUILDER +#include <stdio.h> +#endif + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_COLLATION + +#include "unicode/caniter.h" +#include "unicode/normalizer2.h" +#include "unicode/tblcoll.h" +#include "unicode/parseerr.h" +#include "unicode/uchar.h" +#include "unicode/ucol.h" +#include "unicode/unistr.h" +#include "unicode/usetiter.h" +#include "unicode/utf16.h" +#include "unicode/uversion.h" +#include "cmemory.h" +#include "collation.h" +#include "collationbuilder.h" +#include "collationdata.h" +#include "collationdatabuilder.h" +#include "collationfastlatin.h" +#include "collationroot.h" +#include "collationrootelements.h" +#include "collationruleparser.h" +#include "collationsettings.h" +#include "collationtailoring.h" +#include "collationweights.h" +#include "normalizer2impl.h" +#include "uassert.h" +#include "ucol_imp.h" +#include "utf16collationiterator.h" + +U_NAMESPACE_BEGIN + +namespace { + +class BundleImporter : public CollationRuleParser::Importer { +public: + BundleImporter() {} + virtual ~BundleImporter(); + virtual void getRules( + const char *localeID, const char *collationType, + UnicodeString &rules, + const char *&errorReason, UErrorCode &errorCode) override; +}; + +BundleImporter::~BundleImporter() {} + +void +BundleImporter::getRules( + const char *localeID, const char *collationType, + UnicodeString &rules, + const char *& /*errorReason*/, UErrorCode &errorCode) { + CollationLoader::loadRules(localeID, collationType, rules, errorCode); +} + +} // namespace + +// RuleBasedCollator implementation ---------------------------------------- *** + +// These methods are here, rather than in rulebasedcollator.cpp, +// for modularization: +// Most code using Collator does not need to build a Collator from rules. +// By moving these constructors and helper methods to a separate file, +// most code will not have a static dependency on the builder code. + +RuleBasedCollator::RuleBasedCollator() + : data(nullptr), + settings(nullptr), + tailoring(nullptr), + cacheEntry(nullptr), + validLocale(""), + explicitlySetAttributes(0), + actualLocaleIsSameAsValid(false) { +} + +RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode) + : data(nullptr), + settings(nullptr), + tailoring(nullptr), + cacheEntry(nullptr), + validLocale(""), + explicitlySetAttributes(0), + actualLocaleIsSameAsValid(false) { + internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, nullptr, nullptr, errorCode); +} + +RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength, + UErrorCode &errorCode) + : data(nullptr), + settings(nullptr), + tailoring(nullptr), + cacheEntry(nullptr), + validLocale(""), + explicitlySetAttributes(0), + actualLocaleIsSameAsValid(false) { + internalBuildTailoring(rules, strength, UCOL_DEFAULT, nullptr, nullptr, errorCode); +} + +RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, + UColAttributeValue decompositionMode, + UErrorCode &errorCode) + : data(nullptr), + settings(nullptr), + tailoring(nullptr), + cacheEntry(nullptr), + validLocale(""), + explicitlySetAttributes(0), + actualLocaleIsSameAsValid(false) { + internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, nullptr, nullptr, errorCode); +} + +RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, + ECollationStrength strength, + UColAttributeValue decompositionMode, + UErrorCode &errorCode) + : data(nullptr), + settings(nullptr), + tailoring(nullptr), + cacheEntry(nullptr), + validLocale(""), + explicitlySetAttributes(0), + actualLocaleIsSameAsValid(false) { + internalBuildTailoring(rules, strength, decompositionMode, nullptr, nullptr, errorCode); +} + +RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, + UParseError &parseError, UnicodeString &reason, + UErrorCode &errorCode) + : data(nullptr), + settings(nullptr), + tailoring(nullptr), + cacheEntry(nullptr), + validLocale(""), + explicitlySetAttributes(0), + actualLocaleIsSameAsValid(false) { + internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode); +} + +void +RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules, + int32_t strength, + UColAttributeValue decompositionMode, + UParseError *outParseError, UnicodeString *outReason, + UErrorCode &errorCode) { + const CollationTailoring *base = CollationRoot::getRoot(errorCode); + if(U_FAILURE(errorCode)) { return; } + if(outReason != nullptr) { outReason->remove(); } + CollationBuilder builder(base, errorCode); + UVersionInfo noVersion = { 0, 0, 0, 0 }; + BundleImporter importer; + LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion, + &importer, + outParseError, errorCode)); + if(U_FAILURE(errorCode)) { + const char *reason = builder.getErrorReason(); + if(reason != nullptr && outReason != nullptr) { + *outReason = UnicodeString(reason, -1, US_INV); + } + return; + } + t->actualLocale.setToBogus(); + adoptTailoring(t.orphan(), errorCode); + // Set attributes after building the collator, + // to keep the default settings consistent with the rule string. + if(strength != UCOL_DEFAULT) { + setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode); + } + if(decompositionMode != UCOL_DEFAULT) { + setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode); + } +} + +// CollationBuilder implementation ----------------------------------------- *** + +CollationBuilder::CollationBuilder(const CollationTailoring *b, UBool icu4xMode, UErrorCode &errorCode) + : nfd(*Normalizer2::getNFDInstance(errorCode)), + fcd(*Normalizer2Factory::getFCDInstance(errorCode)), + nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)), + base(b), + baseData(b->data), + rootElements(b->data->rootElements, b->data->rootElementsLength), + variableTop(0), + dataBuilder(new CollationDataBuilder(icu4xMode, errorCode)), fastLatinEnabled(true), + icu4xMode(icu4xMode), + errorReason(nullptr), + cesLength(0), + rootPrimaryIndexes(errorCode), nodes(errorCode) { + nfcImpl.ensureCanonIterData(errorCode); + if(U_FAILURE(errorCode)) { + errorReason = "CollationBuilder fields initialization failed"; + return; + } + if(dataBuilder == nullptr) { + errorCode = U_MEMORY_ALLOCATION_ERROR; + return; + } + dataBuilder->initForTailoring(baseData, errorCode); + if(U_FAILURE(errorCode)) { + errorReason = "CollationBuilder initialization failed"; + } +} + +CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode) + : CollationBuilder(b, false, errorCode) +{} + +CollationBuilder::~CollationBuilder() { + delete dataBuilder; +} + +CollationTailoring * +CollationBuilder::parseAndBuild(const UnicodeString &ruleString, + const UVersionInfo rulesVersion, + CollationRuleParser::Importer *importer, + UParseError *outParseError, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return nullptr; } + if(baseData->rootElements == nullptr) { + errorCode = U_MISSING_RESOURCE_ERROR; + errorReason = "missing root elements data, tailoring not supported"; + return nullptr; + } + LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings)); + if(tailoring.isNull() || tailoring->isBogus()) { + errorCode = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + CollationRuleParser parser(baseData, errorCode); + if(U_FAILURE(errorCode)) { return nullptr; } + // Note: This always bases &[last variable] and &[first regular] + // on the root collator's maxVariable/variableTop. + // If we wanted this to change after [maxVariable x], then we would keep + // the tailoring.settings pointer here and read its variableTop when we need it. + // See http://unicode.org/cldr/trac/ticket/6070 + variableTop = base->settings->variableTop; + parser.setSink(this); + parser.setImporter(importer); + CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings); + parser.parse(ruleString, ownedSettings, outParseError, errorCode); + errorReason = parser.getErrorReason(); + if(U_FAILURE(errorCode)) { return nullptr; } + if(dataBuilder->hasMappings()) { + makeTailoredCEs(errorCode); + if (!icu4xMode) { + closeOverComposites(errorCode); + } + finalizeCEs(errorCode); + if (!icu4xMode) { + // Copy all of ASCII, and Latin-1 letters, into each tailoring. + optimizeSet.add(0, 0x7f); + optimizeSet.add(0xc0, 0xff); + // Hangul is decomposed on the fly during collation, + // and the tailoring data is always built with HANGUL_TAG specials. + optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END); + dataBuilder->optimize(optimizeSet, errorCode); + } + tailoring->ensureOwnedData(errorCode); + if(U_FAILURE(errorCode)) { return nullptr; } + if(fastLatinEnabled) { dataBuilder->enableFastLatin(); } + dataBuilder->build(*tailoring->ownedData, errorCode); + tailoring->builder = dataBuilder; + dataBuilder = nullptr; + } else { + tailoring->data = baseData; + } + if(U_FAILURE(errorCode)) { return nullptr; } + ownedSettings.fastLatinOptions = CollationFastLatin::getOptions( + tailoring->data, ownedSettings, + ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries)); + tailoring->rules = ruleString; + tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination + tailoring->setVersion(base->version, rulesVersion); + return tailoring.orphan(); +} + +void +CollationBuilder::addReset(int32_t strength, const UnicodeString &str, + const char *&parserErrorReason, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + U_ASSERT(!str.isEmpty()); + if(str.charAt(0) == CollationRuleParser::POS_LEAD) { + ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode); + cesLength = 1; + if(U_FAILURE(errorCode)) { return; } + U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0); + } else { + // normal reset to a character or string + UnicodeString nfdString = nfd.normalize(str, errorCode); + if(U_FAILURE(errorCode)) { + parserErrorReason = "normalizing the reset position"; + return; + } + cesLength = dataBuilder->getCEs(nfdString, ces, 0); + if(cesLength > Collation::MAX_EXPANSION_LENGTH) { + errorCode = U_ILLEGAL_ARGUMENT_ERROR; + parserErrorReason = "reset position maps to too many collation elements (more than 31)"; + return; + } + } + if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position + + // &[before strength]position + U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY); + int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode); + if(U_FAILURE(errorCode)) { return; } + + int64_t node = nodes.elementAti(index); + // If the index is for a "weaker" node, + // then skip backwards over this and further "weaker" nodes. + while(strengthFromNode(node) > strength) { + index = previousIndexFromNode(node); + node = nodes.elementAti(index); + } + + // Find or insert a node whose index we will put into a temporary CE. + if(strengthFromNode(node) == strength && isTailoredNode(node)) { + // Reset to just before this same-strength tailored node. + index = previousIndexFromNode(node); + } else if(strength == UCOL_PRIMARY) { + // root primary node (has no previous index) + uint32_t p = weight32FromNode(node); + if(p == 0) { + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "reset primary-before ignorable not possible"; + return; + } + if(p <= rootElements.getFirstPrimary()) { + // There is no primary gap between ignorables and the space-first-primary. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "reset primary-before first non-ignorable not supported"; + return; + } + if(p == Collation::FIRST_TRAILING_PRIMARY) { + // We do not support tailoring to an unassigned-implicit CE. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "reset primary-before [first trailing] not supported"; + return; + } + p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p)); + index = findOrInsertNodeForPrimary(p, errorCode); + // Go to the last node in this list: + // Tailor after the last node between adjacent root nodes. + for(;;) { + node = nodes.elementAti(index); + int32_t nextIndex = nextIndexFromNode(node); + if(nextIndex == 0) { break; } + index = nextIndex; + } + } else { + // &[before 2] or &[before 3] + index = findCommonNode(index, UCOL_SECONDARY); + if(strength >= UCOL_TERTIARY) { + index = findCommonNode(index, UCOL_TERTIARY); + } + // findCommonNode() stayed on the stronger node or moved to + // an explicit common-weight node of the reset-before strength. + node = nodes.elementAti(index); + if(strengthFromNode(node) == strength) { + // Found a same-strength node with an explicit weight. + uint32_t weight16 = weight16FromNode(node); + if(weight16 == 0) { + errorCode = U_UNSUPPORTED_ERROR; + if(strength == UCOL_SECONDARY) { + parserErrorReason = "reset secondary-before secondary ignorable not possible"; + } else { + parserErrorReason = "reset tertiary-before completely ignorable not possible"; + } + return; + } + U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16); + // Reset to just before this node. + // Insert the preceding same-level explicit weight if it is not there already. + // Which explicit weight immediately precedes this one? + weight16 = getWeight16Before(index, node, strength); + // Does this preceding weight have a node? + uint32_t previousWeight16; + int32_t previousIndex = previousIndexFromNode(node); + for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) { + node = nodes.elementAti(i); + int32_t previousStrength = strengthFromNode(node); + if(previousStrength < strength) { + U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex); + // Either the reset element has an above-common weight and + // the parent node provides the implied common weight, + // or the reset element has a weight<=common in the node + // right after the parent, and we need to insert the preceding weight. + previousWeight16 = Collation::COMMON_WEIGHT16; + break; + } else if(previousStrength == strength && !isTailoredNode(node)) { + previousWeight16 = weight16FromNode(node); + break; + } + // Skip weaker nodes and same-level tailored nodes. + } + if(previousWeight16 == weight16) { + // The preceding weight has a node, + // maybe with following weaker or tailored nodes. + // Reset to the last of them. + index = previousIndex; + } else { + // Insert a node with the preceding weight, reset to that. + node = nodeFromWeight16(weight16) | nodeFromStrength(strength); + index = insertNodeBetween(previousIndex, index, node, errorCode); + } + } else { + // Found a stronger node with implied strength-common weight. + uint32_t weight16 = getWeight16Before(index, node, strength); + index = findOrInsertWeakNode(index, weight16, strength, errorCode); + } + // Strength of the temporary CE = strength of its reset position. + // Code above raises an error if the before-strength is stronger. + strength = ceStrength(ces[cesLength - 1]); + } + if(U_FAILURE(errorCode)) { + parserErrorReason = "inserting reset position for &[before n]"; + return; + } + ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength); +} + +uint32_t +CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) { + U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node)); + // Collect the root CE weights if this node is for a root CE. + // If it is not, then return the low non-primary boundary for a tailored CE. + uint32_t t; + if(strengthFromNode(node) == UCOL_TERTIARY) { + t = weight16FromNode(node); + } else { + t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight. + } + while(strengthFromNode(node) > UCOL_SECONDARY) { + index = previousIndexFromNode(node); + node = nodes.elementAti(index); + } + if(isTailoredNode(node)) { + return Collation::BEFORE_WEIGHT16; + } + uint32_t s; + if(strengthFromNode(node) == UCOL_SECONDARY) { + s = weight16FromNode(node); + } else { + s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight. + } + while(strengthFromNode(node) > UCOL_PRIMARY) { + index = previousIndexFromNode(node); + node = nodes.elementAti(index); + } + if(isTailoredNode(node)) { + return Collation::BEFORE_WEIGHT16; + } + // [p, s, t] is a root CE. Return the preceding weight for the requested level. + uint32_t p = weight32FromNode(node); + uint32_t weight16; + if(level == UCOL_SECONDARY) { + weight16 = rootElements.getSecondaryBefore(p, s); + } else { + weight16 = rootElements.getTertiaryBefore(p, s, t); + U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0); + } + return weight16; +} + +int64_t +CollationBuilder::getSpecialResetPosition(const UnicodeString &str, + const char *&parserErrorReason, UErrorCode &errorCode) { + U_ASSERT(str.length() == 2); + int64_t ce; + int32_t strength = UCOL_PRIMARY; + UBool isBoundary = false; + UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE; + U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING); + switch(pos) { + case CollationRuleParser::FIRST_TERTIARY_IGNORABLE: + // Quaternary CEs are not supported. + // Non-zero quaternary weights are possible only on tertiary or stronger CEs. + return 0; + case CollationRuleParser::LAST_TERTIARY_IGNORABLE: + return 0; + case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: { + // Look for a tailored tertiary node after [0, 0, 0]. + int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode); + if(U_FAILURE(errorCode)) { return 0; } + int64_t node = nodes.elementAti(index); + if((index = nextIndexFromNode(node)) != 0) { + node = nodes.elementAti(index); + U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY); + if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) { + return tempCEFromIndexAndStrength(index, UCOL_TERTIARY); + } + } + return rootElements.getFirstTertiaryCE(); + // No need to look for nodeHasAnyBefore() on a tertiary node. + } + case CollationRuleParser::LAST_SECONDARY_IGNORABLE: + ce = rootElements.getLastTertiaryCE(); + strength = UCOL_TERTIARY; + break; + case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: { + // Look for a tailored secondary node after [0, 0, *]. + int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode); + if(U_FAILURE(errorCode)) { return 0; } + int64_t node = nodes.elementAti(index); + while((index = nextIndexFromNode(node)) != 0) { + node = nodes.elementAti(index); + strength = strengthFromNode(node); + if(strength < UCOL_SECONDARY) { break; } + if(strength == UCOL_SECONDARY) { + if(isTailoredNode(node)) { + if(nodeHasBefore3(node)) { + index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node))); + U_ASSERT(isTailoredNode(nodes.elementAti(index))); + } + return tempCEFromIndexAndStrength(index, UCOL_SECONDARY); + } else { + break; + } + } + } + ce = rootElements.getFirstSecondaryCE(); + strength = UCOL_SECONDARY; + break; + } + case CollationRuleParser::LAST_PRIMARY_IGNORABLE: + ce = rootElements.getLastSecondaryCE(); + strength = UCOL_SECONDARY; + break; + case CollationRuleParser::FIRST_VARIABLE: + ce = rootElements.getFirstPrimaryCE(); + isBoundary = true; // FractionalUCA.txt: FDD1 00A0, SPACE first primary + break; + case CollationRuleParser::LAST_VARIABLE: + ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1); + break; + case CollationRuleParser::FIRST_REGULAR: + ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1); + isBoundary = true; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary + break; + case CollationRuleParser::LAST_REGULAR: + // Use the Hani-first-primary rather than the actual last "regular" CE before it, + // for backward compatibility with behavior before the introduction of + // script-first-primary CEs in the root collator. + ce = rootElements.firstCEWithPrimaryAtLeast( + baseData->getFirstPrimaryForGroup(USCRIPT_HAN)); + break; + case CollationRuleParser::FIRST_IMPLICIT: + ce = baseData->getSingleCE(0x4e00, errorCode); + break; + case CollationRuleParser::LAST_IMPLICIT: + // We do not support tailoring to an unassigned-implicit CE. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "reset to [last implicit] not supported"; + return 0; + case CollationRuleParser::FIRST_TRAILING: + ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY); + isBoundary = true; // trailing first primary (there is no mapping for it) + break; + case CollationRuleParser::LAST_TRAILING: + errorCode = U_ILLEGAL_ARGUMENT_ERROR; + parserErrorReason = "LDML forbids tailoring to U+FFFF"; + return 0; + default: + UPRV_UNREACHABLE_EXIT; + } + + int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode); + if(U_FAILURE(errorCode)) { return 0; } + int64_t node = nodes.elementAti(index); + if((pos & 1) == 0) { + // even pos = [first xyz] + if(!nodeHasAnyBefore(node) && isBoundary) { + // A <group> first primary boundary is artificially added to FractionalUCA.txt. + // It is reachable via its special contraction, but is not normally used. + // Find the first character tailored after the boundary CE, + // or the first real root CE after it. + if((index = nextIndexFromNode(node)) != 0) { + // If there is a following node, then it must be tailored + // because there are no root CEs with a boundary primary + // and non-common secondary/tertiary weights. + node = nodes.elementAti(index); + U_ASSERT(isTailoredNode(node)); + ce = tempCEFromIndexAndStrength(index, strength); + } else { + U_ASSERT(strength == UCOL_PRIMARY); + uint32_t p = (uint32_t)(ce >> 32); + int32_t pIndex = rootElements.findPrimary(p); + UBool isCompressible = baseData->isCompressiblePrimary(p); + p = rootElements.getPrimaryAfter(p, pIndex, isCompressible); + ce = Collation::makeCE(p); + index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode); + if(U_FAILURE(errorCode)) { return 0; } + node = nodes.elementAti(index); + } + } + if(nodeHasAnyBefore(node)) { + // Get the first node that was tailored before this one at a weaker strength. + if(nodeHasBefore2(node)) { + index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node))); + node = nodes.elementAti(index); + } + if(nodeHasBefore3(node)) { + index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node))); + } + U_ASSERT(isTailoredNode(nodes.elementAti(index))); + ce = tempCEFromIndexAndStrength(index, strength); + } + } else { + // odd pos = [last xyz] + // Find the last node that was tailored after the [last xyz] + // at a strength no greater than the position's strength. + for(;;) { + int32_t nextIndex = nextIndexFromNode(node); + if(nextIndex == 0) { break; } + int64_t nextNode = nodes.elementAti(nextIndex); + if(strengthFromNode(nextNode) < strength) { break; } + index = nextIndex; + node = nextNode; + } + // Do not make a temporary CE for a root node. + // This last node might be the node for the root CE itself, + // or a node with a common secondary or tertiary weight. + if(isTailoredNode(node)) { + ce = tempCEFromIndexAndStrength(index, strength); + } + } + return ce; +} + +void +CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix, + const UnicodeString &str, const UnicodeString &extension, + const char *&parserErrorReason, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + UnicodeString nfdPrefix; + if(!prefix.isEmpty()) { + nfd.normalize(prefix, nfdPrefix, errorCode); + if(U_FAILURE(errorCode)) { + parserErrorReason = "normalizing the relation prefix"; + return; + } + } + UnicodeString nfdString = nfd.normalize(str, errorCode); + if(U_FAILURE(errorCode)) { + parserErrorReason = "normalizing the relation string"; + return; + } + + // The runtime code decomposes Hangul syllables on the fly, + // with recursive processing but without making the Jamo pieces visible for matching. + // It does not work with certain types of contextual mappings. + int32_t nfdLength = nfdString.length(); + if(nfdLength >= 2) { + char16_t c = nfdString.charAt(0); + if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) { + // While handling a Hangul syllable, contractions starting with Jamo L or V + // would not see the following Jamo of that syllable. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "contractions starting with conjoining Jamo L or V not supported"; + return; + } + c = nfdString.charAt(nfdLength - 1); + if(Hangul::isJamoL(c) || + (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) { + // A contraction ending with Jamo L or L+V would require + // generating Hangul syllables in addTailComposites() (588 for a Jamo L), + // or decomposing a following Hangul syllable on the fly, during contraction matching. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported"; + return; + } + // A Hangul syllable completely inside a contraction is ok. + } + // Note: If there is a prefix, then the parser checked that + // both the prefix and the string begin with NFC boundaries (not Jamo V or T). + // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0)) + // (While handling a Hangul syllable, prefixes on Jamo V or T + // would not see the previous Jamo of that syllable.) + + if(strength != UCOL_IDENTICAL) { + // Find the node index after which we insert the new tailored node. + int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode); + U_ASSERT(cesLength > 0); + int64_t ce = ces[cesLength - 1]; + if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) { + // There is no primary gap between ignorables and the space-first-primary. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "tailoring primary after ignorables not supported"; + return; + } + if(strength == UCOL_QUATERNARY && ce == 0) { + // The CE data structure does not support non-zero quaternary weights + // on tertiary ignorables. + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "tailoring quaternary after tertiary ignorables not supported"; + return; + } + // Insert the new tailored node. + index = insertTailoredNodeAfter(index, strength, errorCode); + if(U_FAILURE(errorCode)) { + parserErrorReason = "modifying collation elements"; + return; + } + // Strength of the temporary CE: + // The new relation may yield a stronger CE but not a weaker one. + int32_t tempStrength = ceStrength(ce); + if(strength < tempStrength) { tempStrength = strength; } + ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength); + } + + setCaseBits(nfdString, parserErrorReason, errorCode); + if(U_FAILURE(errorCode)) { return; } + + int32_t cesLengthBeforeExtension = cesLength; + if(!extension.isEmpty()) { + UnicodeString nfdExtension = nfd.normalize(extension, errorCode); + if(U_FAILURE(errorCode)) { + parserErrorReason = "normalizing the relation extension"; + return; + } + cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength); + if(cesLength > Collation::MAX_EXPANSION_LENGTH) { + errorCode = U_ILLEGAL_ARGUMENT_ERROR; + parserErrorReason = + "extension string adds too many collation elements (more than 31 total)"; + return; + } + } + uint32_t ce32 = Collation::UNASSIGNED_CE32; + if(!icu4xMode && (prefix != nfdPrefix || str != nfdString) && + !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) { + // Map from the original input to the CEs. + // We do this in case the canonical closure is incomplete, + // so that it is possible to explicitly provide the missing mappings. + ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode); + } + if (!icu4xMode) { + addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode); + } else { + addIfDifferent(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode); + } + if(U_FAILURE(errorCode)) { + parserErrorReason = "writing collation elements"; + return; + } + cesLength = cesLengthBeforeExtension; +} + +int32_t +CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY); + + // Find the last CE that is at least as "strong" as the requested difference. + // Note: Stronger is smaller (UCOL_PRIMARY=0). + int64_t ce; + for(;; --cesLength) { + if(cesLength == 0) { + ce = ces[0] = 0; + cesLength = 1; + break; + } else { + ce = ces[cesLength - 1]; + } + if(ceStrength(ce) <= strength) { break; } + } + + if(isTempCE(ce)) { + // No need to findCommonNode() here for lower levels + // because insertTailoredNodeAfter() will do that anyway. + return indexFromTempCE(ce); + } + + // root CE + if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) { + errorCode = U_UNSUPPORTED_ERROR; + parserErrorReason = "tailoring relative to an unassigned code point not supported"; + return 0; + } + return findOrInsertNodeForRootCE(ce, strength, errorCode); +} + +int32_t +CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE); + + // Find or insert the node for each of the root CE's weights, + // down to the requested level/strength. + // Root CEs must have common=zero quaternary weights (for which we never insert any nodes). + U_ASSERT((ce & 0xc0) == 0); + int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode); + if(strength >= UCOL_SECONDARY) { + uint32_t lower32 = (uint32_t)ce; + index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode); + if(strength >= UCOL_TERTIARY) { + index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK, + UCOL_TERTIARY, errorCode); + } + } + return index; +} + +namespace { + +/** + * Like Java Collections.binarySearch(List, key, Comparator). + * + * @return the index>=0 where the item was found, + * or the index<0 for inserting the string at ~index in sorted order + * (index into rootPrimaryIndexes) + */ +int32_t +binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length, + const int64_t *nodes, uint32_t p) { + if(length == 0) { return ~0; } + int32_t start = 0; + int32_t limit = length; + for (;;) { + int32_t i = (start + limit) / 2; + int64_t node = nodes[rootPrimaryIndexes[i]]; + uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node) + if (p == nodePrimary) { + return i; + } else if (p < nodePrimary) { + if (i == start) { + return ~start; // insert s before i + } + limit = i; + } else { + if (i == start) { + return ~(start + 1); // insert s after i + } + start = i; + } + } +} + +} // namespace + +int32_t +CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + + int32_t rootIndex = binarySearchForRootPrimaryNode( + rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p); + if(rootIndex >= 0) { + return rootPrimaryIndexes.elementAti(rootIndex); + } else { + // Start a new list of nodes with this primary. + int32_t index = nodes.size(); + nodes.addElement(nodeFromWeight32(p), errorCode); + rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode); + return index; + } +} + +int32_t +CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + U_ASSERT(0 <= index && index < nodes.size()); + U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY); + + if(weight16 == Collation::COMMON_WEIGHT16) { + return findCommonNode(index, level); + } + + // If this will be the first below-common weight for the parent node, + // then we will also need to insert a common weight after it. + int64_t node = nodes.elementAti(index); + U_ASSERT(strengthFromNode(node) < level); // parent node is stronger + if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) { + int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3; + if((node & hasThisLevelBefore) == 0) { + // The parent node has an implied level-common weight. + int64_t commonNode = + nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level); + if(level == UCOL_SECONDARY) { + // Move the HAS_BEFORE3 flag from the parent node + // to the new secondary common node. + commonNode |= node & HAS_BEFORE3; + node &= ~(int64_t)HAS_BEFORE3; + } + nodes.setElementAt(node | hasThisLevelBefore, index); + // Insert below-common-weight node. + int32_t nextIndex = nextIndexFromNode(node); + node = nodeFromWeight16(weight16) | nodeFromStrength(level); + index = insertNodeBetween(index, nextIndex, node, errorCode); + // Insert common-weight node. + insertNodeBetween(index, nextIndex, commonNode, errorCode); + // Return index of below-common-weight node. + return index; + } + } + + // Find the root CE's weight for this level. + // Postpone insertion if not found: + // Insert the new root node before the next stronger node, + // or before the next root node with the same strength and a larger weight. + int32_t nextIndex; + while((nextIndex = nextIndexFromNode(node)) != 0) { + node = nodes.elementAti(nextIndex); + int32_t nextStrength = strengthFromNode(node); + if(nextStrength <= level) { + // Insert before a stronger node. + if(nextStrength < level) { break; } + // nextStrength == level + if(!isTailoredNode(node)) { + uint32_t nextWeight16 = weight16FromNode(node); + if(nextWeight16 == weight16) { + // Found the node for the root CE up to this level. + return nextIndex; + } + // Insert before a node with a larger same-strength weight. + if(nextWeight16 > weight16) { break; } + } + } + // Skip the next node. + index = nextIndex; + } + node = nodeFromWeight16(weight16) | nodeFromStrength(level); + return insertNodeBetween(index, nextIndex, node, errorCode); +} + +int32_t +CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + U_ASSERT(0 <= index && index < nodes.size()); + if(strength >= UCOL_SECONDARY) { + index = findCommonNode(index, UCOL_SECONDARY); + if(strength >= UCOL_TERTIARY) { + index = findCommonNode(index, UCOL_TERTIARY); + } + } + // Postpone insertion: + // Insert the new node before the next one with a strength at least as strong. + int64_t node = nodes.elementAti(index); + int32_t nextIndex; + while((nextIndex = nextIndexFromNode(node)) != 0) { + node = nodes.elementAti(nextIndex); + if(strengthFromNode(node) <= strength) { break; } + // Skip the next node which has a weaker (larger) strength than the new one. + index = nextIndex; + } + node = IS_TAILORED | nodeFromStrength(strength); + return insertNodeBetween(index, nextIndex, node, errorCode); +} + +int32_t +CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return 0; } + U_ASSERT(previousIndexFromNode(node) == 0); + U_ASSERT(nextIndexFromNode(node) == 0); + U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex); + // Append the new node and link it to the existing nodes. + int32_t newIndex = nodes.size(); + node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex); + nodes.addElement(node, errorCode); + if(U_FAILURE(errorCode)) { return 0; } + // nodes[index].nextIndex = newIndex + node = nodes.elementAti(index); + nodes.setElementAt(changeNodeNextIndex(node, newIndex), index); + // nodes[nextIndex].previousIndex = newIndex + if(nextIndex != 0) { + node = nodes.elementAti(nextIndex); + nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex); + } + return newIndex; +} + +int32_t +CollationBuilder::findCommonNode(int32_t index, int32_t strength) const { + U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY); + int64_t node = nodes.elementAti(index); + if(strengthFromNode(node) >= strength) { + // The current node is no stronger. + return index; + } + if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) { + // The current node implies the strength-common weight. + return index; + } + index = nextIndexFromNode(node); + node = nodes.elementAti(index); + U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength && + weight16FromNode(node) < Collation::COMMON_WEIGHT16); + // Skip to the explicit common node. + do { + index = nextIndexFromNode(node); + node = nodes.elementAti(index); + U_ASSERT(strengthFromNode(node) >= strength); + } while(isTailoredNode(node) || strengthFromNode(node) > strength || + weight16FromNode(node) < Collation::COMMON_WEIGHT16); + U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16); + return index; +} + +void +CollationBuilder::setCaseBits(const UnicodeString &nfdString, + const char *&parserErrorReason, UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + int32_t numTailoredPrimaries = 0; + for(int32_t i = 0; i < cesLength; ++i) { + if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; } + } + // We should not be able to get too many case bits because + // cesLength<=31==MAX_EXPANSION_LENGTH. + // 31 pairs of case bits fit into an int64_t without setting its sign bit. + U_ASSERT(numTailoredPrimaries <= 31); + + int64_t cases = 0; + if(numTailoredPrimaries > 0) { + const char16_t *s = nfdString.getBuffer(); + UTF16CollationIterator baseCEs(baseData, false, s, s, s + nfdString.length()); + int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1; + if(U_FAILURE(errorCode)) { + parserErrorReason = "fetching root CEs for tailored string"; + return; + } + U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE); + + uint32_t lastCase = 0; + int32_t numBasePrimaries = 0; + for(int32_t i = 0; i < baseCEsLength; ++i) { + int64_t ce = baseCEs.getCE(i); + if((ce >> 32) != 0) { + ++numBasePrimaries; + uint32_t c = ((uint32_t)ce >> 14) & 3; + U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE + if(numBasePrimaries < numTailoredPrimaries) { + cases |= (int64_t)c << ((numBasePrimaries - 1) * 2); + } else if(numBasePrimaries == numTailoredPrimaries) { + lastCase = c; + } else if(c != lastCase) { + // There are more base primary CEs than tailored primaries. + // Set mixed case if the case bits of the remainder differ. + lastCase = 1; + // Nothing more can change. + break; + } + } + } + if(numBasePrimaries >= numTailoredPrimaries) { + cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2); + } + } + + for(int32_t i = 0; i < cesLength; ++i) { + int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits + int32_t strength = ceStrength(ce); + if(strength == UCOL_PRIMARY) { + ce |= (cases & 3) << 14; + cases >>= 2; + } else if(strength == UCOL_TERTIARY) { + // Tertiary CEs must have uppercase bits. + // See the LDML spec, and comments in class CollationCompare. + ce |= 0x8000; + } + // Tertiary ignorable CEs must have 0 case bits. + // We set 0 case bits for secondary CEs too + // since currently only U+0345 is cased and maps to a secondary CE, + // and it is lowercase. Other secondaries are uncased. + // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight. + ces[i] = ce; + } +} + +void +CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + dataBuilder->suppressContractions(set, errorCode); + if(U_FAILURE(errorCode)) { + parserErrorReason = "application of [suppressContractions [set]] failed"; + } +} + +void +CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + optimizeSet.addAll(set); +} + +uint32_t +CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, + const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, + UErrorCode &errorCode) { + // Map from the NFD input to the CEs. + ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode); + ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode); + addTailComposites(nfdPrefix, nfdString, errorCode); + return ce32; +} + +uint32_t +CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, + const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return ce32; } + + // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.) + if(nfdPrefix.isEmpty()) { + CanonicalIterator stringIter(nfdString, errorCode); + if(U_FAILURE(errorCode)) { return ce32; } + UnicodeString prefix; + for(;;) { + UnicodeString str = stringIter.next(); + if(str.isBogus()) { break; } + if(ignoreString(str, errorCode) || str == nfdString) { continue; } + ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode); + if(U_FAILURE(errorCode)) { return ce32; } + } + } else { + CanonicalIterator prefixIter(nfdPrefix, errorCode); + CanonicalIterator stringIter(nfdString, errorCode); + if(U_FAILURE(errorCode)) { return ce32; } + for(;;) { + UnicodeString prefix = prefixIter.next(); + if(prefix.isBogus()) { break; } + if(ignorePrefix(prefix, errorCode)) { continue; } + UBool samePrefix = prefix == nfdPrefix; + for(;;) { + UnicodeString str = stringIter.next(); + if(str.isBogus()) { break; } + if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; } + ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode); + if(U_FAILURE(errorCode)) { return ce32; } + } + stringIter.reset(); + } + } + return ce32; +} + +void +CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + + // Look for the last starter in the NFD string. + UChar32 lastStarter; + int32_t indexAfterLastStarter = nfdString.length(); + for(;;) { + if(indexAfterLastStarter == 0) { return; } // no starter at all + lastStarter = nfdString.char32At(indexAfterLastStarter - 1); + if(nfd.getCombiningClass(lastStarter) == 0) { break; } + indexAfterLastStarter -= U16_LENGTH(lastStarter); + } + // No closure to Hangul syllables since we decompose them on the fly. + if(Hangul::isJamoL(lastStarter)) { return; } + + // Are there any composites whose decomposition starts with the lastStarter? + // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters. + // We might find some more equivalent mappings here if it did. + UnicodeSet composites; + if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; } + + UnicodeString decomp; + UnicodeString newNFDString, newString; + int64_t newCEs[Collation::MAX_EXPANSION_LENGTH]; + UnicodeSetIterator iter(composites); + while(iter.next()) { + U_ASSERT(!iter.isString()); + UChar32 composite = iter.getCodepoint(); + nfd.getDecomposition(composite, decomp); + if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp, + newNFDString, newString, errorCode)) { + continue; + } + int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0); + if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) { + // Ignore mappings that we cannot store. + continue; + } + // Note: It is possible that the newCEs do not make use of the mapping + // for which we are adding the tail composites, in which case we might be adding + // unnecessary mappings. + // For example, when we add tail composites for ae^ (^=combining circumflex), + // UCA discontiguous-contraction matching does not find any matches + // for ae_^ (_=any combining diacritic below) *unless* there is also + // a contraction mapping for ae. + // Thus, if there is no ae contraction, then the ae^ mapping is ignored + // while fetching the newCEs for ae_^. + // TODO: Try to detect this effectively. + // (Alternatively, print a warning when prefix contractions are missing.) + + // We do not need an explicit mapping for the NFD strings. + // It is fine if the NFD input collates like this via a sequence of mappings. + // It also saves a little bit of space, and may reduce the set of characters with contractions. + uint32_t ce32 = addIfDifferent(nfdPrefix, newString, + newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode); + if(ce32 != Collation::UNASSIGNED_CE32) { + // was different, was added + addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode); + } + } +} + +UBool +CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString, + int32_t indexAfterLastStarter, + UChar32 composite, const UnicodeString &decomp, + UnicodeString &newNFDString, UnicodeString &newString, + UErrorCode &errorCode) const { + if(U_FAILURE(errorCode)) { return false; } + U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0)); + int32_t lastStarterLength = decomp.moveIndex32(0, 1); + if(lastStarterLength == decomp.length()) { + // Singleton decompositions should be found by addWithClosure() + // and the CanonicalIterator, so we can ignore them here. + return false; + } + if(nfdString.compare(indexAfterLastStarter, 0x7fffffff, + decomp, lastStarterLength, 0x7fffffff) == 0) { + // same strings, nothing new to be found here + return false; + } + + // Make new FCD strings that combine a composite, or its decomposition, + // into the nfdString's last starter and the combining marks following it. + // Make an NFD version, and a version with the composite. + newNFDString.setTo(nfdString, 0, indexAfterLastStarter); + newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite); + + // The following is related to discontiguous contraction matching, + // but builds only FCD strings (or else returns false). + int32_t sourceIndex = indexAfterLastStarter; + int32_t decompIndex = lastStarterLength; + // Small optimization: We keep the source character across loop iterations + // because we do not always consume it, + // and then need not fetch it again nor look up its combining class again. + UChar32 sourceChar = U_SENTINEL; + // The cc variables need to be declared before the loop so that at the end + // they are set to the last combining classes seen. + uint8_t sourceCC = 0; + uint8_t decompCC = 0; + for(;;) { + if(sourceChar < 0) { + if(sourceIndex >= nfdString.length()) { break; } + sourceChar = nfdString.char32At(sourceIndex); + sourceCC = nfd.getCombiningClass(sourceChar); + U_ASSERT(sourceCC != 0); + } + // We consume a decomposition character in each iteration. + if(decompIndex >= decomp.length()) { break; } + UChar32 decompChar = decomp.char32At(decompIndex); + decompCC = nfd.getCombiningClass(decompChar); + // Compare the two characters and their combining classes. + if(decompCC == 0) { + // Unable to merge because the source contains a non-zero combining mark + // but the composite's decomposition contains another starter. + // The strings would not be equivalent. + return false; + } else if(sourceCC < decompCC) { + // Composite + sourceChar would not be FCD. + return false; + } else if(decompCC < sourceCC) { + newNFDString.append(decompChar); + decompIndex += U16_LENGTH(decompChar); + } else if(decompChar != sourceChar) { + // Blocked because same combining class. + return false; + } else { // match: decompChar == sourceChar + newNFDString.append(decompChar); + decompIndex += U16_LENGTH(decompChar); + sourceIndex += U16_LENGTH(decompChar); + sourceChar = U_SENTINEL; + } + } + // We are at the end of at least one of the two inputs. + if(sourceChar >= 0) { // more characters from nfdString but not from decomp + if(sourceCC < decompCC) { + // Appending the next source character to the composite would not be FCD. + return false; + } + newNFDString.append(nfdString, sourceIndex, 0x7fffffff); + newString.append(nfdString, sourceIndex, 0x7fffffff); + } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString + newNFDString.append(decomp, decompIndex, 0x7fffffff); + } + U_ASSERT(nfd.isNormalized(newNFDString, errorCode)); + U_ASSERT(fcd.isNormalized(newString, errorCode)); + U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent + return true; +} + +UBool +CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const { + // Do not map non-FCD prefixes. + return !isFCD(s, errorCode); +} + +UBool +CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const { + // Do not map non-FCD strings. + // Do not map strings that start with Hangul syllables: We decompose those on the fly. + return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0)); +} + +UBool +CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const { + return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode); +} + +void +CollationBuilder::closeOverComposites(UErrorCode &errorCode) { + UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final + if(U_FAILURE(errorCode)) { return; } + // Hangul is decomposed on the fly during collation. + composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END); + UnicodeString prefix; // empty + UnicodeString nfdString; + UnicodeSetIterator iter(composites); + while(iter.next()) { + U_ASSERT(!iter.isString()); + nfd.getDecomposition(iter.getCodepoint(), nfdString); + cesLength = dataBuilder->getCEs(nfdString, ces, 0); + if(cesLength > Collation::MAX_EXPANSION_LENGTH) { + // Too many CEs from the decomposition (unusual), ignore this composite. + // We could add a capacity parameter to getCEs() and reallocate if necessary. + // However, this can only really happen in contrived cases. + continue; + } + const UnicodeString &composite(iter.getString()); + addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode); + } +} + +uint32_t +CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str, + const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32, + UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return ce32; } + int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH]; + int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0); + if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) { + if(ce32 == Collation::UNASSIGNED_CE32) { + ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode); + } + dataBuilder->addCE32(prefix, str, ce32, errorCode); + } + return ce32; +} + +UBool +CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length, + const int64_t ces2[], int32_t ces2Length) { + if(ces1Length != ces2Length) { + return false; + } + U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH); + for(int32_t i = 0; i < ces1Length; ++i) { + if(ces1[i] != ces2[i]) { return false; } + } + return true; +} + +#ifdef DEBUG_COLLATION_BUILDER + +uint32_t +alignWeightRight(uint32_t w) { + if(w != 0) { + while((w & 0xff) == 0) { w >>= 8; } + } + return w; +} + +#endif + +void +CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + + CollationWeights primaries, secondaries, tertiaries; + int64_t *nodesArray = nodes.getBuffer(); +#ifdef DEBUG_COLLATION_BUILDER + puts("\nCollationBuilder::makeTailoredCEs()"); +#endif + + for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) { + int32_t i = rootPrimaryIndexes.elementAti(rpi); + int64_t node = nodesArray[i]; + uint32_t p = weight32FromNode(node); + uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16; + uint32_t t = s; + uint32_t q = 0; + UBool pIsTailored = false; + UBool sIsTailored = false; + UBool tIsTailored = false; +#ifdef DEBUG_COLLATION_BUILDER + printf("\nprimary %lx\n", (long)alignWeightRight(p)); +#endif + int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p); + int32_t nextIndex = nextIndexFromNode(node); + while(nextIndex != 0) { + i = nextIndex; + node = nodesArray[i]; + nextIndex = nextIndexFromNode(node); + int32_t strength = strengthFromNode(node); + if(strength == UCOL_QUATERNARY) { + U_ASSERT(isTailoredNode(node)); +#ifdef DEBUG_COLLATION_BUILDER + printf(" quat+ "); +#endif + if(q == 3) { + errorCode = U_BUFFER_OVERFLOW_ERROR; + errorReason = "quaternary tailoring gap too small"; + return; + } + ++q; + } else { + if(strength == UCOL_TERTIARY) { + if(isTailoredNode(node)) { +#ifdef DEBUG_COLLATION_BUILDER + printf(" ter+ "); +#endif + if(!tIsTailored) { + // First tailored tertiary node for [p, s]. + int32_t tCount = countTailoredNodes(nodesArray, nextIndex, + UCOL_TERTIARY) + 1; + uint32_t tLimit; + if(t == 0) { + // Gap at the beginning of the tertiary CE range. + t = rootElements.getTertiaryBoundary() - 0x100; + tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK; + } else if(!pIsTailored && !sIsTailored) { + // p and s are root weights. + tLimit = rootElements.getTertiaryAfter(pIndex, s, t); + } else if(t == Collation::BEFORE_WEIGHT16) { + tLimit = Collation::COMMON_WEIGHT16; + } else { + // [p, s] is tailored. + U_ASSERT(t == Collation::COMMON_WEIGHT16); + tLimit = rootElements.getTertiaryBoundary(); + } + U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0); + tertiaries.initForTertiary(); + if(!tertiaries.allocWeights(t, tLimit, tCount)) { + errorCode = U_BUFFER_OVERFLOW_ERROR; + errorReason = "tertiary tailoring gap too small"; + return; + } + tIsTailored = true; + } + t = tertiaries.nextWeight(); + U_ASSERT(t != 0xffffffff); + } else { + t = weight16FromNode(node); + tIsTailored = false; +#ifdef DEBUG_COLLATION_BUILDER + printf(" ter %lx\n", (long)alignWeightRight(t)); +#endif + } + } else { + if(strength == UCOL_SECONDARY) { + if(isTailoredNode(node)) { +#ifdef DEBUG_COLLATION_BUILDER + printf(" sec+ "); +#endif + if(!sIsTailored) { + // First tailored secondary node for p. + int32_t sCount = countTailoredNodes(nodesArray, nextIndex, + UCOL_SECONDARY) + 1; + uint32_t sLimit; + if(s == 0) { + // Gap at the beginning of the secondary CE range. + s = rootElements.getSecondaryBoundary() - 0x100; + sLimit = rootElements.getFirstSecondaryCE() >> 16; + } else if(!pIsTailored) { + // p is a root primary. + sLimit = rootElements.getSecondaryAfter(pIndex, s); + } else if(s == Collation::BEFORE_WEIGHT16) { + sLimit = Collation::COMMON_WEIGHT16; + } else { + // p is a tailored primary. + U_ASSERT(s == Collation::COMMON_WEIGHT16); + sLimit = rootElements.getSecondaryBoundary(); + } + if(s == Collation::COMMON_WEIGHT16) { + // Do not tailor into the getSortKey() range of + // compressed common secondaries. + s = rootElements.getLastCommonSecondary(); + } + secondaries.initForSecondary(); + if(!secondaries.allocWeights(s, sLimit, sCount)) { + errorCode = U_BUFFER_OVERFLOW_ERROR; + errorReason = "secondary tailoring gap too small"; +#ifdef DEBUG_COLLATION_BUILDER + printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n", + (long)alignWeightRight(s), (long)alignWeightRight(sLimit), + (long)alignWeightRight(sCount)); +#endif + return; + } + sIsTailored = true; + } + s = secondaries.nextWeight(); + U_ASSERT(s != 0xffffffff); + } else { + s = weight16FromNode(node); + sIsTailored = false; +#ifdef DEBUG_COLLATION_BUILDER + printf(" sec %lx\n", (long)alignWeightRight(s)); +#endif + } + } else /* UCOL_PRIMARY */ { + U_ASSERT(isTailoredNode(node)); +#ifdef DEBUG_COLLATION_BUILDER + printf("pri+ "); +#endif + if(!pIsTailored) { + // First tailored primary node in this list. + int32_t pCount = countTailoredNodes(nodesArray, nextIndex, + UCOL_PRIMARY) + 1; + UBool isCompressible = baseData->isCompressiblePrimary(p); + uint32_t pLimit = + rootElements.getPrimaryAfter(p, pIndex, isCompressible); + primaries.initForPrimary(isCompressible); + if(!primaries.allocWeights(p, pLimit, pCount)) { + errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode? + errorReason = "primary tailoring gap too small"; + return; + } + pIsTailored = true; + } + p = primaries.nextWeight(); + U_ASSERT(p != 0xffffffff); + s = Collation::COMMON_WEIGHT16; + sIsTailored = false; + } + t = s == 0 ? 0 : Collation::COMMON_WEIGHT16; + tIsTailored = false; + } + q = 0; + } + if(isTailoredNode(node)) { + nodesArray[i] = Collation::makeCE(p, s, t, q); +#ifdef DEBUG_COLLATION_BUILDER + printf("%016llx\n", (long long)nodesArray[i]); +#endif + } + } + } +} + +int32_t +CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) { + int32_t count = 0; + for(;;) { + if(i == 0) { break; } + int64_t node = nodesArray[i]; + if(strengthFromNode(node) < strength) { break; } + if(strengthFromNode(node) == strength) { + if(isTailoredNode(node)) { + ++count; + } else { + break; + } + } + i = nextIndexFromNode(node); + } + return count; +} + +class CEFinalizer : public CollationDataBuilder::CEModifier { +public: + CEFinalizer(const int64_t *ces) : finalCEs(ces) {} + virtual ~CEFinalizer(); + virtual int64_t modifyCE32(uint32_t ce32) const override { + U_ASSERT(!Collation::isSpecialCE32(ce32)); + if(CollationBuilder::isTempCE32(ce32)) { + // retain case bits + return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8); + } else { + return Collation::NO_CE; + } + } + virtual int64_t modifyCE(int64_t ce) const override { + if(CollationBuilder::isTempCE(ce)) { + // retain case bits + return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000); + } else { + return Collation::NO_CE; + } + } + +private: + const int64_t *finalCEs; +}; + +CEFinalizer::~CEFinalizer() {} + +void +CollationBuilder::finalizeCEs(UErrorCode &errorCode) { + if(U_FAILURE(errorCode)) { return; } + LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(icu4xMode, errorCode), errorCode); + if(U_FAILURE(errorCode)) { + return; + } + newBuilder->initForTailoring(baseData, errorCode); + CEFinalizer finalizer(nodes.getBuffer()); + newBuilder->copyFrom(*dataBuilder, finalizer, errorCode); + if(U_FAILURE(errorCode)) { return; } + delete dataBuilder; + dataBuilder = newBuilder.orphan(); +} + +int32_t +CollationBuilder::ceStrength(int64_t ce) { + return + isTempCE(ce) ? strengthFromTempCE(ce) : + (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY : + ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY : + ce != 0 ? UCOL_TERTIARY : + UCOL_IDENTICAL; +} + +U_NAMESPACE_END + +U_NAMESPACE_USE + +U_CAPI UCollator * U_EXPORT2 +ucol_openRules(const char16_t *rules, int32_t rulesLength, + UColAttributeValue normalizationMode, UCollationStrength strength, + UParseError *parseError, UErrorCode *pErrorCode) { + if(U_FAILURE(*pErrorCode)) { return nullptr; } + if(rules == nullptr && rulesLength != 0) { + *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; + return nullptr; + } + RuleBasedCollator *coll = new RuleBasedCollator(); + if(coll == nullptr) { + *pErrorCode = U_MEMORY_ALLOCATION_ERROR; + return nullptr; + } + UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength); + coll->internalBuildTailoring(r, strength, normalizationMode, parseError, nullptr, *pErrorCode); + if(U_FAILURE(*pErrorCode)) { + delete coll; + return nullptr; + } + return coll->toUCollator(); +} + +static const int32_t internalBufferSize = 512; + +// The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp +// because it calls UnicodeSet "builder" code that depends on all Unicode properties, +// and the rest of the collation "runtime" code only depends on normalization. +// This function is not related to the collation builder, +// but it did not seem worth moving it into its own .cpp file, +// nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods. +U_CAPI int32_t U_EXPORT2 +ucol_getUnsafeSet( const UCollator *coll, + USet *unsafe, + UErrorCode *status) +{ + char16_t buffer[internalBufferSize]; + int32_t len = 0; + + uset_clear(unsafe); + + // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant + static const char16_t cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, + 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 }; + + // add chars that fail the fcd check + uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status); + + // add lead/trail surrogates + // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*, + // not when testing code *points*) + uset_addRange(unsafe, 0xd800, 0xdfff); + + USet *contractions = uset_open(0,0); + + int32_t i = 0, j = 0; + ucol_getContractionsAndExpansions(coll, contractions, nullptr, false, status); + int32_t contsSize = uset_size(contractions); + UChar32 c = 0; + // Contraction set consists only of strings + // to get unsafe code points, we need to + // break the strings apart and add them to the unsafe set + for(i = 0; i < contsSize; i++) { + len = uset_getItem(contractions, i, nullptr, nullptr, buffer, internalBufferSize, status); + if(len > 0) { + j = 0; + while(j < len) { + U16_NEXT(buffer, j, len, c); + if(j < len) { + uset_add(unsafe, c); + } + } + } + } + + uset_close(contractions); + + return uset_size(unsafe); +} + +#endif // !UCONFIG_NO_COLLATION |