summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/Assembler-vixl.h
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm64/vixl/Assembler-vixl.h')
-rw-r--r--js/src/jit/arm64/vixl/Assembler-vixl.h4974
1 files changed, 4974 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/Assembler-vixl.h b/js/src/jit/arm64/vixl/Assembler-vixl.h
new file mode 100644
index 0000000000..462b359eea
--- /dev/null
+++ b/js/src/jit/arm64/vixl/Assembler-vixl.h
@@ -0,0 +1,4974 @@
+// Copyright 2015, VIXL authors
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_ASSEMBLER_A64_H_
+#define VIXL_A64_ASSEMBLER_A64_H_
+
+#include "jit/arm64/vixl/Cpu-vixl.h"
+#include "jit/arm64/vixl/Globals-vixl.h"
+#include "jit/arm64/vixl/Instructions-vixl.h"
+#include "jit/arm64/vixl/MozBaseAssembler-vixl.h"
+#include "jit/arm64/vixl/Utils-vixl.h"
+
+#include "jit/JitSpewer.h"
+
+#include "jit/shared/Assembler-shared.h"
+#include "jit/shared/Disassembler-shared.h"
+#include "jit/shared/IonAssemblerBufferWithConstantPools.h"
+
+#if defined(_M_ARM64)
+#ifdef mvn
+#undef mvn
+#endif
+#endif
+
+namespace vixl {
+
+using js::jit::BufferOffset;
+using js::jit::Label;
+using js::jit::Address;
+using js::jit::BaseIndex;
+using js::jit::DisassemblerSpew;
+
+using LabelDoc = DisassemblerSpew::LabelDoc;
+
+typedef uint64_t RegList;
+static const int kRegListSizeInBits = sizeof(RegList) * 8;
+
+
+// Registers.
+
+// Some CPURegister methods can return Register or VRegister types, so we need
+// to declare them in advance.
+class Register;
+class VRegister;
+
+class CPURegister {
+ public:
+ enum RegisterType {
+ // The kInvalid value is used to detect uninitialized static instances,
+ // which are always zero-initialized before any constructors are called.
+ kInvalid = 0,
+ kRegister,
+ kVRegister,
+ kFPRegister = kVRegister,
+ kNoRegister
+ };
+
+ constexpr CPURegister() : code_(0), size_(0), type_(kNoRegister) {
+ }
+
+ constexpr CPURegister(unsigned code, unsigned size, RegisterType type)
+ : code_(code), size_(size), type_(type) {
+ }
+
+ unsigned code() const {
+ VIXL_ASSERT(IsValid());
+ return code_;
+ }
+
+ RegisterType type() const {
+ VIXL_ASSERT(IsValidOrNone());
+ return type_;
+ }
+
+ RegList Bit() const {
+ VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
+ return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
+ }
+
+ unsigned size() const {
+ VIXL_ASSERT(IsValid());
+ return size_;
+ }
+
+ int SizeInBytes() const {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(size() % 8 == 0);
+ return size_ / 8;
+ }
+
+ int SizeInBits() const {
+ VIXL_ASSERT(IsValid());
+ return size_;
+ }
+
+ bool Is8Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 8;
+ }
+
+ bool Is16Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 16;
+ }
+
+ bool Is32Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 32;
+ }
+
+ bool Is64Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 64;
+ }
+
+ bool Is128Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 128;
+ }
+
+ bool IsValid() const {
+ if (IsValidRegister() || IsValidVRegister()) {
+ VIXL_ASSERT(!IsNone());
+ return true;
+ } else {
+ // This assert is hit when the register has not been properly initialized.
+ // One cause for this can be an initialisation order fiasco. See
+ // https://isocpp.org/wiki/faq/ctors#static-init-order for some details.
+ VIXL_ASSERT(IsNone());
+ return false;
+ }
+ }
+
+ bool IsValidRegister() const {
+ return IsRegister() &&
+ ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
+ ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
+ }
+
+ bool IsValidVRegister() const {
+ return IsVRegister() &&
+ ((size_ == kBRegSize) || (size_ == kHRegSize) ||
+ (size_ == kSRegSize) || (size_ == kDRegSize) ||
+ (size_ == kQRegSize)) &&
+ (code_ < kNumberOfVRegisters);
+ }
+
+ bool IsValidFPRegister() const {
+ return IsFPRegister() && (code_ < kNumberOfVRegisters);
+ }
+
+ bool IsNone() const {
+ // kNoRegister types should always have size 0 and code 0.
+ VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
+ VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
+
+ return type_ == kNoRegister;
+ }
+
+ bool Aliases(const CPURegister& other) const {
+ VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return (code_ == other.code_) && (type_ == other.type_);
+ }
+
+ bool Is(const CPURegister& other) const {
+ VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return Aliases(other) && (size_ == other.size_);
+ }
+
+ bool IsZero() const {
+ VIXL_ASSERT(IsValid());
+ return IsRegister() && (code_ == kZeroRegCode);
+ }
+
+ bool IsSP() const {
+ VIXL_ASSERT(IsValid());
+ return IsRegister() && (code_ == kSPRegInternalCode);
+ }
+
+ bool IsRegister() const {
+ return type_ == kRegister;
+ }
+
+ bool IsVRegister() const {
+ return type_ == kVRegister;
+ }
+
+ bool IsFPRegister() const {
+ return IsS() || IsD();
+ }
+
+ bool IsW() const { return IsValidRegister() && Is32Bits(); }
+ bool IsX() const { return IsValidRegister() && Is64Bits(); }
+
+ // These assertions ensure that the size and type of the register are as
+ // described. They do not consider the number of lanes that make up a vector.
+ // So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
+ // does not imply Is1D() or Is8B().
+ // Check the number of lanes, ie. the format of the vector, using methods such
+ // as Is8B(), Is1D(), etc. in the VRegister class.
+ bool IsV() const { return IsVRegister(); }
+ bool IsB() const { return IsV() && Is8Bits(); }
+ bool IsH() const { return IsV() && Is16Bits(); }
+ bool IsS() const { return IsV() && Is32Bits(); }
+ bool IsD() const { return IsV() && Is64Bits(); }
+ bool IsQ() const { return IsV() && Is128Bits(); }
+
+ const Register& W() const;
+ const Register& X() const;
+ const VRegister& V() const;
+ const VRegister& B() const;
+ const VRegister& H() const;
+ const VRegister& S() const;
+ const VRegister& D() const;
+ const VRegister& Q() const;
+
+ bool IsSameSizeAndType(const CPURegister& other) const {
+ return (size_ == other.size_) && (type_ == other.type_);
+ }
+
+ protected:
+ unsigned code_;
+ unsigned size_;
+ RegisterType type_;
+
+ private:
+ bool IsValidOrNone() const {
+ return IsValid() || IsNone();
+ }
+};
+
+
+class Register : public CPURegister {
+ public:
+ Register() : CPURegister() {}
+ explicit Register(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ VIXL_ASSERT(IsValidRegister());
+ }
+ constexpr Register(unsigned code, unsigned size)
+ : CPURegister(code, size, kRegister) {}
+
+ constexpr Register(js::jit::Register r, unsigned size)
+ : CPURegister(r.code(), size, kRegister) {}
+
+ bool IsValid() const {
+ VIXL_ASSERT(IsRegister() || IsNone());
+ return IsValidRegister();
+ }
+
+ js::jit::Register asUnsized() const {
+ // asUnsized() is only ever used on temp registers or on registers that
+ // are known not to be SP, and there should be no risk of it being
+ // applied to SP. Check anyway.
+ VIXL_ASSERT(code_ != kSPRegInternalCode);
+ return js::jit::Register::FromCode((js::jit::Register::Code)code_);
+ }
+
+
+ static const Register& WRegFromCode(unsigned code);
+ static const Register& XRegFromCode(unsigned code);
+
+ private:
+ static const Register wregisters[];
+ static const Register xregisters[];
+};
+
+
+class VRegister : public CPURegister {
+ public:
+ VRegister() : CPURegister(), lanes_(1) {}
+ explicit VRegister(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()), lanes_(1) {
+ VIXL_ASSERT(IsValidVRegister());
+ VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
+ }
+ constexpr VRegister(unsigned code, unsigned size, unsigned lanes = 1)
+ : CPURegister(code, size, kVRegister), lanes_(lanes) {
+ // VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
+ }
+ constexpr VRegister(js::jit::FloatRegister r)
+ : CPURegister(r.encoding(), r.size() * 8, kVRegister), lanes_(1) {
+ }
+ constexpr VRegister(js::jit::FloatRegister r, unsigned size)
+ : CPURegister(r.encoding(), size, kVRegister), lanes_(1) {
+ }
+ VRegister(unsigned code, VectorFormat format)
+ : CPURegister(code, RegisterSizeInBitsFromFormat(format), kVRegister),
+ lanes_(IsVectorFormat(format) ? LaneCountFromFormat(format) : 1) {
+ VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
+ }
+
+ bool IsValid() const {
+ VIXL_ASSERT(IsVRegister() || IsNone());
+ return IsValidVRegister();
+ }
+
+ static const VRegister& BRegFromCode(unsigned code);
+ static const VRegister& HRegFromCode(unsigned code);
+ static const VRegister& SRegFromCode(unsigned code);
+ static const VRegister& DRegFromCode(unsigned code);
+ static const VRegister& QRegFromCode(unsigned code);
+ static const VRegister& VRegFromCode(unsigned code);
+
+ VRegister V8B() const { return VRegister(code_, kDRegSize, 8); }
+ VRegister V16B() const { return VRegister(code_, kQRegSize, 16); }
+ VRegister V4H() const { return VRegister(code_, kDRegSize, 4); }
+ VRegister V8H() const { return VRegister(code_, kQRegSize, 8); }
+ VRegister V2S() const { return VRegister(code_, kDRegSize, 2); }
+ VRegister V4S() const { return VRegister(code_, kQRegSize, 4); }
+ VRegister V2D() const { return VRegister(code_, kQRegSize, 2); }
+ VRegister V1D() const { return VRegister(code_, kDRegSize, 1); }
+
+ bool Is8B() const { return (Is64Bits() && (lanes_ == 8)); }
+ bool Is16B() const { return (Is128Bits() && (lanes_ == 16)); }
+ bool Is4H() const { return (Is64Bits() && (lanes_ == 4)); }
+ bool Is8H() const { return (Is128Bits() && (lanes_ == 8)); }
+ bool Is2S() const { return (Is64Bits() && (lanes_ == 2)); }
+ bool Is4S() const { return (Is128Bits() && (lanes_ == 4)); }
+ bool Is1D() const { return (Is64Bits() && (lanes_ == 1)); }
+ bool Is2D() const { return (Is128Bits() && (lanes_ == 2)); }
+
+ // For consistency, we assert the number of lanes of these scalar registers,
+ // even though there are no vectors of equivalent total size with which they
+ // could alias.
+ bool Is1B() const {
+ VIXL_ASSERT(!(Is8Bits() && IsVector()));
+ return Is8Bits();
+ }
+ bool Is1H() const {
+ VIXL_ASSERT(!(Is16Bits() && IsVector()));
+ return Is16Bits();
+ }
+ bool Is1S() const {
+ VIXL_ASSERT(!(Is32Bits() && IsVector()));
+ return Is32Bits();
+ }
+
+ bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSize; }
+ bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSize; }
+ bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSize; }
+ bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSize; }
+
+ int lanes() const {
+ return lanes_;
+ }
+
+ bool IsScalar() const {
+ return lanes_ == 1;
+ }
+
+ bool IsVector() const {
+ return lanes_ > 1;
+ }
+
+ bool IsSameFormat(const VRegister& other) const {
+ return (size_ == other.size_) && (lanes_ == other.lanes_);
+ }
+
+ unsigned LaneSizeInBytes() const {
+ return SizeInBytes() / lanes_;
+ }
+
+ unsigned LaneSizeInBits() const {
+ return LaneSizeInBytes() * 8;
+ }
+
+ private:
+ static const VRegister bregisters[];
+ static const VRegister hregisters[];
+ static const VRegister sregisters[];
+ static const VRegister dregisters[];
+ static const VRegister qregisters[];
+ static const VRegister vregisters[];
+ int lanes_;
+};
+
+
+// Backward compatibility for FPRegisters.
+typedef VRegister FPRegister;
+
+// No*Reg is used to indicate an unused argument, or an error case. Note that
+// these all compare equal (using the Is() method). The Register and VRegister
+// variants are provided for convenience.
+const Register NoReg;
+const VRegister NoVReg;
+const FPRegister NoFPReg; // For backward compatibility.
+const CPURegister NoCPUReg;
+
+
+#define DEFINE_REGISTERS(N) \
+constexpr Register w##N(N, kWRegSize); \
+constexpr Register x##N(N, kXRegSize);
+REGISTER_CODE_LIST(DEFINE_REGISTERS)
+#undef DEFINE_REGISTERS
+constexpr Register wsp(kSPRegInternalCode, kWRegSize);
+constexpr Register sp(kSPRegInternalCode, kXRegSize);
+
+
+#define DEFINE_VREGISTERS(N) \
+constexpr VRegister b##N(N, kBRegSize); \
+constexpr VRegister h##N(N, kHRegSize); \
+constexpr VRegister s##N(N, kSRegSize); \
+constexpr VRegister d##N(N, kDRegSize); \
+constexpr VRegister q##N(N, kQRegSize); \
+constexpr VRegister v##N(N, kQRegSize);
+REGISTER_CODE_LIST(DEFINE_VREGISTERS)
+#undef DEFINE_VREGISTERS
+
+
+// Registers aliases.
+constexpr Register ip0 = x16;
+constexpr Register ip1 = x17;
+constexpr Register lr = x30;
+constexpr Register xzr = x31;
+constexpr Register wzr = w31;
+
+
+// AreAliased returns true if any of the named registers overlap. Arguments
+// set to NoReg are ignored. The system stack pointer may be specified.
+bool AreAliased(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoReg,
+ const CPURegister& reg4 = NoReg,
+ const CPURegister& reg5 = NoReg,
+ const CPURegister& reg6 = NoReg,
+ const CPURegister& reg7 = NoReg,
+ const CPURegister& reg8 = NoReg);
+
+
+// AreSameSizeAndType returns true if all of the specified registers have the
+// same size, and are of the same type. The system stack pointer may be
+// specified. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreSameSizeAndType(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoCPUReg,
+ const CPURegister& reg4 = NoCPUReg,
+ const CPURegister& reg5 = NoCPUReg,
+ const CPURegister& reg6 = NoCPUReg,
+ const CPURegister& reg7 = NoCPUReg,
+ const CPURegister& reg8 = NoCPUReg);
+
+// AreEven returns true if all of the specified registers have even register
+// indices. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreEven(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoReg,
+ const CPURegister& reg4 = NoReg,
+ const CPURegister& reg5 = NoReg,
+ const CPURegister& reg6 = NoReg,
+ const CPURegister& reg7 = NoReg,
+ const CPURegister& reg8 = NoReg);
+
+// AreConsecutive returns true if all of the specified registers are
+// consecutive in the register file. Arguments set to NoReg are ignored, as are
+// any subsequent arguments. At least one argument (reg1) must be valid
+// (not NoCPUReg).
+bool AreConsecutive(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoCPUReg,
+ const CPURegister& reg4 = NoCPUReg);
+
+// AreSameFormat returns true if all of the specified VRegisters have the same
+// vector format. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoVReg).
+bool AreSameFormat(const VRegister& reg1,
+ const VRegister& reg2,
+ const VRegister& reg3 = NoVReg,
+ const VRegister& reg4 = NoVReg);
+
+
+// AreConsecutive returns true if all of the specified VRegisters are
+// consecutive in the register file. Arguments set to NoReg are ignored, as are
+// any subsequent arguments. At least one argument (reg1) must be valid
+// (not NoVReg).
+bool AreConsecutive(const VRegister& reg1,
+ const VRegister& reg2,
+ const VRegister& reg3 = NoVReg,
+ const VRegister& reg4 = NoVReg);
+
+
+// Lists of registers.
+class CPURegList {
+ public:
+ explicit CPURegList(CPURegister reg1,
+ CPURegister reg2 = NoCPUReg,
+ CPURegister reg3 = NoCPUReg,
+ CPURegister reg4 = NoCPUReg)
+ : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
+ size_(reg1.size()), type_(reg1.type()) {
+ VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+ VIXL_ASSERT(IsValid());
+ }
+
+ CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
+ : list_(list), size_(size), type_(type) {
+ VIXL_ASSERT(IsValid());
+ }
+
+ CPURegList(CPURegister::RegisterType type, unsigned size,
+ unsigned first_reg, unsigned last_reg)
+ : size_(size), type_(type) {
+ VIXL_ASSERT(((type == CPURegister::kRegister) &&
+ (last_reg < kNumberOfRegisters)) ||
+ ((type == CPURegister::kVRegister) &&
+ (last_reg < kNumberOfVRegisters)));
+ VIXL_ASSERT(last_reg >= first_reg);
+ list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
+ list_ &= ~((UINT64_C(1) << first_reg) - 1);
+ VIXL_ASSERT(IsValid());
+ }
+
+ CPURegister::RegisterType type() const {
+ VIXL_ASSERT(IsValid());
+ return type_;
+ }
+
+ // Combine another CPURegList into this one. Registers that already exist in
+ // this list are left unchanged. The type and size of the registers in the
+ // 'other' list must match those in this list.
+ void Combine(const CPURegList& other) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+ }
+
+ // Remove every register in the other CPURegList from this one. Registers that
+ // do not exist in this list are ignored. The type and size of the registers
+ // in the 'other' list must match those in this list.
+ void Remove(const CPURegList& other) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.RegisterSizeInBits() == size_);
+ list_ &= ~other.list();
+ }
+
+ // Variants of Combine and Remove which take a single register.
+ void Combine(const CPURegister& other) {
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.size() == size_);
+ Combine(other.code());
+ }
+
+ void Remove(const CPURegister& other) {
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.size() == size_);
+ Remove(other.code());
+ }
+
+ // Variants of Combine and Remove which take a single register by its code;
+ // the type and size of the register is inferred from this list.
+ void Combine(int code) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ |= (UINT64_C(1) << code);
+ }
+
+ void Remove(int code) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ &= ~(UINT64_C(1) << code);
+ }
+
+ static CPURegList Union(const CPURegList& list_1, const CPURegList& list_2) {
+ VIXL_ASSERT(list_1.type_ == list_2.type_);
+ VIXL_ASSERT(list_1.size_ == list_2.size_);
+ return CPURegList(list_1.type_, list_1.size_, list_1.list_ | list_2.list_);
+ }
+ static CPURegList Union(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3);
+ static CPURegList Union(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3,
+ const CPURegList& list_4);
+
+ static CPURegList Intersection(const CPURegList& list_1,
+ const CPURegList& list_2) {
+ VIXL_ASSERT(list_1.type_ == list_2.type_);
+ VIXL_ASSERT(list_1.size_ == list_2.size_);
+ return CPURegList(list_1.type_, list_1.size_, list_1.list_ & list_2.list_);
+ }
+ static CPURegList Intersection(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3);
+ static CPURegList Intersection(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3,
+ const CPURegList& list_4);
+
+ bool Overlaps(const CPURegList& other) const {
+ return (type_ == other.type_) && ((list_ & other.list_) != 0);
+ }
+
+ RegList list() const {
+ VIXL_ASSERT(IsValid());
+ return list_;
+ }
+
+ void set_list(RegList new_list) {
+ VIXL_ASSERT(IsValid());
+ list_ = new_list;
+ }
+
+ // Remove all callee-saved registers from the list. This can be useful when
+ // preparing registers for an AAPCS64 function call, for example.
+ void RemoveCalleeSaved();
+
+ CPURegister PopLowestIndex();
+ CPURegister PopHighestIndex();
+
+ // AAPCS64 callee-saved registers.
+ static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
+ static CPURegList GetCalleeSavedV(unsigned size = kDRegSize);
+
+ // AAPCS64 caller-saved registers. Note that this includes lr.
+ // TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
+ // 64-bits being caller-saved.
+ static CPURegList GetCallerSaved(unsigned size = kXRegSize);
+ static CPURegList GetCallerSavedV(unsigned size = kDRegSize);
+
+ bool IsEmpty() const {
+ VIXL_ASSERT(IsValid());
+ return list_ == 0;
+ }
+
+ bool IncludesAliasOf(const CPURegister& other) const {
+ VIXL_ASSERT(IsValid());
+ return (type_ == other.type()) && ((other.Bit() & list_) != 0);
+ }
+
+ bool IncludesAliasOf(int code) const {
+ VIXL_ASSERT(IsValid());
+ return ((code & list_) != 0);
+ }
+
+ int Count() const {
+ VIXL_ASSERT(IsValid());
+ return CountSetBits(list_);
+ }
+
+ unsigned RegisterSizeInBits() const {
+ VIXL_ASSERT(IsValid());
+ return size_;
+ }
+
+ unsigned RegisterSizeInBytes() const {
+ int size_in_bits = RegisterSizeInBits();
+ VIXL_ASSERT((size_in_bits % 8) == 0);
+ return size_in_bits / 8;
+ }
+
+ unsigned TotalSizeInBytes() const {
+ VIXL_ASSERT(IsValid());
+ return RegisterSizeInBytes() * Count();
+ }
+
+ private:
+ RegList list_;
+ unsigned size_;
+ CPURegister::RegisterType type_;
+
+ bool IsValid() const;
+};
+
+
+// AAPCS64 callee-saved registers.
+extern const CPURegList kCalleeSaved;
+extern const CPURegList kCalleeSavedV;
+
+
+// AAPCS64 caller-saved registers. Note that this includes lr.
+extern const CPURegList kCallerSaved;
+extern const CPURegList kCallerSavedV;
+
+
+// Operand.
+class Operand {
+ public:
+ // #<immediate>
+ // where <immediate> is int64_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(int64_t immediate = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<shift> #<shift_amount>}
+ // where <shift> is one of {LSL, LSR, ASR, ROR}.
+ // <shift_amount> is uint6_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(Register reg,
+ Shift shift = LSL,
+ unsigned shift_amount = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<extend> {#<shift_amount>}}
+ // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
+ // <shift_amount> is uint2_t.
+ explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
+
+ bool IsImmediate() const;
+ bool IsShiftedRegister() const;
+ bool IsExtendedRegister() const;
+ bool IsZero() const;
+
+ // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
+ // which helps in the encoding of instructions that use the stack pointer.
+ Operand ToExtendedRegister() const;
+
+ int64_t immediate() const {
+ VIXL_ASSERT(IsImmediate());
+ return immediate_;
+ }
+
+ Register reg() const {
+ VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+ }
+
+ CPURegister maybeReg() const {
+ if (IsShiftedRegister() || IsExtendedRegister())
+ return reg_;
+ return NoCPUReg;
+ }
+
+ Shift shift() const {
+ VIXL_ASSERT(IsShiftedRegister());
+ return shift_;
+ }
+
+ Extend extend() const {
+ VIXL_ASSERT(IsExtendedRegister());
+ return extend_;
+ }
+
+ unsigned shift_amount() const {
+ VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+ }
+
+ private:
+ int64_t immediate_;
+ Register reg_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+// MemOperand represents the addressing mode of a load or store instruction.
+class MemOperand {
+ public:
+ explicit MemOperand(Register base,
+ int64_t offset = 0,
+ AddrMode addrmode = Offset);
+ MemOperand(Register base,
+ Register regoffset,
+ Shift shift = LSL,
+ unsigned shift_amount = 0);
+ MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount = 0);
+ MemOperand(Register base,
+ const Operand& offset,
+ AddrMode addrmode = Offset);
+
+ // Adapter constructors using C++11 delegating.
+ // TODO: If sp == kSPRegInternalCode, the xzr check isn't necessary.
+ explicit MemOperand(js::jit::Address addr)
+ : MemOperand(IsHiddenSP(addr.base) ? sp : Register(AsRegister(addr.base), 64),
+ (ptrdiff_t)addr.offset) {
+ }
+
+ const Register& base() const { return base_; }
+ const Register& regoffset() const { return regoffset_; }
+ int64_t offset() const { return offset_; }
+ AddrMode addrmode() const { return addrmode_; }
+ Shift shift() const { return shift_; }
+ Extend extend() const { return extend_; }
+ unsigned shift_amount() const { return shift_amount_; }
+ bool IsImmediateOffset() const;
+ bool IsRegisterOffset() const;
+ bool IsPreIndex() const;
+ bool IsPostIndex() const;
+
+ void AddOffset(int64_t offset);
+
+ private:
+ Register base_;
+ Register regoffset_;
+ int64_t offset_;
+ AddrMode addrmode_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+// Control whether or not position-independent code should be emitted.
+enum PositionIndependentCodeOption {
+ // All code generated will be position-independent; all branches and
+ // references to labels generated with the Label class will use PC-relative
+ // addressing.
+ PositionIndependentCode,
+
+ // Allow VIXL to generate code that refers to absolute addresses. With this
+ // option, it will not be possible to copy the code buffer and run it from a
+ // different address; code must be generated in its final location.
+ PositionDependentCode,
+
+ // Allow VIXL to assume that the bottom 12 bits of the address will be
+ // constant, but that the top 48 bits may change. This allows `adrp` to
+ // function in systems which copy code between pages, but otherwise maintain
+ // 4KB page alignment.
+ PageOffsetDependentCode
+};
+
+
+// Control how scaled- and unscaled-offset loads and stores are generated.
+enum LoadStoreScalingOption {
+ // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
+ // register-offset, pre-index or post-index instructions if necessary.
+ PreferScaledOffset,
+
+ // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
+ // register-offset, pre-index or post-index instructions if necessary.
+ PreferUnscaledOffset,
+
+ // Require scaled-immediate-offset instructions.
+ RequireScaledOffset,
+
+ // Require unscaled-immediate-offset instructions.
+ RequireUnscaledOffset
+};
+
+
+// Assembler.
+class Assembler : public MozBaseAssembler {
+ public:
+ Assembler(PositionIndependentCodeOption pic = PositionIndependentCode);
+
+ // System functions.
+
+ // Finalize a code buffer of generated instructions. This function must be
+ // called before executing or copying code from the buffer.
+ void FinalizeCode();
+
+#define COPYENUM(v) static const Condition v = vixl::v
+#define COPYENUM_(v) static const Condition v = vixl::v##_
+ COPYENUM(Equal);
+ COPYENUM(Zero);
+ COPYENUM(NotEqual);
+ COPYENUM(NonZero);
+ COPYENUM(AboveOrEqual);
+ COPYENUM(CarrySet);
+ COPYENUM(Below);
+ COPYENUM(CarryClear);
+ COPYENUM(Signed);
+ COPYENUM(NotSigned);
+ COPYENUM(Overflow);
+ COPYENUM(NoOverflow);
+ COPYENUM(Above);
+ COPYENUM(BelowOrEqual);
+ COPYENUM_(GreaterThanOrEqual);
+ COPYENUM_(LessThan);
+ COPYENUM_(GreaterThan);
+ COPYENUM_(LessThanOrEqual);
+ COPYENUM(Always);
+ COPYENUM(Never);
+#undef COPYENUM
+#undef COPYENUM_
+
+ // Bit set when a DoubleCondition does not map to a single ARM condition.
+ // The MacroAssembler must special-case these conditions, or else
+ // ConditionFromDoubleCondition will complain.
+ static const int DoubleConditionBitSpecial = 0x100;
+
+ enum DoubleCondition {
+ DoubleOrdered = Condition::vc,
+ DoubleEqual = Condition::eq,
+ DoubleNotEqual = Condition::ne | DoubleConditionBitSpecial,
+ DoubleGreaterThan = Condition::gt,
+ DoubleGreaterThanOrEqual = Condition::ge,
+ DoubleLessThan = Condition::lo, // Could also use Condition::mi.
+ DoubleLessThanOrEqual = Condition::ls,
+
+ // If either operand is NaN, these conditions always evaluate to true.
+ DoubleUnordered = Condition::vs,
+ DoubleEqualOrUnordered = Condition::eq | DoubleConditionBitSpecial,
+ DoubleNotEqualOrUnordered = Condition::ne,
+ DoubleGreaterThanOrUnordered = Condition::hi,
+ DoubleGreaterThanOrEqualOrUnordered = Condition::hs,
+ DoubleLessThanOrUnordered = Condition::lt,
+ DoubleLessThanOrEqualOrUnordered = Condition::le
+ };
+
+ static inline Condition InvertCondition(Condition cond) {
+ // Conditions al and nv behave identically, as "always true". They can't be
+ // inverted, because there is no "always false" condition.
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ return static_cast<Condition>(cond ^ 1);
+ }
+
+ // This is chaging the condition codes for cmp a, b to the same codes for cmp b, a.
+ static inline Condition InvertCmpCondition(Condition cond) {
+ // Conditions al and nv behave identically, as "always true". They can't be
+ // inverted, because there is no "always false" condition.
+ switch (cond) {
+ case eq:
+ case ne:
+ return cond;
+ case gt:
+ return le;
+ case le:
+ return gt;
+ case ge:
+ return lt;
+ case lt:
+ return ge;
+ case hi:
+ return lo;
+ case lo:
+ return hi;
+ case hs:
+ return ls;
+ case ls:
+ return hs;
+ case mi:
+ return pl;
+ case pl:
+ return mi;
+ default:
+ MOZ_CRASH("TODO: figure this case out.");
+ }
+ return static_cast<Condition>(cond ^ 1);
+ }
+
+ static inline DoubleCondition InvertCondition(DoubleCondition cond) {
+ switch (cond) {
+ case DoubleOrdered:
+ return DoubleUnordered;
+ case DoubleEqual:
+ return DoubleNotEqualOrUnordered;
+ case DoubleNotEqual:
+ return DoubleEqualOrUnordered;
+ case DoubleGreaterThan:
+ return DoubleLessThanOrEqualOrUnordered;
+ case DoubleGreaterThanOrEqual:
+ return DoubleLessThanOrUnordered;
+ case DoubleLessThan:
+ return DoubleGreaterThanOrEqualOrUnordered;
+ case DoubleLessThanOrEqual:
+ return DoubleGreaterThanOrUnordered;
+ case DoubleUnordered:
+ return DoubleOrdered;
+ case DoubleEqualOrUnordered:
+ return DoubleNotEqual;
+ case DoubleNotEqualOrUnordered:
+ return DoubleEqual;
+ case DoubleGreaterThanOrUnordered:
+ return DoubleLessThanOrEqual;
+ case DoubleGreaterThanOrEqualOrUnordered:
+ return DoubleLessThan;
+ case DoubleLessThanOrUnordered:
+ return DoubleGreaterThanOrEqual;
+ case DoubleLessThanOrEqualOrUnordered:
+ return DoubleGreaterThan;
+ default:
+ MOZ_CRASH("Bad condition");
+ }
+ }
+
+ static inline Condition ConditionFromDoubleCondition(DoubleCondition cond) {
+ VIXL_ASSERT(!(cond & DoubleConditionBitSpecial));
+ return static_cast<Condition>(cond);
+ }
+
+ // Instruction set functions.
+
+ // Branch / Jump instructions.
+ // Branch to register.
+ void br(const Register& xn);
+ static void br(Instruction* at, const Register& xn);
+
+ // Branch with link to register.
+ void blr(const Register& xn);
+ static void blr(Instruction* at, const Register& blr);
+
+ // Branch to register with return hint.
+ void ret(const Register& xn = lr);
+
+ // Unconditional branch to label.
+ BufferOffset b(Label* label);
+
+ // Conditional branch to label.
+ BufferOffset b(Label* label, Condition cond);
+
+ // Unconditional branch to PC offset.
+ BufferOffset b(int imm26, const LabelDoc& doc);
+ static void b(Instruction* at, int imm26);
+
+ // Conditional branch to PC offset.
+ BufferOffset b(int imm19, Condition cond, const LabelDoc& doc);
+ static void b(Instruction*at, int imm19, Condition cond);
+
+ // Branch with link to label.
+ void bl(Label* label);
+
+ // Branch with link to PC offset.
+ void bl(int imm26, const LabelDoc& doc);
+ static void bl(Instruction* at, int imm26);
+
+ // Compare and branch to label if zero.
+ void cbz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if zero.
+ void cbz(const Register& rt, int imm19, const LabelDoc& doc);
+ static void cbz(Instruction* at, const Register& rt, int imm19);
+
+ // Compare and branch to label if not zero.
+ void cbnz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if not zero.
+ void cbnz(const Register& rt, int imm19, const LabelDoc& doc);
+ static void cbnz(Instruction* at, const Register& rt, int imm19);
+
+ // Table lookup from one register.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Table lookup from two registers.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vm);
+
+ // Table lookup from three registers.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vm);
+
+ // Table lookup from four registers.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vn4,
+ const VRegister& vm);
+
+ // Table lookup extension from one register.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Table lookup extension from two registers.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vm);
+
+ // Table lookup extension from three registers.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vm);
+
+ // Table lookup extension from four registers.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vn4,
+ const VRegister& vm);
+
+ // Test bit and branch to label if zero.
+ void tbz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if zero.
+ void tbz(const Register& rt, unsigned bit_pos, int imm14, const LabelDoc& doc);
+ static void tbz(Instruction* at, const Register& rt, unsigned bit_pos, int imm14);
+
+ // Test bit and branch to label if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, int imm14, const LabelDoc& doc);
+ static void tbnz(Instruction* at, const Register& rt, unsigned bit_pos, int imm14);
+
+ // Address calculation instructions.
+ // Calculate a PC-relative address. Unlike for branches the offset in adr is
+ // unscaled (i.e. the result can be unaligned).
+
+ // Calculate the address of a label.
+ void adr(const Register& rd, Label* label);
+
+ // Calculate the address of a PC offset.
+ void adr(const Register& rd, int imm21, const LabelDoc& doc);
+ static void adr(Instruction* at, const Register& rd, int imm21);
+
+ // Calculate the page address of a label.
+ void adrp(const Register& rd, Label* label);
+
+ // Calculate the page address of a PC offset.
+ void adrp(const Register& rd, int imm21, const LabelDoc& doc);
+ static void adrp(Instruction* at, const Register& rd, int imm21);
+
+ // Data Processing instructions.
+ // Add.
+ void add(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Add and update status flags.
+ void adds(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Compare negative.
+ void cmn(const Register& rn, const Operand& operand);
+
+ // Subtract.
+ void sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Subtract and update status flags.
+ void subs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Compare.
+ void cmp(const Register& rn, const Operand& operand);
+
+ // Negate.
+ void neg(const Register& rd,
+ const Operand& operand);
+
+ // Negate and update status flags.
+ void negs(const Register& rd,
+ const Operand& operand);
+
+ // Add with carry bit.
+ void adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Add with carry bit and update status flags.
+ void adcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Subtract with carry bit.
+ void sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Subtract with carry bit and update status flags.
+ void sbcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Negate with carry bit.
+ void ngc(const Register& rd,
+ const Operand& operand);
+
+ // Negate with carry bit and update status flags.
+ void ngcs(const Register& rd,
+ const Operand& operand);
+
+ // Logical instructions.
+ // Bitwise and (A & B).
+ void and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bitwise and (A & B) and update status flags.
+ BufferOffset ands(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bit test and set flags.
+ BufferOffset tst(const Register& rn, const Operand& operand);
+
+ // Bit clear (A & ~B).
+ void bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bit clear (A & ~B) and update status flags.
+ void bics(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bitwise or (A | B).
+ void orr(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise nor (A | ~B).
+ void orn(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise eor/xor (A ^ B).
+ void eor(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise enor/xnor (A ^ ~B).
+ void eon(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Logical shift left by variable.
+ void lslv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Logical shift right by variable.
+ void lsrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Arithmetic shift right by variable.
+ void asrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Rotate right by variable.
+ void rorv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bitfield instructions.
+ // Bitfield move.
+ void bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Signed bitfield move.
+ void sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Unsigned bitfield move.
+ void ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Bfm aliases.
+ // Bitfield insert.
+ void bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Bitfield extract and insert low.
+ void bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Sbfm aliases.
+ // Arithmetic shift right.
+ void asr(const Register& rd, const Register& rn, unsigned shift) {
+ VIXL_ASSERT(shift < rd.size());
+ sbfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Signed bitfield insert with zero at right.
+ void sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Signed bitfield extract.
+ void sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Signed extend byte.
+ void sxtb(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 7);
+ }
+
+ // Signed extend halfword.
+ void sxth(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 15);
+ }
+
+ // Signed extend word.
+ void sxtw(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 31);
+ }
+
+ // Ubfm aliases.
+ // Logical shift left.
+ void lsl(const Register& rd, const Register& rn, unsigned shift) {
+ unsigned reg_size = rd.size();
+ VIXL_ASSERT(shift < reg_size);
+ ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
+ }
+
+ // Logical shift right.
+ void lsr(const Register& rd, const Register& rn, unsigned shift) {
+ VIXL_ASSERT(shift < rd.size());
+ ubfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Unsigned bitfield insert with zero at right.
+ void ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Unsigned bitfield extract.
+ void ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Unsigned extend byte.
+ void uxtb(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 7);
+ }
+
+ // Unsigned extend halfword.
+ void uxth(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 15);
+ }
+
+ // Unsigned extend word.
+ void uxtw(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 31);
+ }
+
+ // Extract.
+ void extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb);
+
+ // Conditional select: rd = cond ? rn : rm.
+ void csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select increment: rd = cond ? rn : rm + 1.
+ void csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select inversion: rd = cond ? rn : ~rm.
+ void csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select negation: rd = cond ? rn : -rm.
+ void csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional set: rd = cond ? 1 : 0.
+ void cset(const Register& rd, Condition cond);
+
+ // Conditional set mask: rd = cond ? -1 : 0.
+ void csetm(const Register& rd, Condition cond);
+
+ // Conditional increment: rd = cond ? rn + 1 : rn.
+ void cinc(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional invert: rd = cond ? ~rn : rn.
+ void cinv(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional negate: rd = cond ? -rn : rn.
+ void cneg(const Register& rd, const Register& rn, Condition cond);
+
+ // Rotate right.
+ void ror(const Register& rd, const Register& rs, unsigned shift) {
+ extr(rd, rs, rs, shift);
+ }
+
+ // Conditional comparison.
+ // Conditional compare negative.
+ void ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Conditional compare.
+ void ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // CRC-32 checksum from byte.
+ void crc32b(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 checksum from half-word.
+ void crc32h(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 checksum from word.
+ void crc32w(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 checksum from double word.
+ void crc32x(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 C checksum from byte.
+ void crc32cb(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 C checksum from half-word.
+ void crc32ch(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 C checksum from word.
+ void crc32cw(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32C checksum from double word.
+ void crc32cx(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // Multiply.
+ void mul(const Register& rd, const Register& rn, const Register& rm);
+
+ // Negated multiply.
+ void mneg(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed long multiply: 32 x 32 -> 64-bit.
+ void smull(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+ void smulh(const Register& xd, const Register& xn, const Register& xm);
+
+ // Multiply and accumulate.
+ void madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Multiply and subtract.
+ void msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply: 32 x 32 -> 64-bit.
+ void umull(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ umaddl(rd, rn, rm, xzr);
+ }
+
+ // Unsigned multiply high: 64 x 64 -> 64-bit <127:64>.
+ void umulh(const Register& xd,
+ const Register& xn,
+ const Register& xm);
+
+ // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed integer divide.
+ void sdiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Unsigned integer divide.
+ void udiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bit reverse.
+ void rbit(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 16-bit half words.
+ void rev16(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 32-bit words.
+ void rev32(const Register& rd, const Register& rn);
+
+ // Reverse bytes.
+ void rev(const Register& rd, const Register& rn);
+
+ // Count leading zeroes.
+ void clz(const Register& rd, const Register& rn);
+
+ // Count leading sign bits.
+ void cls(const Register& rd, const Register& rn);
+
+ // Memory instructions.
+ // Load integer or FP register.
+ void ldr(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Store integer or FP register.
+ void str(const CPURegister& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load word with sign extension.
+ void ldrsw(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load byte.
+ void ldrb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Store byte.
+ void strb(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load byte with sign extension.
+ void ldrsb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load half-word.
+ void ldrh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Store half-word.
+ void strh(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load half-word with sign extension.
+ void ldrsh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load integer or FP register (with unscaled offset).
+ void ldur(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Store integer or FP register (with unscaled offset).
+ void stur(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load word with sign extension.
+ void ldursw(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load byte (with unscaled offset).
+ void ldurb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Store byte (with unscaled offset).
+ void sturb(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load byte with sign extension (and unscaled offset).
+ void ldursb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load half-word (with unscaled offset).
+ void ldurh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Store half-word (with unscaled offset).
+ void sturh(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load half-word with sign extension (and unscaled offset).
+ void ldursh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load integer or FP register pair.
+ void ldp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair.
+ void stp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load word pair with sign extension.
+ void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Load integer or FP register pair, non-temporal.
+ void ldnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair, non-temporal.
+ void stnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load integer or FP register from pc + imm19 << 2.
+ void ldr(const CPURegister& rt, int imm19);
+ static void ldr(Instruction* at, const CPURegister& rt, int imm19);
+
+ // Load word with sign extension from pc + imm19 << 2.
+ void ldrsw(const Register& rt, int imm19);
+
+ // Store exclusive byte.
+ void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store exclusive half-word.
+ void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store exclusive register.
+ void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Load exclusive byte.
+ void ldxrb(const Register& rt, const MemOperand& src);
+
+ // Load exclusive half-word.
+ void ldxrh(const Register& rt, const MemOperand& src);
+
+ // Load exclusive register.
+ void ldxr(const Register& rt, const MemOperand& src);
+
+ // Store exclusive register pair.
+ void stxp(const Register& rs,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& dst);
+
+ // Load exclusive register pair.
+ void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Store-release exclusive byte.
+ void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store-release exclusive half-word.
+ void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store-release exclusive register.
+ void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Load-acquire exclusive byte.
+ void ldaxrb(const Register& rt, const MemOperand& src);
+
+ // Load-acquire exclusive half-word.
+ void ldaxrh(const Register& rt, const MemOperand& src);
+
+ // Load-acquire exclusive register.
+ void ldaxr(const Register& rt, const MemOperand& src);
+
+ // Store-release exclusive register pair.
+ void stlxp(const Register& rs,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& dst);
+
+ // Load-acquire exclusive register pair.
+ void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Store-release byte.
+ void stlrb(const Register& rt, const MemOperand& dst);
+
+ // Store-release half-word.
+ void stlrh(const Register& rt, const MemOperand& dst);
+
+ // Store-release register.
+ void stlr(const Register& rt, const MemOperand& dst);
+
+ // Load-acquire byte.
+ void ldarb(const Register& rt, const MemOperand& src);
+
+ // Load-acquire half-word.
+ void ldarh(const Register& rt, const MemOperand& src);
+
+ // Load-acquire register.
+ void ldar(const Register& rt, const MemOperand& src);
+
+ // Compare and Swap word or doubleword in memory [Armv8.1].
+ void cas(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap word or doubleword in memory [Armv8.1].
+ void casa(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap word or doubleword in memory [Armv8.1].
+ void casl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap word or doubleword in memory [Armv8.1].
+ void casal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap byte in memory [Armv8.1].
+ void casb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap byte in memory [Armv8.1].
+ void casab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap byte in memory [Armv8.1].
+ void caslb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap byte in memory [Armv8.1].
+ void casalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap halfword in memory [Armv8.1].
+ void cash(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap halfword in memory [Armv8.1].
+ void casah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap halfword in memory [Armv8.1].
+ void caslh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap halfword in memory [Armv8.1].
+ void casalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Compare and Swap Pair of words or doublewords in memory [Armv8.1].
+ void casp(const Register& rs,
+ const Register& rs2,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& src);
+
+ // Compare and Swap Pair of words or doublewords in memory [Armv8.1].
+ void caspa(const Register& rs,
+ const Register& rs2,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& src);
+
+ // Compare and Swap Pair of words or doublewords in memory [Armv8.1].
+ void caspl(const Register& rs,
+ const Register& rs2,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& src);
+
+ // Compare and Swap Pair of words or doublewords in memory [Armv8.1].
+ void caspal(const Register& rs,
+ const Register& rs2,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& src);
+
+ // Atomic add on byte in memory [Armv8.1]
+ void ldaddb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on byte in memory, with Load-acquire semantics [Armv8.1]
+ void ldaddab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on byte in memory, with Store-release semantics [Armv8.1]
+ void ldaddlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on byte in memory, with Load-acquire and Store-release semantics
+ // [Armv8.1]
+ void ldaddalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on halfword in memory [Armv8.1]
+ void ldaddh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on halfword in memory, with Load-acquire semantics [Armv8.1]
+ void ldaddah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on halfword in memory, with Store-release semantics [Armv8.1]
+ void ldaddlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on halfword in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void ldaddalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on word or doubleword in memory [Armv8.1]
+ void ldadd(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on word or doubleword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldadda(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on word or doubleword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldaddl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on word or doubleword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldaddal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on byte in memory [Armv8.1]
+ void ldclrb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on byte in memory, with Load-acquire semantics [Armv8.1]
+ void ldclrab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on byte in memory, with Store-release semantics [Armv8.1]
+ void ldclrlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on byte in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void ldclralb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on halfword in memory [Armv8.1]
+ void ldclrh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on halfword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldclrah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldclrlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on halfword in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void ldclralh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on word or doubleword in memory [Armv8.1]
+ void ldclr(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on word or doubleword in memory, with Load-acquire
+ // semantics [Armv8.1]
+ void ldclra(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void ldclrl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit clear on word or doubleword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldclral(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on byte in memory [Armv8.1]
+ void ldeorb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on byte in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldeorab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on byte in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldeorlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on byte in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void ldeoralb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on halfword in memory [Armv8.1]
+ void ldeorh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on halfword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldeorah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldeorlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on halfword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldeoralh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on word or doubleword in memory [Armv8.1]
+ void ldeor(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on word or doubleword in memory, with Load-acquire
+ // semantics [Armv8.1]
+ void ldeora(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void ldeorl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic exclusive OR on word or doubleword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldeoral(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on byte in memory [Armv8.1]
+ void ldsetb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on byte in memory, with Load-acquire semantics [Armv8.1]
+ void ldsetab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on byte in memory, with Store-release semantics [Armv8.1]
+ void ldsetlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on byte in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void ldsetalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on halfword in memory [Armv8.1]
+ void ldseth(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on halfword in memory, with Load-acquire semantics [Armv8.1]
+ void ldsetah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldsetlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on halfword in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void ldsetalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on word or doubleword in memory [Armv8.1]
+ void ldset(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on word or doubleword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldseta(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void ldsetl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic bit set on word or doubleword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldsetal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on byte in memory [Armv8.1]
+ void ldsmaxb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on byte in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldsmaxab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on byte in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldsmaxlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on byte in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldsmaxalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on halfword in memory [Armv8.1]
+ void ldsmaxh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on halfword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldsmaxah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldsmaxlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on halfword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldsmaxalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on word or doubleword in memory [Armv8.1]
+ void ldsmax(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on word or doubleword in memory, with Load-acquire
+ // semantics [Armv8.1]
+ void ldsmaxa(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void ldsmaxl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed maximum on word or doubleword in memory, with Load-acquire
+ // and Store-release semantics [Armv8.1]
+ void ldsmaxal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on byte in memory [Armv8.1]
+ void ldsminb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on byte in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldsminab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on byte in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldsminlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on byte in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldsminalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on halfword in memory [Armv8.1]
+ void ldsminh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on halfword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldsminah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldsminlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on halfword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldsminalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on word or doubleword in memory [Armv8.1]
+ void ldsmin(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on word or doubleword in memory, with Load-acquire
+ // semantics [Armv8.1]
+ void ldsmina(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void ldsminl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic signed minimum on word or doubleword in memory, with Load-acquire
+ // and Store-release semantics [Armv8.1]
+ void ldsminal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on byte in memory [Armv8.1]
+ void ldumaxb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on byte in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldumaxab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on byte in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldumaxlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on byte in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldumaxalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on halfword in memory [Armv8.1]
+ void ldumaxh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on halfword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void ldumaxah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void ldumaxlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on halfword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void ldumaxalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on word or doubleword in memory [Armv8.1]
+ void ldumax(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on word or doubleword in memory, with Load-acquire
+ // semantics [Armv8.1]
+ void ldumaxa(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void ldumaxl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned maximum on word or doubleword in memory, with Load-acquire
+ // and Store-release semantics [Armv8.1]
+ void ldumaxal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on byte in memory [Armv8.1]
+ void lduminb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on byte in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void lduminab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on byte in memory, with Store-release semantics
+ // [Armv8.1]
+ void lduminlb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on byte in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void lduminalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on halfword in memory [Armv8.1]
+ void lduminh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on halfword in memory, with Load-acquire semantics
+ // [Armv8.1]
+ void lduminah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on halfword in memory, with Store-release semantics
+ // [Armv8.1]
+ void lduminlh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on halfword in memory, with Load-acquire and
+ // Store-release semantics [Armv8.1]
+ void lduminalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on word or doubleword in memory [Armv8.1]
+ void ldumin(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on word or doubleword in memory, with Load-acquire
+ // semantics [Armv8.1]
+ void ldumina(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on word or doubleword in memory, with Store-release
+ // semantics [Armv8.1]
+ void lduminl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic unsigned minimum on word or doubleword in memory, with Load-acquire
+ // and Store-release semantics [Armv8.1]
+ void lduminal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Atomic add on byte in memory, without return. [Armv8.1]
+ void staddb(const Register& rs, const MemOperand& src);
+
+ // Atomic add on byte in memory, with Store-release semantics and without
+ // return. [Armv8.1]
+ void staddlb(const Register& rs, const MemOperand& src);
+
+ // Atomic add on halfword in memory, without return. [Armv8.1]
+ void staddh(const Register& rs, const MemOperand& src);
+
+ // Atomic add on halfword in memory, with Store-release semantics and without
+ // return. [Armv8.1]
+ void staddlh(const Register& rs, const MemOperand& src);
+
+ // Atomic add on word or doubleword in memory, without return. [Armv8.1]
+ void stadd(const Register& rs, const MemOperand& src);
+
+ // Atomic add on word or doubleword in memory, with Store-release semantics
+ // and without return. [Armv8.1]
+ void staddl(const Register& rs, const MemOperand& src);
+
+ // Atomic bit clear on byte in memory, without return. [Armv8.1]
+ void stclrb(const Register& rs, const MemOperand& src);
+
+ // Atomic bit clear on byte in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stclrlb(const Register& rs, const MemOperand& src);
+
+ // Atomic bit clear on halfword in memory, without return. [Armv8.1]
+ void stclrh(const Register& rs, const MemOperand& src);
+
+ // Atomic bit clear on halfword in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stclrlh(const Register& rs, const MemOperand& src);
+
+ // Atomic bit clear on word or doubleword in memory, without return. [Armv8.1]
+ void stclr(const Register& rs, const MemOperand& src);
+
+ // Atomic bit clear on word or doubleword in memory, with Store-release
+ // semantics and without return. [Armv8.1]
+ void stclrl(const Register& rs, const MemOperand& src);
+
+ // Atomic exclusive OR on byte in memory, without return. [Armv8.1]
+ void steorb(const Register& rs, const MemOperand& src);
+
+ // Atomic exclusive OR on byte in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void steorlb(const Register& rs, const MemOperand& src);
+
+ // Atomic exclusive OR on halfword in memory, without return. [Armv8.1]
+ void steorh(const Register& rs, const MemOperand& src);
+
+ // Atomic exclusive OR on halfword in memory, with Store-release semantics
+ // and without return. [Armv8.1]
+ void steorlh(const Register& rs, const MemOperand& src);
+
+ // Atomic exclusive OR on word or doubleword in memory, without return.
+ // [Armv8.1]
+ void steor(const Register& rs, const MemOperand& src);
+
+ // Atomic exclusive OR on word or doubleword in memory, with Store-release
+ // semantics and without return. [Armv8.1]
+ void steorl(const Register& rs, const MemOperand& src);
+
+ // Atomic bit set on byte in memory, without return. [Armv8.1]
+ void stsetb(const Register& rs, const MemOperand& src);
+
+ // Atomic bit set on byte in memory, with Store-release semantics and without
+ // return. [Armv8.1]
+ void stsetlb(const Register& rs, const MemOperand& src);
+
+ // Atomic bit set on halfword in memory, without return. [Armv8.1]
+ void stseth(const Register& rs, const MemOperand& src);
+
+ // Atomic bit set on halfword in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stsetlh(const Register& rs, const MemOperand& src);
+
+ // Atomic bit set on word or doubleword in memory, without return. [Armv8.1]
+ void stset(const Register& rs, const MemOperand& src);
+
+ // Atomic bit set on word or doubleword in memory, with Store-release
+ // semantics and without return. [Armv8.1]
+ void stsetl(const Register& rs, const MemOperand& src);
+
+ // Atomic signed maximum on byte in memory, without return. [Armv8.1]
+ void stsmaxb(const Register& rs, const MemOperand& src);
+
+ // Atomic signed maximum on byte in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stsmaxlb(const Register& rs, const MemOperand& src);
+
+ // Atomic signed maximum on halfword in memory, without return. [Armv8.1]
+ void stsmaxh(const Register& rs, const MemOperand& src);
+
+ // Atomic signed maximum on halfword in memory, with Store-release semantics
+ // and without return. [Armv8.1]
+ void stsmaxlh(const Register& rs, const MemOperand& src);
+
+ // Atomic signed maximum on word or doubleword in memory, without return.
+ // [Armv8.1]
+ void stsmax(const Register& rs, const MemOperand& src);
+
+ // Atomic signed maximum on word or doubleword in memory, with Store-release
+ // semantics and without return. [Armv8.1]
+ void stsmaxl(const Register& rs, const MemOperand& src);
+
+ // Atomic signed minimum on byte in memory, without return. [Armv8.1]
+ void stsminb(const Register& rs, const MemOperand& src);
+
+ // Atomic signed minimum on byte in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stsminlb(const Register& rs, const MemOperand& src);
+
+ // Atomic signed minimum on halfword in memory, without return. [Armv8.1]
+ void stsminh(const Register& rs, const MemOperand& src);
+
+ // Atomic signed minimum on halfword in memory, with Store-release semantics
+ // and without return. [Armv8.1]
+ void stsminlh(const Register& rs, const MemOperand& src);
+
+ // Atomic signed minimum on word or doubleword in memory, without return.
+ // [Armv8.1]
+ void stsmin(const Register& rs, const MemOperand& src);
+
+ // Atomic signed minimum on word or doubleword in memory, with Store-release
+ // semantics and without return. semantics [Armv8.1]
+ void stsminl(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned maximum on byte in memory, without return. [Armv8.1]
+ void stumaxb(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned maximum on byte in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stumaxlb(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned maximum on halfword in memory, without return. [Armv8.1]
+ void stumaxh(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned maximum on halfword in memory, with Store-release semantics
+ // and without return. [Armv8.1]
+ void stumaxlh(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned maximum on word or doubleword in memory, without return.
+ // [Armv8.1]
+ void stumax(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned maximum on word or doubleword in memory, with Store-release
+ // semantics and without return. [Armv8.1]
+ void stumaxl(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned minimum on byte in memory, without return. [Armv8.1]
+ void stuminb(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned minimum on byte in memory, with Store-release semantics and
+ // without return. [Armv8.1]
+ void stuminlb(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned minimum on halfword in memory, without return. [Armv8.1]
+ void stuminh(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned minimum on halfword in memory, with Store-release semantics
+ // and without return. [Armv8.1]
+ void stuminlh(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned minimum on word or doubleword in memory, without return.
+ // [Armv8.1]
+ void stumin(const Register& rs, const MemOperand& src);
+
+ // Atomic unsigned minimum on word or doubleword in memory, with Store-release
+ // semantics and without return. [Armv8.1]
+ void stuminl(const Register& rs, const MemOperand& src);
+
+ // Swap byte in memory [Armv8.1]
+ void swpb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap byte in memory, with Load-acquire semantics [Armv8.1]
+ void swpab(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap byte in memory, with Store-release semantics [Armv8.1]
+ void swplb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap byte in memory, with Load-acquire and Store-release semantics
+ // [Armv8.1]
+ void swpalb(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap halfword in memory [Armv8.1]
+ void swph(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap halfword in memory, with Load-acquire semantics [Armv8.1]
+ void swpah(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap halfword in memory, with Store-release semantics [Armv8.1]
+ void swplh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap halfword in memory, with Load-acquire and Store-release semantics
+ // [Armv8.1]
+ void swpalh(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap word or doubleword in memory [Armv8.1]
+ void swp(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap word or doubleword in memory, with Load-acquire semantics [Armv8.1]
+ void swpa(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap word or doubleword in memory, with Store-release semantics [Armv8.1]
+ void swpl(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Swap word or doubleword in memory, with Load-acquire and Store-release
+ // semantics [Armv8.1]
+ void swpal(const Register& rs, const Register& rt, const MemOperand& src);
+
+ // Prefetch memory.
+ void prfm(PrefetchOperation op, const MemOperand& addr,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Prefetch memory (with unscaled offset).
+ void prfum(PrefetchOperation op, const MemOperand& addr,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Prefetch from pc + imm19 << 2.
+ void prfm(PrefetchOperation op, int imm19);
+
+ // Move instructions. The default shift of -1 indicates that the move
+ // instruction will calculate an appropriate 16-bit immediate and left shift
+ // that is equal to the 64-bit immediate argument. If an explicit left shift
+ // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
+ //
+ // For movk, an explicit shift can be used to indicate which half word should
+ // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
+ // half word with zero, whereas movk(x0, 0, 48) will overwrite the
+ // most-significant.
+
+ // Move immediate and keep.
+ void movk(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVK);
+ }
+
+ // Move inverted immediate.
+ void movn(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVN);
+ }
+
+ // Move immediate.
+ void movz(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVZ);
+ }
+
+ // Misc instructions.
+ // Monitor debug-mode breakpoint.
+ void brk(int code);
+
+ // Halting debug-mode breakpoint.
+ void hlt(int code);
+
+ // Generate exception targeting EL1.
+ void svc(int code);
+ static void svc(Instruction* at, int code);
+
+ // Move register to register.
+ void mov(const Register& rd, const Register& rn);
+
+ // Move inverted operand to register.
+ void mvn(const Register& rd, const Operand& operand);
+
+ // System instructions.
+ // Move to register from system register.
+ void mrs(const Register& rt, SystemRegister sysreg);
+
+ // Move from register to system register.
+ void msr(SystemRegister sysreg, const Register& rt);
+
+ // System instruction.
+ void sys(int op1, int crn, int crm, int op2, const Register& rt = xzr);
+
+ // System instruction with pre-encoded op (op1:crn:crm:op2).
+ void sys(int op, const Register& rt = xzr);
+
+ // System data cache operation.
+ void dc(DataCacheOp op, const Register& rt);
+
+ // System instruction cache operation.
+ void ic(InstructionCacheOp op, const Register& rt);
+
+ // System hint.
+ BufferOffset hint(SystemHint code);
+ static void hint(Instruction* at, SystemHint code);
+
+ // Clear exclusive monitor.
+ void clrex(int imm4 = 0xf);
+
+ // Data memory barrier.
+ void dmb(BarrierDomain domain, BarrierType type);
+
+ // Data synchronization barrier.
+ void dsb(BarrierDomain domain, BarrierType type);
+
+ // Instruction synchronization barrier.
+ void isb();
+
+ // Alias for system instructions.
+ // No-op.
+ BufferOffset nop() {
+ return hint(NOP);
+ }
+ static void nop(Instruction* at);
+
+ // Alias for system instructions.
+ // Conditional speculation barrier.
+ BufferOffset csdb() {
+ return hint(CSDB);
+ }
+ static void csdb(Instruction* at);
+
+ // FP and NEON instructions.
+ // Move double precision immediate to FP register.
+ void fmov(const VRegister& vd, double imm);
+
+ // Move single precision immediate to FP register.
+ void fmov(const VRegister& vd, float imm);
+
+ // Move FP register to register.
+ void fmov(const Register& rd, const VRegister& fn);
+
+ // Move register to FP register.
+ void fmov(const VRegister& vd, const Register& rn);
+
+ // Move FP register to FP register.
+ void fmov(const VRegister& vd, const VRegister& fn);
+
+ // Move 64-bit register to top half of 128-bit FP register.
+ void fmov(const VRegister& vd, int index, const Register& rn);
+
+ // Move top half of 128-bit FP register to 64-bit register.
+ void fmov(const Register& rd, const VRegister& vn, int index);
+
+ // FP add.
+ void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
+
+ // FP subtract.
+ void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
+
+ // FP multiply.
+ void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
+
+ // FP fused multiply-add.
+ void fmadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP fused multiply-subtract.
+ void fmsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP fused multiply-add and negate.
+ void fnmadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP fused multiply-subtract and negate.
+ void fnmsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP multiply-negate scalar.
+ void fnmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP reciprocal exponent scalar.
+ void frecpx(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP divide.
+ void fdiv(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP maximum.
+ void fmax(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP minimum.
+ void fmin(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP maximum number.
+ void fmaxnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP minimum number.
+ void fminnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP absolute.
+ void fabs(const VRegister& vd, const VRegister& vn);
+
+ // FP negate.
+ void fneg(const VRegister& vd, const VRegister& vn);
+
+ // FP square root.
+ void fsqrt(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, nearest with ties to away.
+ void frinta(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, implicit rounding.
+ void frinti(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, toward minus infinity.
+ void frintm(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, nearest with ties to even.
+ void frintn(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, toward plus infinity.
+ void frintp(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, exact, implicit rounding.
+ void frintx(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, towards zero.
+ void frintz(const VRegister& vd, const VRegister& vn);
+
+ void FPCompareMacro(const VRegister& vn,
+ double value,
+ FPTrapFlags trap);
+
+ void FPCompareMacro(const VRegister& vn,
+ const VRegister& vm,
+ FPTrapFlags trap);
+
+ // FP compare registers.
+ void fcmp(const VRegister& vn, const VRegister& vm);
+
+ // FP compare immediate.
+ void fcmp(const VRegister& vn, double value);
+
+ void FPCCompareMacro(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond,
+ FPTrapFlags trap);
+
+ // FP conditional compare.
+ void fccmp(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP signaling compare registers.
+ void fcmpe(const VRegister& vn, const VRegister& vm);
+
+ // FP signaling compare immediate.
+ void fcmpe(const VRegister& vn, double value);
+
+ // FP conditional signaling compare.
+ void fccmpe(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP conditional select.
+ void fcsel(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ Condition cond);
+
+ // Common FP Convert functions.
+ void NEONFPConvertToInt(const Register& rd,
+ const VRegister& vn,
+ Instr op);
+ void NEONFPConvertToInt(const VRegister& vd,
+ const VRegister& vn,
+ Instr op);
+
+ // FP convert between precisions.
+ void fcvt(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to higher precision.
+ void fcvtl(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to higher precision (second part).
+ void fcvtl2(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower precision.
+ void fcvtn(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower prevision (second part).
+ void fcvtn2(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower precision, rounding to odd.
+ void fcvtxn(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower precision, rounding to odd (second part).
+ void fcvtxn2(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to away.
+ void fcvtas(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to away.
+ void fcvtau(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to away.
+ void fcvtas(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to away.
+ void fcvtau(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to signed integer, round towards -infinity.
+ void fcvtms(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards -infinity.
+ void fcvtmu(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, round towards -infinity.
+ void fcvtms(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards -infinity.
+ void fcvtmu(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to even.
+ void fcvtns(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to even.
+ void fcvtnu(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to even.
+ void fcvtns(const VRegister& rd, const VRegister& vn);
+
+ // FP JavaScript convert to signed integer, rounding toward zero [Armv8.3].
+ void fjcvtzs(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to even.
+ void fcvtnu(const VRegister& rd, const VRegister& vn);
+
+ // FP convert to signed integer or fixed-point, round towards zero.
+ void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to unsigned integer or fixed-point, round towards zero.
+ void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to signed integer or fixed-point, round towards zero.
+ void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to unsigned integer or fixed-point, round towards zero.
+ void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to signed integer, round towards +infinity.
+ void fcvtps(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards +infinity.
+ void fcvtpu(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, round towards +infinity.
+ void fcvtps(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards +infinity.
+ void fcvtpu(const VRegister& vd, const VRegister& vn);
+
+ // Convert signed integer or fixed point to FP.
+ void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
+
+ // Convert unsigned integer or fixed point to FP.
+ void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
+
+ // Convert signed integer or fixed-point to FP.
+ void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
+
+ // Convert unsigned integer or fixed-point to FP.
+ void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
+
+ // Unsigned absolute difference.
+ void uabd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference.
+ void sabd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference and accumulate.
+ void uaba(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference and accumulate.
+ void saba(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add.
+ void add(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Subtract.
+ void sub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned halving add.
+ void uhadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed halving add.
+ void shadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned rounding halving add.
+ void urhadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed rounding halving add.
+ void srhadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned halving sub.
+ void uhsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed halving sub.
+ void shsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating add.
+ void uqadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating add.
+ void sqadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating subtract.
+ void uqsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating subtract.
+ void sqsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add pairwise.
+ void addp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add pair of elements scalar.
+ void addp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Multiply-add to accumulator.
+ void mla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Multiply-subtract to accumulator.
+ void mls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Multiply.
+ void mul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Multiply by scalar element.
+ void mul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Multiply-add by scalar element.
+ void mla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Multiply-subtract by scalar element.
+ void mls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-add by scalar element.
+ void smlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-add by scalar element (second part).
+ void smlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-add by scalar element.
+ void umlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-add by scalar element (second part).
+ void umlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-sub by scalar element.
+ void smlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-sub by scalar element (second part).
+ void smlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-sub by scalar element.
+ void umlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-sub by scalar element (second part).
+ void umlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply by scalar element.
+ void smull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply by scalar element (second part).
+ void smull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply by scalar element.
+ void umull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply by scalar element (second part).
+ void umull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating double long multiply by element.
+ void sqdmull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating double long multiply by element (second part).
+ void sqdmull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-add by element.
+ void sqdmlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-add by element (second part).
+ void sqdmlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-sub by element.
+ void sqdmlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-sub by element (second part).
+ void sqdmlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Compare equal.
+ void cmeq(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare signed greater than or equal.
+ void cmge(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare signed greater than.
+ void cmgt(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare unsigned higher.
+ void cmhi(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare unsigned higher or same.
+ void cmhs(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare bitwise test bits nonzero.
+ void cmtst(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare bitwise to zero.
+ void cmeq(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed greater than or equal to zero.
+ void cmge(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed greater than zero.
+ void cmgt(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed less than or equal to zero.
+ void cmle(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed less than zero.
+ void cmlt(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Signed shift left by register.
+ void sshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned shift left by register.
+ void ushl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating shift left by register.
+ void sqshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating shift left by register.
+ void uqshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed rounding shift left by register.
+ void srshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned rounding shift left by register.
+ void urshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating rounding shift left by register.
+ void sqrshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating rounding shift left by register.
+ void uqrshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise and.
+ void and_(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise or.
+ void orr(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise or immediate.
+ void orr(const VRegister& vd,
+ const int imm8,
+ const int left_shift = 0);
+
+ // Move register to register.
+ void mov(const VRegister& vd,
+ const VRegister& vn);
+
+ // Bitwise orn.
+ void orn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise eor.
+ void eor(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bit clear immediate.
+ void bic(const VRegister& vd,
+ const int imm8,
+ const int left_shift = 0);
+
+ // Bit clear.
+ void bic(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise insert if false.
+ void bif(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise insert if true.
+ void bit(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise select.
+ void bsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Polynomial multiply.
+ void pmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Vector move immediate.
+ void movi(const VRegister& vd,
+ const uint64_t imm,
+ Shift shift = LSL,
+ const int shift_amount = 0);
+
+ // Bitwise not.
+ void mvn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Vector move inverted immediate.
+ void mvni(const VRegister& vd,
+ const int imm8,
+ Shift shift = LSL,
+ const int shift_amount = 0);
+
+ // Signed saturating accumulate of unsigned value.
+ void suqadd(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned saturating accumulate of signed value.
+ void usqadd(const VRegister& vd,
+ const VRegister& vn);
+
+ // Absolute value.
+ void abs(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating absolute value.
+ void sqabs(const VRegister& vd,
+ const VRegister& vn);
+
+ // Negate.
+ void neg(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating negate.
+ void sqneg(const VRegister& vd,
+ const VRegister& vn);
+
+ // Bitwise not.
+ void not_(const VRegister& vd,
+ const VRegister& vn);
+
+ // Extract narrow.
+ void xtn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Extract narrow (second part).
+ void xtn2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract narrow.
+ void sqxtn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract narrow (second part).
+ void sqxtn2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned saturating extract narrow.
+ void uqxtn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned saturating extract narrow (second part).
+ void uqxtn2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract unsigned narrow.
+ void sqxtun(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract unsigned narrow (second part).
+ void sqxtun2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Extract vector from pair of vectors.
+ void ext(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int index);
+
+ // Duplicate vector element to vector or scalar.
+ void dup(const VRegister& vd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Move vector element to scalar.
+ void mov(const VRegister& vd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Duplicate general-purpose register to vector.
+ void dup(const VRegister& vd,
+ const Register& rn);
+
+ // Insert vector element from another vector element.
+ void ins(const VRegister& vd,
+ int vd_index,
+ const VRegister& vn,
+ int vn_index);
+
+ // Move vector element to another vector element.
+ void mov(const VRegister& vd,
+ int vd_index,
+ const VRegister& vn,
+ int vn_index);
+
+ // Insert vector element from general-purpose register.
+ void ins(const VRegister& vd,
+ int vd_index,
+ const Register& rn);
+
+ // Move general-purpose register to a vector element.
+ void mov(const VRegister& vd,
+ int vd_index,
+ const Register& rn);
+
+ // Unsigned move vector element to general-purpose register.
+ void umov(const Register& rd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Move vector element to general-purpose register.
+ void mov(const Register& rd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Signed move vector element to general-purpose register.
+ void smov(const Register& rd,
+ const VRegister& vn,
+ int vn_index);
+
+ // One-element structure load to one register.
+ void ld1(const VRegister& vt,
+ const MemOperand& src);
+
+ // One-element structure load to two registers.
+ void ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // One-element structure load to three registers.
+ void ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // One-element structure load to four registers.
+ void ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // One-element single structure load to one lane.
+ void ld1(const VRegister& vt,
+ int lane,
+ const MemOperand& src);
+
+ // One-element single structure load to all lanes.
+ void ld1r(const VRegister& vt,
+ const MemOperand& src);
+
+ // Two-element structure load.
+ void ld2(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // Two-element single structure load to one lane.
+ void ld2(const VRegister& vt,
+ const VRegister& vt2,
+ int lane,
+ const MemOperand& src);
+
+ // Two-element single structure load to all lanes.
+ void ld2r(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // Three-element structure load.
+ void ld3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // Three-element single structure load to one lane.
+ void ld3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ int lane,
+ const MemOperand& src);
+
+ // Three-element single structure load to all lanes.
+ void ld3r(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // Four-element structure load.
+ void ld4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // Four-element single structure load to one lane.
+ void ld4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ int lane,
+ const MemOperand& src);
+
+ // Four-element single structure load to all lanes.
+ void ld4r(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // Count leading sign bits.
+ void cls(const VRegister& vd,
+ const VRegister& vn);
+
+ // Count leading zero bits (vector).
+ void clz(const VRegister& vd,
+ const VRegister& vn);
+
+ // Population count per byte.
+ void cnt(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse bit order.
+ void rbit(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse elements in 16-bit halfwords.
+ void rev16(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse elements in 32-bit words.
+ void rev32(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse elements in 64-bit doublewords.
+ void rev64(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned reciprocal square root estimate.
+ void ursqrte(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned reciprocal estimate.
+ void urecpe(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed pairwise long add.
+ void saddlp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned pairwise long add.
+ void uaddlp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed pairwise long add and accumulate.
+ void sadalp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned pairwise long add and accumulate.
+ void uadalp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Shift left by immediate.
+ void shl(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift left by immediate.
+ void sqshl(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift left unsigned by immediate.
+ void sqshlu(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating shift left by immediate.
+ void uqshl(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed shift left long by immediate.
+ void sshll(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed shift left long by immediate (second part).
+ void sshll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed extend long.
+ void sxtl(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed extend long (second part).
+ void sxtl2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned shift left long by immediate.
+ void ushll(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned shift left long by immediate (second part).
+ void ushll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift left long by element size.
+ void shll(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift left long by element size (second part).
+ void shll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned extend long.
+ void uxtl(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned extend long (second part).
+ void uxtl2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Shift left by immediate and insert.
+ void sli(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift right by immediate and insert.
+ void sri(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed maximum.
+ void smax(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed pairwise maximum.
+ void smaxp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add across vector.
+ void addv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed add long across vector.
+ void saddlv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned add long across vector.
+ void uaddlv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP maximum number across vector.
+ void fmaxnmv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP maximum across vector.
+ void fmaxv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP minimum number across vector.
+ void fminnmv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP minimum across vector.
+ void fminv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed maximum across vector.
+ void smaxv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed minimum.
+ void smin(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed minimum pairwise.
+ void sminp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed minimum across vector.
+ void sminv(const VRegister& vd,
+ const VRegister& vn);
+
+ // One-element structure store from one register.
+ void st1(const VRegister& vt,
+ const MemOperand& src);
+
+ // One-element structure store from two registers.
+ void st1(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // One-element structure store from three registers.
+ void st1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // One-element structure store from four registers.
+ void st1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // One-element single structure store from one lane.
+ void st1(const VRegister& vt,
+ int lane,
+ const MemOperand& src);
+
+ // Two-element structure store from two registers.
+ void st2(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // Two-element single structure store from two lanes.
+ void st2(const VRegister& vt,
+ const VRegister& vt2,
+ int lane,
+ const MemOperand& src);
+
+ // Three-element structure store from three registers.
+ void st3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // Three-element single structure store from three lanes.
+ void st3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ int lane,
+ const MemOperand& src);
+
+ // Four-element structure store from four registers.
+ void st4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // Four-element single structure store from four lanes.
+ void st4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ int lane,
+ const MemOperand& src);
+
+ // Unsigned add long.
+ void uaddl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned add long (second part).
+ void uaddl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned add wide.
+ void uaddw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned add wide (second part).
+ void uaddw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add long.
+ void saddl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add long (second part).
+ void saddl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add wide.
+ void saddw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add wide (second part).
+ void saddw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract long.
+ void usubl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract long (second part).
+ void usubl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract wide.
+ void usubw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract wide (second part).
+ void usubw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed subtract long.
+ void ssubl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed subtract long (second part).
+ void ssubl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed integer subtract wide.
+ void ssubw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed integer subtract wide (second part).
+ void ssubw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned maximum.
+ void umax(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned pairwise maximum.
+ void umaxp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned maximum across vector.
+ void umaxv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned minimum.
+ void umin(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned pairwise minimum.
+ void uminp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned minimum across vector.
+ void uminv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Transpose vectors (primary).
+ void trn1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Transpose vectors (secondary).
+ void trn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unzip vectors (primary).
+ void uzp1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unzip vectors (secondary).
+ void uzp2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Zip vectors (primary).
+ void zip1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Zip vectors (secondary).
+ void zip2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed shift right by immediate.
+ void sshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned shift right by immediate.
+ void ushr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed rounding shift right by immediate.
+ void srshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned rounding shift right by immediate.
+ void urshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed shift right by immediate and accumulate.
+ void ssra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned shift right by immediate and accumulate.
+ void usra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed rounding shift right by immediate and accumulate.
+ void srsra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned rounding shift right by immediate and accumulate.
+ void ursra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift right narrow by immediate.
+ void shrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift right narrow by immediate (second part).
+ void shrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Rounding shift right narrow by immediate.
+ void rshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Rounding shift right narrow by immediate (second part).
+ void rshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating shift right narrow by immediate.
+ void uqshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating shift right narrow by immediate (second part).
+ void uqshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating rounding shift right narrow by immediate.
+ void uqrshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating rounding shift right narrow by immediate (second part).
+ void uqrshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right narrow by immediate.
+ void sqshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right narrow by immediate (second part).
+ void sqshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating rounded shift right narrow by immediate.
+ void sqrshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating rounded shift right narrow by immediate (second part).
+ void sqrshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right unsigned narrow by immediate.
+ void sqshrun(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right unsigned narrow by immediate (second part).
+ void sqshrun2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed sat rounded shift right unsigned narrow by immediate.
+ void sqrshrun(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed sat rounded shift right unsigned narrow by immediate (second part).
+ void sqrshrun2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // FP reciprocal step.
+ void frecps(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP reciprocal estimate.
+ void frecpe(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP reciprocal square root estimate.
+ void frsqrte(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP reciprocal square root step.
+ void frsqrts(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference and accumulate long.
+ void sabal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference and accumulate long (second part).
+ void sabal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference and accumulate long.
+ void uabal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference and accumulate long (second part).
+ void uabal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference long.
+ void sabdl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference long (second part).
+ void sabdl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference long.
+ void uabdl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference long (second part).
+ void uabdl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Polynomial multiply long.
+ void pmull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Polynomial multiply long (second part).
+ void pmull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-add.
+ void smlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-add (second part).
+ void smlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-add.
+ void umlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-add (second part).
+ void umlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-sub.
+ void smlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-sub (second part).
+ void smlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-sub.
+ void umlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-sub (second part).
+ void umlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply.
+ void smull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply (second part).
+ void smull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-add.
+ void sqdmlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-add (second part).
+ void sqdmlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-subtract.
+ void sqdmlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-subtract (second part).
+ void sqdmlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply.
+ void sqdmull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply (second part).
+ void sqdmull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling multiply returning high half.
+ void sqdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating rounding doubling multiply returning high half.
+ void sqrdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling multiply element returning high half.
+ void sqdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating rounding doubling multiply element returning high half.
+ void sqrdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply long.
+ void umull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply (second part).
+ void umull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add narrow returning high half.
+ void addhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add narrow returning high half (second part).
+ void addhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding add narrow returning high half.
+ void raddhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding add narrow returning high half (second part).
+ void raddhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Subtract narrow returning high half.
+ void subhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Subtract narrow returning high half (second part).
+ void subhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding subtract narrow returning high half.
+ void rsubhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding subtract narrow returning high half (second part).
+ void rsubhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP vector multiply accumulate.
+ void fmla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP vector multiply subtract.
+ void fmls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP vector multiply extended.
+ void fmulx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP absolute greater than or equal.
+ void facge(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP absolute greater than.
+ void facgt(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP multiply by element.
+ void fmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP fused multiply-add to accumulator by element.
+ void fmla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP fused multiply-sub from accumulator by element.
+ void fmls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP multiply extended by element.
+ void fmulx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP compare equal.
+ void fcmeq(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP greater than.
+ void fcmgt(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP greater than or equal.
+ void fcmge(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP compare equal to zero.
+ void fcmeq(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP greater than zero.
+ void fcmgt(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP greater than or equal to zero.
+ void fcmge(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP less than or equal to zero.
+ void fcmle(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP less than to zero.
+ void fcmlt(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP absolute difference.
+ void fabd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise add vector.
+ void faddp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise add scalar.
+ void faddp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise maximum vector.
+ void fmaxp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise maximum scalar.
+ void fmaxp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise minimum vector.
+ void fminp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise minimum scalar.
+ void fminp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise maximum number vector.
+ void fmaxnmp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise maximum number scalar.
+ void fmaxnmp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise minimum number vector.
+ void fminnmp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise minimum number scalar.
+ void fminnmp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Emit generic instructions.
+ // Emit raw instructions into the instruction stream.
+ void dci(Instr raw_inst) { Emit(raw_inst); }
+
+ // Emit 32 bits of data into the instruction stream.
+ void dc32(uint32_t data) {
+ EmitData(&data, sizeof(data));
+ }
+
+ // Emit 64 bits of data into the instruction stream.
+ void dc64(uint64_t data) {
+ EmitData(&data, sizeof(data));
+ }
+
+ // Code generation helpers.
+
+ // Register encoding.
+ static Instr Rd(CPURegister rd) {
+ VIXL_ASSERT(rd.code() != kSPRegInternalCode);
+ return rd.code() << Rd_offset;
+ }
+
+ static Instr Rn(CPURegister rn) {
+ VIXL_ASSERT(rn.code() != kSPRegInternalCode);
+ return rn.code() << Rn_offset;
+ }
+
+ static Instr Rm(CPURegister rm) {
+ VIXL_ASSERT(rm.code() != kSPRegInternalCode);
+ return rm.code() << Rm_offset;
+ }
+
+ static Instr RmNot31(CPURegister rm) {
+ VIXL_ASSERT(rm.code() != kSPRegInternalCode);
+ VIXL_ASSERT(!rm.IsZero());
+ return Rm(rm);
+ }
+
+ static Instr Ra(CPURegister ra) {
+ VIXL_ASSERT(ra.code() != kSPRegInternalCode);
+ return ra.code() << Ra_offset;
+ }
+
+ static Instr Rt(CPURegister rt) {
+ VIXL_ASSERT(rt.code() != kSPRegInternalCode);
+ return rt.code() << Rt_offset;
+ }
+
+ static Instr Rt2(CPURegister rt2) {
+ VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
+ return rt2.code() << Rt2_offset;
+ }
+
+ static Instr Rs(CPURegister rs) {
+ VIXL_ASSERT(rs.code() != kSPRegInternalCode);
+ return rs.code() << Rs_offset;
+ }
+
+ // These encoding functions allow the stack pointer to be encoded, and
+ // disallow the zero register.
+ static Instr RdSP(Register rd) {
+ VIXL_ASSERT(!rd.IsZero());
+ return (rd.code() & kRegCodeMask) << Rd_offset;
+ }
+
+ static Instr RnSP(Register rn) {
+ VIXL_ASSERT(!rn.IsZero());
+ return (rn.code() & kRegCodeMask) << Rn_offset;
+ }
+
+ // Flags encoding.
+ static Instr Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ VIXL_UNREACHABLE();
+ return 0;
+ }
+
+ static Instr Cond(Condition cond) {
+ return cond << Condition_offset;
+ }
+
+ // PC-relative address encoding.
+ static Instr ImmPCRelAddress(int imm21) {
+ VIXL_ASSERT(IsInt21(imm21));
+ Instr imm = static_cast<Instr>(TruncateToUint21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+ }
+
+ // Branch encoding.
+ static Instr ImmUncondBranch(int imm26) {
+ VIXL_ASSERT(IsInt26(imm26));
+ return TruncateToUint26(imm26) << ImmUncondBranch_offset;
+ }
+
+ static Instr ImmCondBranch(int imm19) {
+ VIXL_ASSERT(IsInt19(imm19));
+ return TruncateToUint19(imm19) << ImmCondBranch_offset;
+ }
+
+ static Instr ImmCmpBranch(int imm19) {
+ VIXL_ASSERT(IsInt19(imm19));
+ return TruncateToUint19(imm19) << ImmCmpBranch_offset;
+ }
+
+ static Instr ImmTestBranch(int imm14) {
+ VIXL_ASSERT(IsInt14(imm14));
+ return TruncateToUint14(imm14) << ImmTestBranch_offset;
+ }
+
+ static Instr ImmTestBranchBit(unsigned bit_pos) {
+ VIXL_ASSERT(IsUint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+ }
+
+ // Data Processing encoding.
+ static Instr SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+ }
+
+ static Instr ImmAddSub(int imm) {
+ VIXL_ASSERT(IsImmAddSub(imm));
+ if (IsUint12(imm)) { // No shift required.
+ imm <<= ImmAddSub_offset;
+ } else {
+ imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+ return imm;
+ }
+
+ static Instr ImmS(unsigned imms, unsigned reg_size) {
+ VIXL_ASSERT(((reg_size == kXRegSize) && IsUint6(imms)) ||
+ ((reg_size == kWRegSize) && IsUint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+ }
+
+ static Instr ImmR(unsigned immr, unsigned reg_size) {
+ VIXL_ASSERT(((reg_size == kXRegSize) && IsUint6(immr)) ||
+ ((reg_size == kWRegSize) && IsUint5(immr)));
+ USE(reg_size);
+ VIXL_ASSERT(IsUint6(immr));
+ return immr << ImmR_offset;
+ }
+
+ static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ VIXL_ASSERT(IsUint6(imms));
+ VIXL_ASSERT((reg_size == kXRegSize) || IsUint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+ }
+
+ static Instr ImmRotate(unsigned immr, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ VIXL_ASSERT(((reg_size == kXRegSize) && IsUint6(immr)) ||
+ ((reg_size == kWRegSize) && IsUint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+ }
+
+ static Instr ImmLLiteral(int imm19) {
+ VIXL_ASSERT(IsInt19(imm19));
+ return TruncateToUint19(imm19) << ImmLLiteral_offset;
+ }
+
+ static Instr BitN(unsigned bitn, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+ }
+
+ static Instr ShiftDP(Shift shift) {
+ VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+ }
+
+ static Instr ImmDPShift(unsigned amount) {
+ VIXL_ASSERT(IsUint6(amount));
+ return amount << ImmDPShift_offset;
+ }
+
+ static Instr ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+ }
+
+ static Instr ImmExtendShift(unsigned left_shift) {
+ VIXL_ASSERT(left_shift <= 4);
+ return left_shift << ImmExtendShift_offset;
+ }
+
+ static Instr ImmCondCmp(unsigned imm) {
+ VIXL_ASSERT(IsUint5(imm));
+ return imm << ImmCondCmp_offset;
+ }
+
+ static Instr Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+ }
+
+ // MemOperand offset encoding.
+ static Instr ImmLSUnsigned(int imm12) {
+ VIXL_ASSERT(IsUint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+ }
+
+ static Instr ImmLS(int imm9) {
+ VIXL_ASSERT(IsInt9(imm9));
+ return TruncateToUint9(imm9) << ImmLS_offset;
+ }
+
+ static Instr ImmLSPair(int imm7, unsigned access_size) {
+ VIXL_ASSERT(((imm7 >> access_size) << access_size) == imm7);
+ int scaled_imm7 = imm7 >> access_size;
+ VIXL_ASSERT(IsInt7(scaled_imm7));
+ return TruncateToUint7(scaled_imm7) << ImmLSPair_offset;
+ }
+
+ static Instr ImmShiftLS(unsigned shift_amount) {
+ VIXL_ASSERT(IsUint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+ }
+
+ static Instr ImmPrefetchOperation(int imm5) {
+ VIXL_ASSERT(IsUint5(imm5));
+ return imm5 << ImmPrefetchOperation_offset;
+ }
+
+ static Instr ImmException(int imm16) {
+ VIXL_ASSERT(IsUint16(imm16));
+ return imm16 << ImmException_offset;
+ }
+
+ static Instr ImmSystemRegister(int imm15) {
+ VIXL_ASSERT(IsUint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+ }
+
+ static Instr ImmHint(int imm7) {
+ VIXL_ASSERT(IsUint7(imm7));
+ return imm7 << ImmHint_offset;
+ }
+
+ static Instr CRm(int imm4) {
+ VIXL_ASSERT(IsUint4(imm4));
+ return imm4 << CRm_offset;
+ }
+
+ static Instr CRn(int imm4) {
+ VIXL_ASSERT(IsUint4(imm4));
+ return imm4 << CRn_offset;
+ }
+
+ static Instr SysOp(int imm14) {
+ VIXL_ASSERT(IsUint14(imm14));
+ return imm14 << SysOp_offset;
+ }
+
+ static Instr ImmSysOp1(int imm3) {
+ VIXL_ASSERT(IsUint3(imm3));
+ return imm3 << SysOp1_offset;
+ }
+
+ static Instr ImmSysOp2(int imm3) {
+ VIXL_ASSERT(IsUint3(imm3));
+ return imm3 << SysOp2_offset;
+ }
+
+ static Instr ImmBarrierDomain(int imm2) {
+ VIXL_ASSERT(IsUint2(imm2));
+ return imm2 << ImmBarrierDomain_offset;
+ }
+
+ static Instr ImmBarrierType(int imm2) {
+ VIXL_ASSERT(IsUint2(imm2));
+ return imm2 << ImmBarrierType_offset;
+ }
+
+ // Move immediates encoding.
+ static Instr ImmMoveWide(uint64_t imm) {
+ VIXL_ASSERT(IsUint16(imm));
+ return static_cast<Instr>(imm << ImmMoveWide_offset);
+ }
+
+ static Instr ShiftMoveWide(int64_t shift) {
+ VIXL_ASSERT(IsUint2(shift));
+ return static_cast<Instr>(shift << ShiftMoveWide_offset);
+ }
+
+ // FP Immediates.
+ static Instr ImmFP32(float imm);
+ static Instr ImmFP64(double imm);
+
+ // FP register type.
+ static Instr FPType(FPRegister fd) {
+ return fd.Is64Bits() ? FP64 : FP32;
+ }
+
+ static Instr FPScale(unsigned scale) {
+ VIXL_ASSERT(IsUint6(scale));
+ return scale << FPScale_offset;
+ }
+
+ // Immediate field checking helpers.
+ static bool IsImmAddSub(int64_t immediate);
+ static bool IsImmConditionalCompare(int64_t immediate);
+ static bool IsImmFP32(float imm);
+ static bool IsImmFP64(double imm);
+ static bool IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n = NULL,
+ unsigned* imm_s = NULL,
+ unsigned* imm_r = NULL);
+ static bool IsImmLSPair(int64_t offset, unsigned access_size);
+ static bool IsImmLSScaled(int64_t offset, unsigned access_size);
+ static bool IsImmLSUnscaled(int64_t offset);
+ static bool IsImmMovn(uint64_t imm, unsigned reg_size);
+ static bool IsImmMovz(uint64_t imm, unsigned reg_size);
+
+ // Instruction bits for vector format in data processing operations.
+ static Instr VFormat(VRegister vd) {
+ if (vd.Is64Bits()) {
+ switch (vd.lanes()) {
+ case 2: return NEON_2S;
+ case 4: return NEON_4H;
+ case 8: return NEON_8B;
+ default: return 0xffffffff;
+ }
+ } else {
+ VIXL_ASSERT(vd.Is128Bits());
+ switch (vd.lanes()) {
+ case 2: return NEON_2D;
+ case 4: return NEON_4S;
+ case 8: return NEON_8H;
+ case 16: return NEON_16B;
+ default: return 0xffffffff;
+ }
+ }
+ }
+
+ // Instruction bits for vector format in floating point data processing
+ // operations.
+ static Instr FPFormat(VRegister vd) {
+ if (vd.lanes() == 1) {
+ // Floating point scalar formats.
+ VIXL_ASSERT(vd.Is32Bits() || vd.Is64Bits());
+ return vd.Is64Bits() ? FP64 : FP32;
+ }
+
+ // Two lane floating point vector formats.
+ if (vd.lanes() == 2) {
+ VIXL_ASSERT(vd.Is64Bits() || vd.Is128Bits());
+ return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
+ }
+
+ // Four lane floating point vector format.
+ VIXL_ASSERT((vd.lanes() == 4) && vd.Is128Bits());
+ return NEON_FP_4S;
+ }
+
+ // Instruction bits for vector format in load and store operations.
+ static Instr LSVFormat(VRegister vd) {
+ if (vd.Is64Bits()) {
+ switch (vd.lanes()) {
+ case 1: return LS_NEON_1D;
+ case 2: return LS_NEON_2S;
+ case 4: return LS_NEON_4H;
+ case 8: return LS_NEON_8B;
+ default: return 0xffffffff;
+ }
+ } else {
+ VIXL_ASSERT(vd.Is128Bits());
+ switch (vd.lanes()) {
+ case 2: return LS_NEON_2D;
+ case 4: return LS_NEON_4S;
+ case 8: return LS_NEON_8H;
+ case 16: return LS_NEON_16B;
+ default: return 0xffffffff;
+ }
+ }
+ }
+
+ // Instruction bits for scalar format in data processing operations.
+ static Instr SFormat(VRegister vd) {
+ VIXL_ASSERT(vd.lanes() == 1);
+ switch (vd.SizeInBytes()) {
+ case 1: return NEON_B;
+ case 2: return NEON_H;
+ case 4: return NEON_S;
+ case 8: return NEON_D;
+ default: return 0xffffffff;
+ }
+ }
+
+ static Instr ImmNEONHLM(int index, int num_bits) {
+ int h, l, m;
+ if (num_bits == 3) {
+ VIXL_ASSERT(IsUint3(index));
+ h = (index >> 2) & 1;
+ l = (index >> 1) & 1;
+ m = (index >> 0) & 1;
+ } else if (num_bits == 2) {
+ VIXL_ASSERT(IsUint2(index));
+ h = (index >> 1) & 1;
+ l = (index >> 0) & 1;
+ m = 0;
+ } else {
+ VIXL_ASSERT(IsUint1(index) && (num_bits == 1));
+ h = (index >> 0) & 1;
+ l = 0;
+ m = 0;
+ }
+ return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
+ }
+
+ static Instr ImmNEONExt(int imm4) {
+ VIXL_ASSERT(IsUint4(imm4));
+ return imm4 << ImmNEONExt_offset;
+ }
+
+ static Instr ImmNEON5(Instr format, int index) {
+ VIXL_ASSERT(IsUint4(index));
+ int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
+ int imm5 = (index << (s + 1)) | (1 << s);
+ return imm5 << ImmNEON5_offset;
+ }
+
+ static Instr ImmNEON4(Instr format, int index) {
+ VIXL_ASSERT(IsUint4(index));
+ int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
+ int imm4 = index << s;
+ return imm4 << ImmNEON4_offset;
+ }
+
+ static Instr ImmNEONabcdefgh(int imm8) {
+ VIXL_ASSERT(IsUint8(imm8));
+ Instr instr;
+ instr = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
+ instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
+ return instr;
+ }
+
+ static Instr NEONCmode(int cmode) {
+ VIXL_ASSERT(IsUint4(cmode));
+ return cmode << NEONCmode_offset;
+ }
+
+ static Instr NEONModImmOp(int op) {
+ VIXL_ASSERT(IsUint1(op));
+ return op << NEONModImmOp_offset;
+ }
+
+ size_t size() const {
+ return SizeOfCodeGenerated();
+ }
+
+ size_t SizeOfCodeGenerated() const {
+ return armbuffer_.size();
+ }
+
+ PositionIndependentCodeOption pic() const {
+ return pic_;
+ }
+
+ CPUFeatures* GetCPUFeatures() { return &cpu_features_; }
+
+ void SetCPUFeatures(const CPUFeatures& cpu_features) {
+ cpu_features_ = cpu_features;
+ }
+
+ bool AllowPageOffsetDependentCode() const {
+ return (pic() == PageOffsetDependentCode) ||
+ (pic() == PositionDependentCode);
+ }
+
+ static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
+ return reg.Is64Bits() ? xzr : wzr;
+ }
+
+
+ protected:
+ void LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ void LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op);
+ void LoadStoreStruct(const VRegister& vt,
+ const MemOperand& addr,
+ NEONLoadStoreMultiStructOp op);
+ void LoadStoreStruct1(const VRegister& vt,
+ int reg_count,
+ const MemOperand& addr);
+ void LoadStoreStructSingle(const VRegister& vt,
+ uint32_t lane,
+ const MemOperand& addr,
+ NEONLoadStoreSingleStructOp op);
+ void LoadStoreStructSingleAllLanes(const VRegister& vt,
+ const MemOperand& addr,
+ NEONLoadStoreSingleStructOp op);
+ void LoadStoreStructVerify(const VRegister& vt,
+ const MemOperand& addr,
+ Instr op);
+
+ void Prefetch(PrefetchOperation op,
+ const MemOperand& addr,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ BufferOffset Logical(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op);
+ BufferOffset LogicalImmediate(const Register& rd,
+ const Register& rn,
+ unsigned n,
+ unsigned imm_s,
+ unsigned imm_r,
+ LogicalOp op);
+
+ void ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+
+ void AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+
+ // Functions for emulating operands not directly supported by the instruction
+ // set.
+ void EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned amount);
+ void EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift);
+
+ void AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+
+ void NEONTable(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEONTableOp op);
+
+ // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
+ // registers. Only simple loads are supported; sign- and zero-extension (such
+ // as in LDPSW_x or LDRB_w) are not supported.
+ static LoadStoreOp LoadOpFor(const CPURegister& rt);
+ static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStoreOp StoreOpFor(const CPURegister& rt);
+ static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
+
+ // Convenience pass-through for CPU feature checks.
+ bool CPUHas(CPUFeatures::Feature feature0,
+ CPUFeatures::Feature feature1 = CPUFeatures::kNone,
+ CPUFeatures::Feature feature2 = CPUFeatures::kNone,
+ CPUFeatures::Feature feature3 = CPUFeatures::kNone) const {
+ return cpu_features_.Has(feature0, feature1, feature2, feature3);
+ }
+
+ // Determine whether the target CPU has the specified registers, based on the
+ // currently-enabled CPU features. Presence of a register does not imply
+ // support for arbitrary operations on it. For example, CPUs with FP have H
+ // registers, but most half-precision operations require the FPHalf feature.
+ //
+ // These are used to check CPU features in loads and stores that have the same
+ // entry point for both integer and FP registers.
+ bool CPUHas(const CPURegister& rt) const;
+ bool CPUHas(const CPURegister& rt, const CPURegister& rt2) const;
+
+ bool CPUHas(SystemRegister sysreg) const;
+
+ private:
+ static uint32_t FP32ToImm8(float imm);
+ static uint32_t FP64ToImm8(double imm);
+
+ // Instruction helpers.
+ void MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op);
+ BufferOffset DataProcShiftedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op);
+ void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
+ void ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op);
+ void DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op);
+ void DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op);
+ void FPDataProcessing1Source(const VRegister& fd,
+ const VRegister& fn,
+ FPDataProcessing1SourceOp op);
+ void FPDataProcessing3Source(const VRegister& fd,
+ const VRegister& fn,
+ const VRegister& fm,
+ const VRegister& fa,
+ FPDataProcessing3SourceOp op);
+ void NEONAcrossLanesL(const VRegister& vd,
+ const VRegister& vn,
+ NEONAcrossLanesOp op);
+ void NEONAcrossLanes(const VRegister& vd,
+ const VRegister& vn,
+ NEONAcrossLanesOp op);
+ void NEONModifiedImmShiftLsl(const VRegister& vd,
+ const int imm8,
+ const int left_shift,
+ NEONModifiedImmediateOp op);
+ void NEONModifiedImmShiftMsl(const VRegister& vd,
+ const int imm8,
+ const int shift_amount,
+ NEONModifiedImmediateOp op);
+ void NEONFP2Same(const VRegister& vd,
+ const VRegister& vn,
+ Instr vop);
+ void NEON3Same(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3SameOp vop);
+ void NEONFP3Same(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ Instr op);
+ void NEON3DifferentL(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop);
+ void NEON3DifferentW(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop);
+ void NEON3DifferentHN(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop);
+ void NEONFP2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop,
+ double value = 0.0);
+ void NEON2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop,
+ int value = 0);
+ void NEONFP2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ Instr op);
+ void NEONAddlp(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp op);
+ void NEONPerm(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEONPermOp op);
+ void NEONFPByElement(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp op);
+ void NEONByElement(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp op);
+ void NEONByElementL(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp op);
+ void NEONShiftImmediate(const VRegister& vd,
+ const VRegister& vn,
+ NEONShiftImmediateOp op,
+ int immh_immb);
+ void NEONShiftLeftImmediate(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONShiftRightImmediate(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONShiftImmediateL(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONShiftImmediateN(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONXtn(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop);
+
+ Instr LoadStoreStructAddrModeField(const MemOperand& addr);
+
+ // Encode the specified MemOperand for the specified access size and scaling
+ // preference.
+ Instr LoadStoreMemOperand(const MemOperand& addr,
+ unsigned access_size,
+ LoadStoreScalingOption option);
+
+ protected:
+ // Prevent generation of a literal pool for the next |maxInst| instructions.
+ // Guarantees instruction linearity.
+ class AutoBlockLiteralPool {
+ ARMBuffer* armbuffer_;
+
+ public:
+ AutoBlockLiteralPool(Assembler* assembler, size_t maxInst)
+ : armbuffer_(&assembler->armbuffer_) {
+ armbuffer_->enterNoPool(maxInst);
+ }
+ ~AutoBlockLiteralPool() {
+ armbuffer_->leaveNoPool();
+ }
+ };
+
+ protected:
+ // Buffer where the code is emitted.
+ PositionIndependentCodeOption pic_;
+
+ CPUFeatures cpu_features_;
+
+#ifdef DEBUG
+ bool finalized_;
+#endif
+};
+
+} // namespace vixl
+
+#endif // VIXL_A64_ASSEMBLER_A64_H_