diff options
Diffstat (limited to 'third_party/googletest/googlemock/include/gmock/gmock-actions.h')
-rw-r--r-- | third_party/googletest/googlemock/include/gmock/gmock-actions.h | 2298 |
1 files changed, 2298 insertions, 0 deletions
diff --git a/third_party/googletest/googlemock/include/gmock/gmock-actions.h b/third_party/googletest/googlemock/include/gmock/gmock-actions.h new file mode 100644 index 0000000000..c785ad8abb --- /dev/null +++ b/third_party/googletest/googlemock/include/gmock/gmock-actions.h @@ -0,0 +1,2298 @@ +// Copyright 2007, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// Google Mock - a framework for writing C++ mock classes. +// +// The ACTION* family of macros can be used in a namespace scope to +// define custom actions easily. The syntax: +// +// ACTION(name) { statements; } +// +// will define an action with the given name that executes the +// statements. The value returned by the statements will be used as +// the return value of the action. Inside the statements, you can +// refer to the K-th (0-based) argument of the mock function by +// 'argK', and refer to its type by 'argK_type'. For example: +// +// ACTION(IncrementArg1) { +// arg1_type temp = arg1; +// return ++(*temp); +// } +// +// allows you to write +// +// ...WillOnce(IncrementArg1()); +// +// You can also refer to the entire argument tuple and its type by +// 'args' and 'args_type', and refer to the mock function type and its +// return type by 'function_type' and 'return_type'. +// +// Note that you don't need to specify the types of the mock function +// arguments. However rest assured that your code is still type-safe: +// you'll get a compiler error if *arg1 doesn't support the ++ +// operator, or if the type of ++(*arg1) isn't compatible with the +// mock function's return type, for example. +// +// Sometimes you'll want to parameterize the action. For that you can use +// another macro: +// +// ACTION_P(name, param_name) { statements; } +// +// For example: +// +// ACTION_P(Add, n) { return arg0 + n; } +// +// will allow you to write: +// +// ...WillOnce(Add(5)); +// +// Note that you don't need to provide the type of the parameter +// either. If you need to reference the type of a parameter named +// 'foo', you can write 'foo_type'. For example, in the body of +// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type +// of 'n'. +// +// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support +// multi-parameter actions. +// +// For the purpose of typing, you can view +// +// ACTION_Pk(Foo, p1, ..., pk) { ... } +// +// as shorthand for +// +// template <typename p1_type, ..., typename pk_type> +// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } +// +// In particular, you can provide the template type arguments +// explicitly when invoking Foo(), as in Foo<long, bool>(5, false); +// although usually you can rely on the compiler to infer the types +// for you automatically. You can assign the result of expression +// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., +// pk_type>. This can be useful when composing actions. +// +// You can also overload actions with different numbers of parameters: +// +// ACTION_P(Plus, a) { ... } +// ACTION_P2(Plus, a, b) { ... } +// +// While it's tempting to always use the ACTION* macros when defining +// a new action, you should also consider implementing ActionInterface +// or using MakePolymorphicAction() instead, especially if you need to +// use the action a lot. While these approaches require more work, +// they give you more control on the types of the mock function +// arguments and the action parameters, which in general leads to +// better compiler error messages that pay off in the long run. They +// also allow overloading actions based on parameter types (as opposed +// to just based on the number of parameters). +// +// CAVEAT: +// +// ACTION*() can only be used in a namespace scope as templates cannot be +// declared inside of a local class. +// Users can, however, define any local functors (e.g. a lambda) that +// can be used as actions. +// +// MORE INFORMATION: +// +// To learn more about using these macros, please search for 'ACTION' on +// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md + +// IWYU pragma: private, include "gmock/gmock.h" +// IWYU pragma: friend gmock/.* + +#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ +#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ + +#ifndef _WIN32_WCE +#include <errno.h> +#endif + +#include <algorithm> +#include <functional> +#include <memory> +#include <string> +#include <tuple> +#include <type_traits> +#include <utility> + +#include "gmock/internal/gmock-internal-utils.h" +#include "gmock/internal/gmock-port.h" +#include "gmock/internal/gmock-pp.h" + +#ifdef _MSC_VER +#pragma warning(push) +#pragma warning(disable : 4100) +#endif + +namespace testing { + +// To implement an action Foo, define: +// 1. a class FooAction that implements the ActionInterface interface, and +// 2. a factory function that creates an Action object from a +// const FooAction*. +// +// The two-level delegation design follows that of Matcher, providing +// consistency for extension developers. It also eases ownership +// management as Action objects can now be copied like plain values. + +namespace internal { + +// BuiltInDefaultValueGetter<T, true>::Get() returns a +// default-constructed T value. BuiltInDefaultValueGetter<T, +// false>::Get() crashes with an error. +// +// This primary template is used when kDefaultConstructible is true. +template <typename T, bool kDefaultConstructible> +struct BuiltInDefaultValueGetter { + static T Get() { return T(); } +}; +template <typename T> +struct BuiltInDefaultValueGetter<T, false> { + static T Get() { + Assert(false, __FILE__, __LINE__, + "Default action undefined for the function return type."); + return internal::Invalid<T>(); + // The above statement will never be reached, but is required in + // order for this function to compile. + } +}; + +// BuiltInDefaultValue<T>::Get() returns the "built-in" default value +// for type T, which is NULL when T is a raw pointer type, 0 when T is +// a numeric type, false when T is bool, or "" when T is string or +// std::string. In addition, in C++11 and above, it turns a +// default-constructed T value if T is default constructible. For any +// other type T, the built-in default T value is undefined, and the +// function will abort the process. +template <typename T> +class BuiltInDefaultValue { + public: + // This function returns true if and only if type T has a built-in default + // value. + static bool Exists() { return ::std::is_default_constructible<T>::value; } + + static T Get() { + return BuiltInDefaultValueGetter< + T, ::std::is_default_constructible<T>::value>::Get(); + } +}; + +// This partial specialization says that we use the same built-in +// default value for T and const T. +template <typename T> +class BuiltInDefaultValue<const T> { + public: + static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } + static T Get() { return BuiltInDefaultValue<T>::Get(); } +}; + +// This partial specialization defines the default values for pointer +// types. +template <typename T> +class BuiltInDefaultValue<T*> { + public: + static bool Exists() { return true; } + static T* Get() { return nullptr; } +}; + +// The following specializations define the default values for +// specific types we care about. +#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ + template <> \ + class BuiltInDefaultValue<type> { \ + public: \ + static bool Exists() { return true; } \ + static type Get() { return value; } \ + } + +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); + +// There's no need for a default action for signed wchar_t, as that +// type is the same as wchar_t for gcc, and invalid for MSVC. +// +// There's also no need for a default action for unsigned wchar_t, as +// that type is the same as unsigned int for gcc, and invalid for +// MSVC. +#if GMOCK_WCHAR_T_IS_NATIVE_ +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT +#endif + +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); +GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); + +#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ + +// Partial implementations of metaprogramming types from the standard library +// not available in C++11. + +template <typename P> +struct negation + // NOLINTNEXTLINE + : std::integral_constant<bool, bool(!P::value)> {}; + +// Base case: with zero predicates the answer is always true. +template <typename...> +struct conjunction : std::true_type {}; + +// With a single predicate, the answer is that predicate. +template <typename P1> +struct conjunction<P1> : P1 {}; + +// With multiple predicates the answer is the first predicate if that is false, +// and we recurse otherwise. +template <typename P1, typename... Ps> +struct conjunction<P1, Ps...> + : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; + +template <typename...> +struct disjunction : std::false_type {}; + +template <typename P1> +struct disjunction<P1> : P1 {}; + +template <typename P1, typename... Ps> +struct disjunction<P1, Ps...> + // NOLINTNEXTLINE + : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; + +template <typename...> +using void_t = void; + +// Detects whether an expression of type `From` can be implicitly converted to +// `To` according to [conv]. In C++17, [conv]/3 defines this as follows: +// +// An expression e can be implicitly converted to a type T if and only if +// the declaration T t=e; is well-formed, for some invented temporary +// variable t ([dcl.init]). +// +// [conv]/2 implies we can use function argument passing to detect whether this +// initialization is valid. +// +// Note that this is distinct from is_convertible, which requires this be valid: +// +// To test() { +// return declval<From>(); +// } +// +// In particular, is_convertible doesn't give the correct answer when `To` and +// `From` are the same non-moveable type since `declval<From>` will be an rvalue +// reference, defeating the guaranteed copy elision that would otherwise make +// this function work. +// +// REQUIRES: `From` is not cv void. +template <typename From, typename To> +struct is_implicitly_convertible { + private: + // A function that accepts a parameter of type T. This can be called with type + // U successfully only if U is implicitly convertible to T. + template <typename T> + static void Accept(T); + + // A function that creates a value of type T. + template <typename T> + static T Make(); + + // An overload be selected when implicit conversion from T to To is possible. + template <typename T, typename = decltype(Accept<To>(Make<T>()))> + static std::true_type TestImplicitConversion(int); + + // A fallback overload selected in all other cases. + template <typename T> + static std::false_type TestImplicitConversion(...); + + public: + using type = decltype(TestImplicitConversion<From>(0)); + static constexpr bool value = type::value; +}; + +// Like std::invoke_result_t from C++17, but works only for objects with call +// operators (not e.g. member function pointers, which we don't need specific +// support for in OnceAction because std::function deals with them). +template <typename F, typename... Args> +using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); + +template <typename Void, typename R, typename F, typename... Args> +struct is_callable_r_impl : std::false_type {}; + +// Specialize the struct for those template arguments where call_result_t is +// well-formed. When it's not, the generic template above is chosen, resulting +// in std::false_type. +template <typename R, typename F, typename... Args> +struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> + : std::conditional< + std::is_void<R>::value, // + std::true_type, // + is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; + +// Like std::is_invocable_r from C++17, but works only for objects with call +// operators. See the note on call_result_t. +template <typename R, typename F, typename... Args> +using is_callable_r = is_callable_r_impl<void, R, F, Args...>; + +// Like std::as_const from C++17. +template <typename T> +typename std::add_const<T>::type& as_const(T& t) { + return t; +} + +} // namespace internal + +// Specialized for function types below. +template <typename F> +class OnceAction; + +// An action that can only be used once. +// +// This is accepted by WillOnce, which doesn't require the underlying action to +// be copy-constructible (only move-constructible), and promises to invoke it as +// an rvalue reference. This allows the action to work with move-only types like +// std::move_only_function in a type-safe manner. +// +// For example: +// +// // Assume we have some API that needs to accept a unique pointer to some +// // non-copyable object Foo. +// void AcceptUniquePointer(std::unique_ptr<Foo> foo); +// +// // We can define an action that provides a Foo to that API. Because It +// // has to give away its unique pointer, it must not be called more than +// // once, so its call operator is &&-qualified. +// struct ProvideFoo { +// std::unique_ptr<Foo> foo; +// +// void operator()() && { +// AcceptUniquePointer(std::move(Foo)); +// } +// }; +// +// // This action can be used with WillOnce. +// EXPECT_CALL(mock, Call) +// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); +// +// // But a call to WillRepeatedly will fail to compile. This is correct, +// // since the action cannot correctly be used repeatedly. +// EXPECT_CALL(mock, Call) +// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); +// +// A less-contrived example would be an action that returns an arbitrary type, +// whose &&-qualified call operator is capable of dealing with move-only types. +template <typename Result, typename... Args> +class OnceAction<Result(Args...)> final { + private: + // True iff we can use the given callable type (or lvalue reference) directly + // via StdFunctionAdaptor. + template <typename Callable> + using IsDirectlyCompatible = internal::conjunction< + // It must be possible to capture the callable in StdFunctionAdaptor. + std::is_constructible<typename std::decay<Callable>::type, Callable>, + // The callable must be compatible with our signature. + internal::is_callable_r<Result, typename std::decay<Callable>::type, + Args...>>; + + // True iff we can use the given callable type via StdFunctionAdaptor once we + // ignore incoming arguments. + template <typename Callable> + using IsCompatibleAfterIgnoringArguments = internal::conjunction< + // It must be possible to capture the callable in a lambda. + std::is_constructible<typename std::decay<Callable>::type, Callable>, + // The callable must be invocable with zero arguments, returning something + // convertible to Result. + internal::is_callable_r<Result, typename std::decay<Callable>::type>>; + + public: + // Construct from a callable that is directly compatible with our mocked + // signature: it accepts our function type's arguments and returns something + // convertible to our result type. + template <typename Callable, + typename std::enable_if< + internal::conjunction< + // Teach clang on macOS that we're not talking about a + // copy/move constructor here. Otherwise it gets confused + // when checking the is_constructible requirement of our + // traits above. + internal::negation<std::is_same< + OnceAction, typename std::decay<Callable>::type>>, + IsDirectlyCompatible<Callable>> // + ::value, + int>::type = 0> + OnceAction(Callable&& callable) // NOLINT + : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( + {}, std::forward<Callable>(callable))) {} + + // As above, but for a callable that ignores the mocked function's arguments. + template <typename Callable, + typename std::enable_if< + internal::conjunction< + // Teach clang on macOS that we're not talking about a + // copy/move constructor here. Otherwise it gets confused + // when checking the is_constructible requirement of our + // traits above. + internal::negation<std::is_same< + OnceAction, typename std::decay<Callable>::type>>, + // Exclude callables for which the overload above works. + // We'd rather provide the arguments if possible. + internal::negation<IsDirectlyCompatible<Callable>>, + IsCompatibleAfterIgnoringArguments<Callable>>::value, + int>::type = 0> + OnceAction(Callable&& callable) // NOLINT + // Call the constructor above with a callable + // that ignores the input arguments. + : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ + std::forward<Callable>(callable)}) {} + + // We are naturally copyable because we store only an std::function, but + // semantically we should not be copyable. + OnceAction(const OnceAction&) = delete; + OnceAction& operator=(const OnceAction&) = delete; + OnceAction(OnceAction&&) = default; + + // Invoke the underlying action callable with which we were constructed, + // handing it the supplied arguments. + Result Call(Args... args) && { + return function_(std::forward<Args>(args)...); + } + + private: + // An adaptor that wraps a callable that is compatible with our signature and + // being invoked as an rvalue reference so that it can be used as an + // StdFunctionAdaptor. This throws away type safety, but that's fine because + // this is only used by WillOnce, which we know calls at most once. + // + // Once we have something like std::move_only_function from C++23, we can do + // away with this. + template <typename Callable> + class StdFunctionAdaptor final { + public: + // A tag indicating that the (otherwise universal) constructor is accepting + // the callable itself, instead of e.g. stealing calls for the move + // constructor. + struct CallableTag final {}; + + template <typename F> + explicit StdFunctionAdaptor(CallableTag, F&& callable) + : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} + + // Rather than explicitly returning Result, we return whatever the wrapped + // callable returns. This allows for compatibility with existing uses like + // the following, when the mocked function returns void: + // + // EXPECT_CALL(mock_fn_, Call) + // .WillOnce([&] { + // [...] + // return 0; + // }); + // + // Such a callable can be turned into std::function<void()>. If we use an + // explicit return type of Result here then it *doesn't* work with + // std::function, because we'll get a "void function should not return a + // value" error. + // + // We need not worry about incompatible result types because the SFINAE on + // OnceAction already checks this for us. std::is_invocable_r_v itself makes + // the same allowance for void result types. + template <typename... ArgRefs> + internal::call_result_t<Callable, ArgRefs...> operator()( + ArgRefs&&... args) const { + return std::move(*callable_)(std::forward<ArgRefs>(args)...); + } + + private: + // We must put the callable on the heap so that we are copyable, which + // std::function needs. + std::shared_ptr<Callable> callable_; + }; + + // An adaptor that makes a callable that accepts zero arguments callable with + // our mocked arguments. + template <typename Callable> + struct IgnoreIncomingArguments { + internal::call_result_t<Callable> operator()(Args&&...) { + return std::move(callable)(); + } + + Callable callable; + }; + + std::function<Result(Args...)> function_; +}; + +// When an unexpected function call is encountered, Google Mock will +// let it return a default value if the user has specified one for its +// return type, or if the return type has a built-in default value; +// otherwise Google Mock won't know what value to return and will have +// to abort the process. +// +// The DefaultValue<T> class allows a user to specify the +// default value for a type T that is both copyable and publicly +// destructible (i.e. anything that can be used as a function return +// type). The usage is: +// +// // Sets the default value for type T to be foo. +// DefaultValue<T>::Set(foo); +template <typename T> +class DefaultValue { + public: + // Sets the default value for type T; requires T to be + // copy-constructable and have a public destructor. + static void Set(T x) { + delete producer_; + producer_ = new FixedValueProducer(x); + } + + // Provides a factory function to be called to generate the default value. + // This method can be used even if T is only move-constructible, but it is not + // limited to that case. + typedef T (*FactoryFunction)(); + static void SetFactory(FactoryFunction factory) { + delete producer_; + producer_ = new FactoryValueProducer(factory); + } + + // Unsets the default value for type T. + static void Clear() { + delete producer_; + producer_ = nullptr; + } + + // Returns true if and only if the user has set the default value for type T. + static bool IsSet() { return producer_ != nullptr; } + + // Returns true if T has a default return value set by the user or there + // exists a built-in default value. + static bool Exists() { + return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); + } + + // Returns the default value for type T if the user has set one; + // otherwise returns the built-in default value. Requires that Exists() + // is true, which ensures that the return value is well-defined. + static T Get() { + return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() + : producer_->Produce(); + } + + private: + class ValueProducer { + public: + virtual ~ValueProducer() {} + virtual T Produce() = 0; + }; + + class FixedValueProducer : public ValueProducer { + public: + explicit FixedValueProducer(T value) : value_(value) {} + T Produce() override { return value_; } + + private: + const T value_; + FixedValueProducer(const FixedValueProducer&) = delete; + FixedValueProducer& operator=(const FixedValueProducer&) = delete; + }; + + class FactoryValueProducer : public ValueProducer { + public: + explicit FactoryValueProducer(FactoryFunction factory) + : factory_(factory) {} + T Produce() override { return factory_(); } + + private: + const FactoryFunction factory_; + FactoryValueProducer(const FactoryValueProducer&) = delete; + FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; + }; + + static ValueProducer* producer_; +}; + +// This partial specialization allows a user to set default values for +// reference types. +template <typename T> +class DefaultValue<T&> { + public: + // Sets the default value for type T&. + static void Set(T& x) { // NOLINT + address_ = &x; + } + + // Unsets the default value for type T&. + static void Clear() { address_ = nullptr; } + + // Returns true if and only if the user has set the default value for type T&. + static bool IsSet() { return address_ != nullptr; } + + // Returns true if T has a default return value set by the user or there + // exists a built-in default value. + static bool Exists() { + return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); + } + + // Returns the default value for type T& if the user has set one; + // otherwise returns the built-in default value if there is one; + // otherwise aborts the process. + static T& Get() { + return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() + : *address_; + } + + private: + static T* address_; +}; + +// This specialization allows DefaultValue<void>::Get() to +// compile. +template <> +class DefaultValue<void> { + public: + static bool Exists() { return true; } + static void Get() {} +}; + +// Points to the user-set default value for type T. +template <typename T> +typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; + +// Points to the user-set default value for type T&. +template <typename T> +T* DefaultValue<T&>::address_ = nullptr; + +// Implement this interface to define an action for function type F. +template <typename F> +class ActionInterface { + public: + typedef typename internal::Function<F>::Result Result; + typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; + + ActionInterface() {} + virtual ~ActionInterface() {} + + // Performs the action. This method is not const, as in general an + // action can have side effects and be stateful. For example, a + // get-the-next-element-from-the-collection action will need to + // remember the current element. + virtual Result Perform(const ArgumentTuple& args) = 0; + + private: + ActionInterface(const ActionInterface&) = delete; + ActionInterface& operator=(const ActionInterface&) = delete; +}; + +template <typename F> +class Action; + +// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) +// object that represents an action to be taken when a mock function of type +// R(Args...) is called. The implementation of Action<T> is just a +// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You +// can view an object implementing ActionInterface<F> as a concrete action +// (including its current state), and an Action<F> object as a handle to it. +template <typename R, typename... Args> +class Action<R(Args...)> { + private: + using F = R(Args...); + + // Adapter class to allow constructing Action from a legacy ActionInterface. + // New code should create Actions from functors instead. + struct ActionAdapter { + // Adapter must be copyable to satisfy std::function requirements. + ::std::shared_ptr<ActionInterface<F>> impl_; + + template <typename... InArgs> + typename internal::Function<F>::Result operator()(InArgs&&... args) { + return impl_->Perform( + ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); + } + }; + + template <typename G> + using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; + + public: + typedef typename internal::Function<F>::Result Result; + typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; + + // Constructs a null Action. Needed for storing Action objects in + // STL containers. + Action() {} + + // Construct an Action from a specified callable. + // This cannot take std::function directly, because then Action would not be + // directly constructible from lambda (it would require two conversions). + template < + typename G, + typename = typename std::enable_if<internal::disjunction< + IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, + G>>::value>::type> + Action(G&& fun) { // NOLINT + Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); + } + + // Constructs an Action from its implementation. + explicit Action(ActionInterface<F>* impl) + : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} + + // This constructor allows us to turn an Action<Func> object into an + // Action<F>, as long as F's arguments can be implicitly converted + // to Func's and Func's return type can be implicitly converted to F's. + template <typename Func> + Action(const Action<Func>& action) // NOLINT + : fun_(action.fun_) {} + + // Returns true if and only if this is the DoDefault() action. + bool IsDoDefault() const { return fun_ == nullptr; } + + // Performs the action. Note that this method is const even though + // the corresponding method in ActionInterface is not. The reason + // is that a const Action<F> means that it cannot be re-bound to + // another concrete action, not that the concrete action it binds to + // cannot change state. (Think of the difference between a const + // pointer and a pointer to const.) + Result Perform(ArgumentTuple args) const { + if (IsDoDefault()) { + internal::IllegalDoDefault(__FILE__, __LINE__); + } + return internal::Apply(fun_, ::std::move(args)); + } + + // An action can be used as a OnceAction, since it's obviously safe to call it + // once. + operator OnceAction<F>() const { // NOLINT + // Return a OnceAction-compatible callable that calls Perform with the + // arguments it is provided. We could instead just return fun_, but then + // we'd need to handle the IsDoDefault() case separately. + struct OA { + Action<F> action; + + R operator()(Args... args) && { + return action.Perform( + std::forward_as_tuple(std::forward<Args>(args)...)); + } + }; + + return OA{*this}; + } + + private: + template <typename G> + friend class Action; + + template <typename G> + void Init(G&& g, ::std::true_type) { + fun_ = ::std::forward<G>(g); + } + + template <typename G> + void Init(G&& g, ::std::false_type) { + fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; + } + + template <typename FunctionImpl> + struct IgnoreArgs { + template <typename... InArgs> + Result operator()(const InArgs&...) const { + return function_impl(); + } + + FunctionImpl function_impl; + }; + + // fun_ is an empty function if and only if this is the DoDefault() action. + ::std::function<F> fun_; +}; + +// The PolymorphicAction class template makes it easy to implement a +// polymorphic action (i.e. an action that can be used in mock +// functions of than one type, e.g. Return()). +// +// To define a polymorphic action, a user first provides a COPYABLE +// implementation class that has a Perform() method template: +// +// class FooAction { +// public: +// template <typename Result, typename ArgumentTuple> +// Result Perform(const ArgumentTuple& args) const { +// // Processes the arguments and returns a result, using +// // std::get<N>(args) to get the N-th (0-based) argument in the tuple. +// } +// ... +// }; +// +// Then the user creates the polymorphic action using +// MakePolymorphicAction(object) where object has type FooAction. See +// the definition of Return(void) and SetArgumentPointee<N>(value) for +// complete examples. +template <typename Impl> +class PolymorphicAction { + public: + explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} + + template <typename F> + operator Action<F>() const { + return Action<F>(new MonomorphicImpl<F>(impl_)); + } + + private: + template <typename F> + class MonomorphicImpl : public ActionInterface<F> { + public: + typedef typename internal::Function<F>::Result Result; + typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; + + explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} + + Result Perform(const ArgumentTuple& args) override { + return impl_.template Perform<Result>(args); + } + + private: + Impl impl_; + }; + + Impl impl_; +}; + +// Creates an Action from its implementation and returns it. The +// created Action object owns the implementation. +template <typename F> +Action<F> MakeAction(ActionInterface<F>* impl) { + return Action<F>(impl); +} + +// Creates a polymorphic action from its implementation. This is +// easier to use than the PolymorphicAction<Impl> constructor as it +// doesn't require you to explicitly write the template argument, e.g. +// +// MakePolymorphicAction(foo); +// vs +// PolymorphicAction<TypeOfFoo>(foo); +template <typename Impl> +inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { + return PolymorphicAction<Impl>(impl); +} + +namespace internal { + +// Helper struct to specialize ReturnAction to execute a move instead of a copy +// on return. Useful for move-only types, but could be used on any type. +template <typename T> +struct ByMoveWrapper { + explicit ByMoveWrapper(T value) : payload(std::move(value)) {} + T payload; +}; + +// The general implementation of Return(R). Specializations follow below. +template <typename R> +class ReturnAction final { + public: + explicit ReturnAction(R value) : value_(std::move(value)) {} + + template <typename U, typename... Args, + typename = typename std::enable_if<conjunction< + // See the requirements documented on Return. + negation<std::is_same<void, U>>, // + negation<std::is_reference<U>>, // + std::is_convertible<R, U>, // + std::is_move_constructible<U>>::value>::type> + operator OnceAction<U(Args...)>() && { // NOLINT + return Impl<U>(std::move(value_)); + } + + template <typename U, typename... Args, + typename = typename std::enable_if<conjunction< + // See the requirements documented on Return. + negation<std::is_same<void, U>>, // + negation<std::is_reference<U>>, // + std::is_convertible<const R&, U>, // + std::is_copy_constructible<U>>::value>::type> + operator Action<U(Args...)>() const { // NOLINT + return Impl<U>(value_); + } + + private: + // Implements the Return(x) action for a mock function that returns type U. + template <typename U> + class Impl final { + public: + // The constructor used when the return value is allowed to move from the + // input value (i.e. we are converting to OnceAction). + explicit Impl(R&& input_value) + : state_(new State(std::move(input_value))) {} + + // The constructor used when the return value is not allowed to move from + // the input value (i.e. we are converting to Action). + explicit Impl(const R& input_value) : state_(new State(input_value)) {} + + U operator()() && { return std::move(state_->value); } + U operator()() const& { return state_->value; } + + private: + // We put our state on the heap so that the compiler-generated copy/move + // constructors work correctly even when U is a reference-like type. This is + // necessary only because we eagerly create State::value (see the note on + // that symbol for details). If we instead had only the input value as a + // member then the default constructors would work fine. + // + // For example, when R is std::string and U is std::string_view, value is a + // reference to the string backed by input_value. The copy constructor would + // copy both, so that we wind up with a new input_value object (with the + // same contents) and a reference to the *old* input_value object rather + // than the new one. + struct State { + explicit State(const R& input_value_in) + : input_value(input_value_in), + // Make an implicit conversion to Result before initializing the U + // object we store, avoiding calling any explicit constructor of U + // from R. + // + // This simulates the language rules: a function with return type U + // that does `return R()` requires R to be implicitly convertible to + // U, and uses that path for the conversion, even U Result has an + // explicit constructor from R. + value(ImplicitCast_<U>(internal::as_const(input_value))) {} + + // As above, but for the case where we're moving from the ReturnAction + // object because it's being used as a OnceAction. + explicit State(R&& input_value_in) + : input_value(std::move(input_value_in)), + // For the same reason as above we make an implicit conversion to U + // before initializing the value. + // + // Unlike above we provide the input value as an rvalue to the + // implicit conversion because this is a OnceAction: it's fine if it + // wants to consume the input value. + value(ImplicitCast_<U>(std::move(input_value))) {} + + // A copy of the value originally provided by the user. We retain this in + // addition to the value of the mock function's result type below in case + // the latter is a reference-like type. See the std::string_view example + // in the documentation on Return. + R input_value; + + // The value we actually return, as the type returned by the mock function + // itself. + // + // We eagerly initialize this here, rather than lazily doing the implicit + // conversion automatically each time Perform is called, for historical + // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) + // made the Action<U()> conversion operator eagerly convert the R value to + // U, but without keeping the R alive. This broke the use case discussed + // in the documentation for Return, making reference-like types such as + // std::string_view not safe to use as U where the input type R is a + // value-like type such as std::string. + // + // The example the commit gave was not very clear, nor was the issue + // thread (https://github.com/google/googlemock/issues/86), but it seems + // the worry was about reference-like input types R that flatten to a + // value-like type U when being implicitly converted. An example of this + // is std::vector<bool>::reference, which is often a proxy type with an + // reference to the underlying vector: + // + // // Helper method: have the mock function return bools according + // // to the supplied script. + // void SetActions(MockFunction<bool(size_t)>& mock, + // const std::vector<bool>& script) { + // for (size_t i = 0; i < script.size(); ++i) { + // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); + // } + // } + // + // TEST(Foo, Bar) { + // // Set actions using a temporary vector, whose operator[] + // // returns proxy objects that references that will be + // // dangling once the call to SetActions finishes and the + // // vector is destroyed. + // MockFunction<bool(size_t)> mock; + // SetActions(mock, {false, true}); + // + // EXPECT_FALSE(mock.AsStdFunction()(0)); + // EXPECT_TRUE(mock.AsStdFunction()(1)); + // } + // + // This eager conversion helps with a simple case like this, but doesn't + // fully make these types work in general. For example the following still + // uses a dangling reference: + // + // TEST(Foo, Baz) { + // MockFunction<std::vector<std::string>()> mock; + // + // // Return the same vector twice, and then the empty vector + // // thereafter. + // auto action = Return(std::initializer_list<std::string>{ + // "taco", "burrito", + // }); + // + // EXPECT_CALL(mock, Call) + // .WillOnce(action) + // .WillOnce(action) + // .WillRepeatedly(Return(std::vector<std::string>{})); + // + // EXPECT_THAT(mock.AsStdFunction()(), + // ElementsAre("taco", "burrito")); + // EXPECT_THAT(mock.AsStdFunction()(), + // ElementsAre("taco", "burrito")); + // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); + // } + // + U value; + }; + + const std::shared_ptr<State> state_; + }; + + R value_; +}; + +// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. +// +// This version applies the type system-defeating hack of moving from T even in +// the const call operator, checking at runtime that it isn't called more than +// once, since the user has declared their intent to do so by using ByMove. +template <typename T> +class ReturnAction<ByMoveWrapper<T>> final { + public: + explicit ReturnAction(ByMoveWrapper<T> wrapper) + : state_(new State(std::move(wrapper.payload))) {} + + T operator()() const { + GTEST_CHECK_(!state_->called) + << "A ByMove() action must be performed at most once."; + + state_->called = true; + return std::move(state_->value); + } + + private: + // We store our state on the heap so that we are copyable as required by + // Action, despite the fact that we are stateful and T may not be copyable. + struct State { + explicit State(T&& value_in) : value(std::move(value_in)) {} + + T value; + bool called = false; + }; + + const std::shared_ptr<State> state_; +}; + +// Implements the ReturnNull() action. +class ReturnNullAction { + public: + // Allows ReturnNull() to be used in any pointer-returning function. In C++11 + // this is enforced by returning nullptr, and in non-C++11 by asserting a + // pointer type on compile time. + template <typename Result, typename ArgumentTuple> + static Result Perform(const ArgumentTuple&) { + return nullptr; + } +}; + +// Implements the Return() action. +class ReturnVoidAction { + public: + // Allows Return() to be used in any void-returning function. + template <typename Result, typename ArgumentTuple> + static void Perform(const ArgumentTuple&) { + static_assert(std::is_void<Result>::value, "Result should be void."); + } +}; + +// Implements the polymorphic ReturnRef(x) action, which can be used +// in any function that returns a reference to the type of x, +// regardless of the argument types. +template <typename T> +class ReturnRefAction { + public: + // Constructs a ReturnRefAction object from the reference to be returned. + explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT + + // This template type conversion operator allows ReturnRef(x) to be + // used in ANY function that returns a reference to x's type. + template <typename F> + operator Action<F>() const { + typedef typename Function<F>::Result Result; + // Asserts that the function return type is a reference. This + // catches the user error of using ReturnRef(x) when Return(x) + // should be used, and generates some helpful error message. + static_assert(std::is_reference<Result>::value, + "use Return instead of ReturnRef to return a value"); + return Action<F>(new Impl<F>(ref_)); + } + + private: + // Implements the ReturnRef(x) action for a particular function type F. + template <typename F> + class Impl : public ActionInterface<F> { + public: + typedef typename Function<F>::Result Result; + typedef typename Function<F>::ArgumentTuple ArgumentTuple; + + explicit Impl(T& ref) : ref_(ref) {} // NOLINT + + Result Perform(const ArgumentTuple&) override { return ref_; } + + private: + T& ref_; + }; + + T& ref_; +}; + +// Implements the polymorphic ReturnRefOfCopy(x) action, which can be +// used in any function that returns a reference to the type of x, +// regardless of the argument types. +template <typename T> +class ReturnRefOfCopyAction { + public: + // Constructs a ReturnRefOfCopyAction object from the reference to + // be returned. + explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT + + // This template type conversion operator allows ReturnRefOfCopy(x) to be + // used in ANY function that returns a reference to x's type. + template <typename F> + operator Action<F>() const { + typedef typename Function<F>::Result Result; + // Asserts that the function return type is a reference. This + // catches the user error of using ReturnRefOfCopy(x) when Return(x) + // should be used, and generates some helpful error message. + static_assert(std::is_reference<Result>::value, + "use Return instead of ReturnRefOfCopy to return a value"); + return Action<F>(new Impl<F>(value_)); + } + + private: + // Implements the ReturnRefOfCopy(x) action for a particular function type F. + template <typename F> + class Impl : public ActionInterface<F> { + public: + typedef typename Function<F>::Result Result; + typedef typename Function<F>::ArgumentTuple ArgumentTuple; + + explicit Impl(const T& value) : value_(value) {} // NOLINT + + Result Perform(const ArgumentTuple&) override { return value_; } + + private: + T value_; + }; + + const T value_; +}; + +// Implements the polymorphic ReturnRoundRobin(v) action, which can be +// used in any function that returns the element_type of v. +template <typename T> +class ReturnRoundRobinAction { + public: + explicit ReturnRoundRobinAction(std::vector<T> values) { + GTEST_CHECK_(!values.empty()) + << "ReturnRoundRobin requires at least one element."; + state_->values = std::move(values); + } + + template <typename... Args> + T operator()(Args&&...) const { + return state_->Next(); + } + + private: + struct State { + T Next() { + T ret_val = values[i++]; + if (i == values.size()) i = 0; + return ret_val; + } + + std::vector<T> values; + size_t i = 0; + }; + std::shared_ptr<State> state_ = std::make_shared<State>(); +}; + +// Implements the polymorphic DoDefault() action. +class DoDefaultAction { + public: + // This template type conversion operator allows DoDefault() to be + // used in any function. + template <typename F> + operator Action<F>() const { + return Action<F>(); + } // NOLINT +}; + +// Implements the Assign action to set a given pointer referent to a +// particular value. +template <typename T1, typename T2> +class AssignAction { + public: + AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} + + template <typename Result, typename ArgumentTuple> + void Perform(const ArgumentTuple& /* args */) const { + *ptr_ = value_; + } + + private: + T1* const ptr_; + const T2 value_; +}; + +#if !GTEST_OS_WINDOWS_MOBILE + +// Implements the SetErrnoAndReturn action to simulate return from +// various system calls and libc functions. +template <typename T> +class SetErrnoAndReturnAction { + public: + SetErrnoAndReturnAction(int errno_value, T result) + : errno_(errno_value), result_(result) {} + template <typename Result, typename ArgumentTuple> + Result Perform(const ArgumentTuple& /* args */) const { + errno = errno_; + return result_; + } + + private: + const int errno_; + const T result_; +}; + +#endif // !GTEST_OS_WINDOWS_MOBILE + +// Implements the SetArgumentPointee<N>(x) action for any function +// whose N-th argument (0-based) is a pointer to x's type. +template <size_t N, typename A, typename = void> +struct SetArgumentPointeeAction { + A value; + + template <typename... Args> + void operator()(const Args&... args) const { + *::std::get<N>(std::tie(args...)) = value; + } +}; + +// Implements the Invoke(object_ptr, &Class::Method) action. +template <class Class, typename MethodPtr> +struct InvokeMethodAction { + Class* const obj_ptr; + const MethodPtr method_ptr; + + template <typename... Args> + auto operator()(Args&&... args) const + -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { + return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); + } +}; + +// Implements the InvokeWithoutArgs(f) action. The template argument +// FunctionImpl is the implementation type of f, which can be either a +// function pointer or a functor. InvokeWithoutArgs(f) can be used as an +// Action<F> as long as f's type is compatible with F. +template <typename FunctionImpl> +struct InvokeWithoutArgsAction { + FunctionImpl function_impl; + + // Allows InvokeWithoutArgs(f) to be used as any action whose type is + // compatible with f. + template <typename... Args> + auto operator()(const Args&...) -> decltype(function_impl()) { + return function_impl(); + } +}; + +// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. +template <class Class, typename MethodPtr> +struct InvokeMethodWithoutArgsAction { + Class* const obj_ptr; + const MethodPtr method_ptr; + + using ReturnType = + decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); + + template <typename... Args> + ReturnType operator()(const Args&...) const { + return (obj_ptr->*method_ptr)(); + } +}; + +// Implements the IgnoreResult(action) action. +template <typename A> +class IgnoreResultAction { + public: + explicit IgnoreResultAction(const A& action) : action_(action) {} + + template <typename F> + operator Action<F>() const { + // Assert statement belongs here because this is the best place to verify + // conditions on F. It produces the clearest error messages + // in most compilers. + // Impl really belongs in this scope as a local class but can't + // because MSVC produces duplicate symbols in different translation units + // in this case. Until MS fixes that bug we put Impl into the class scope + // and put the typedef both here (for use in assert statement) and + // in the Impl class. But both definitions must be the same. + typedef typename internal::Function<F>::Result Result; + + // Asserts at compile time that F returns void. + static_assert(std::is_void<Result>::value, "Result type should be void."); + + return Action<F>(new Impl<F>(action_)); + } + + private: + template <typename F> + class Impl : public ActionInterface<F> { + public: + typedef typename internal::Function<F>::Result Result; + typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; + + explicit Impl(const A& action) : action_(action) {} + + void Perform(const ArgumentTuple& args) override { + // Performs the action and ignores its result. + action_.Perform(args); + } + + private: + // Type OriginalFunction is the same as F except that its return + // type is IgnoredValue. + typedef + typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; + + const Action<OriginalFunction> action_; + }; + + const A action_; +}; + +template <typename InnerAction, size_t... I> +struct WithArgsAction { + InnerAction inner_action; + + // The signature of the function as seen by the inner action, given an out + // action with the given result and argument types. + template <typename R, typename... Args> + using InnerSignature = + R(typename std::tuple_element<I, std::tuple<Args...>>::type...); + + // Rather than a call operator, we must define conversion operators to + // particular action types. This is necessary for embedded actions like + // DoDefault(), which rely on an action conversion operators rather than + // providing a call operator because even with a particular set of arguments + // they don't have a fixed return type. + + template <typename R, typename... Args, + typename std::enable_if< + std::is_convertible< + InnerAction, + // Unfortunately we can't use the InnerSignature alias here; + // MSVC complains about the I parameter pack not being + // expanded (error C3520) despite it being expanded in the + // type alias. + OnceAction<R(typename std::tuple_element< + I, std::tuple<Args...>>::type...)>>::value, + int>::type = 0> + operator OnceAction<R(Args...)>() && { // NOLINT + struct OA { + OnceAction<InnerSignature<R, Args...>> inner_action; + + R operator()(Args&&... args) && { + return std::move(inner_action) + .Call(std::get<I>( + std::forward_as_tuple(std::forward<Args>(args)...))...); + } + }; + + return OA{std::move(inner_action)}; + } + + template <typename R, typename... Args, + typename std::enable_if< + std::is_convertible< + const InnerAction&, + // Unfortunately we can't use the InnerSignature alias here; + // MSVC complains about the I parameter pack not being + // expanded (error C3520) despite it being expanded in the + // type alias. + Action<R(typename std::tuple_element< + I, std::tuple<Args...>>::type...)>>::value, + int>::type = 0> + operator Action<R(Args...)>() const { // NOLINT + Action<InnerSignature<R, Args...>> converted(inner_action); + + return [converted](Args&&... args) -> R { + return converted.Perform(std::forward_as_tuple( + std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); + }; + } +}; + +template <typename... Actions> +class DoAllAction; + +// Base case: only a single action. +template <typename FinalAction> +class DoAllAction<FinalAction> { + public: + struct UserConstructorTag {}; + + template <typename T> + explicit DoAllAction(UserConstructorTag, T&& action) + : final_action_(std::forward<T>(action)) {} + + // Rather than a call operator, we must define conversion operators to + // particular action types. This is necessary for embedded actions like + // DoDefault(), which rely on an action conversion operators rather than + // providing a call operator because even with a particular set of arguments + // they don't have a fixed return type. + + template <typename R, typename... Args, + typename std::enable_if< + std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, + int>::type = 0> + operator OnceAction<R(Args...)>() && { // NOLINT + return std::move(final_action_); + } + + template < + typename R, typename... Args, + typename std::enable_if< + std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, + int>::type = 0> + operator Action<R(Args...)>() const { // NOLINT + return final_action_; + } + + private: + FinalAction final_action_; +}; + +// Recursive case: support N actions by calling the initial action and then +// calling through to the base class containing N-1 actions. +template <typename InitialAction, typename... OtherActions> +class DoAllAction<InitialAction, OtherActions...> + : private DoAllAction<OtherActions...> { + private: + using Base = DoAllAction<OtherActions...>; + + // The type of reference that should be provided to an initial action for a + // mocked function parameter of type T. + // + // There are two quirks here: + // + // * Unlike most forwarding functions, we pass scalars through by value. + // This isn't strictly necessary because an lvalue reference would work + // fine too and be consistent with other non-reference types, but it's + // perhaps less surprising. + // + // For example if the mocked function has signature void(int), then it + // might seem surprising for the user's initial action to need to be + // convertible to Action<void(const int&)>. This is perhaps less + // surprising for a non-scalar type where there may be a performance + // impact, or it might even be impossible, to pass by value. + // + // * More surprisingly, `const T&` is often not a const reference type. + // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to + // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is + // U&. In other words, we may hand over a non-const reference. + // + // So for example, given some non-scalar type Obj we have the following + // mappings: + // + // T InitialActionArgType<T> + // ------- ----------------------- + // Obj const Obj& + // Obj& Obj& + // Obj&& Obj& + // const Obj const Obj& + // const Obj& const Obj& + // const Obj&& const Obj& + // + // In other words, the initial actions get a mutable view of an non-scalar + // argument if and only if the mock function itself accepts a non-const + // reference type. They are never given an rvalue reference to an + // non-scalar type. + // + // This situation makes sense if you imagine use with a matcher that is + // designed to write through a reference. For example, if the caller wants + // to fill in a reference argument and then return a canned value: + // + // EXPECT_CALL(mock, Call) + // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); + // + template <typename T> + using InitialActionArgType = + typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; + + public: + struct UserConstructorTag {}; + + template <typename T, typename... U> + explicit DoAllAction(UserConstructorTag, T&& initial_action, + U&&... other_actions) + : Base({}, std::forward<U>(other_actions)...), + initial_action_(std::forward<T>(initial_action)) {} + + template <typename R, typename... Args, + typename std::enable_if< + conjunction< + // Both the initial action and the rest must support + // conversion to OnceAction. + std::is_convertible< + InitialAction, + OnceAction<void(InitialActionArgType<Args>...)>>, + std::is_convertible<Base, OnceAction<R(Args...)>>>::value, + int>::type = 0> + operator OnceAction<R(Args...)>() && { // NOLINT + // Return an action that first calls the initial action with arguments + // filtered through InitialActionArgType, then forwards arguments directly + // to the base class to deal with the remaining actions. + struct OA { + OnceAction<void(InitialActionArgType<Args>...)> initial_action; + OnceAction<R(Args...)> remaining_actions; + + R operator()(Args... args) && { + std::move(initial_action) + .Call(static_cast<InitialActionArgType<Args>>(args)...); + + return std::move(remaining_actions).Call(std::forward<Args>(args)...); + } + }; + + return OA{ + std::move(initial_action_), + std::move(static_cast<Base&>(*this)), + }; + } + + template < + typename R, typename... Args, + typename std::enable_if< + conjunction< + // Both the initial action and the rest must support conversion to + // Action. + std::is_convertible<const InitialAction&, + Action<void(InitialActionArgType<Args>...)>>, + std::is_convertible<const Base&, Action<R(Args...)>>>::value, + int>::type = 0> + operator Action<R(Args...)>() const { // NOLINT + // Return an action that first calls the initial action with arguments + // filtered through InitialActionArgType, then forwards arguments directly + // to the base class to deal with the remaining actions. + struct OA { + Action<void(InitialActionArgType<Args>...)> initial_action; + Action<R(Args...)> remaining_actions; + + R operator()(Args... args) const { + initial_action.Perform(std::forward_as_tuple( + static_cast<InitialActionArgType<Args>>(args)...)); + + return remaining_actions.Perform( + std::forward_as_tuple(std::forward<Args>(args)...)); + } + }; + + return OA{ + initial_action_, + static_cast<const Base&>(*this), + }; + } + + private: + InitialAction initial_action_; +}; + +template <typename T, typename... Params> +struct ReturnNewAction { + T* operator()() const { + return internal::Apply( + [](const Params&... unpacked_params) { + return new T(unpacked_params...); + }, + params); + } + std::tuple<Params...> params; +}; + +template <size_t k> +struct ReturnArgAction { + template <typename... Args, + typename = typename std::enable_if<(k < sizeof...(Args))>::type> + auto operator()(Args&&... args) const -> decltype(std::get<k>( + std::forward_as_tuple(std::forward<Args>(args)...))) { + return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); + } +}; + +template <size_t k, typename Ptr> +struct SaveArgAction { + Ptr pointer; + + template <typename... Args> + void operator()(const Args&... args) const { + *pointer = std::get<k>(std::tie(args...)); + } +}; + +template <size_t k, typename Ptr> +struct SaveArgPointeeAction { + Ptr pointer; + + template <typename... Args> + void operator()(const Args&... args) const { + *pointer = *std::get<k>(std::tie(args...)); + } +}; + +template <size_t k, typename T> +struct SetArgRefereeAction { + T value; + + template <typename... Args> + void operator()(Args&&... args) const { + using argk_type = + typename ::std::tuple_element<k, std::tuple<Args...>>::type; + static_assert(std::is_lvalue_reference<argk_type>::value, + "Argument must be a reference type."); + std::get<k>(std::tie(args...)) = value; + } +}; + +template <size_t k, typename I1, typename I2> +struct SetArrayArgumentAction { + I1 first; + I2 last; + + template <typename... Args> + void operator()(const Args&... args) const { + auto value = std::get<k>(std::tie(args...)); + for (auto it = first; it != last; ++it, (void)++value) { + *value = *it; + } + } +}; + +template <size_t k> +struct DeleteArgAction { + template <typename... Args> + void operator()(const Args&... args) const { + delete std::get<k>(std::tie(args...)); + } +}; + +template <typename Ptr> +struct ReturnPointeeAction { + Ptr pointer; + template <typename... Args> + auto operator()(const Args&...) const -> decltype(*pointer) { + return *pointer; + } +}; + +#if GTEST_HAS_EXCEPTIONS +template <typename T> +struct ThrowAction { + T exception; + // We use a conversion operator to adapt to any return type. + template <typename R, typename... Args> + operator Action<R(Args...)>() const { // NOLINT + T copy = exception; + return [copy](Args...) -> R { throw copy; }; + } +}; +#endif // GTEST_HAS_EXCEPTIONS + +} // namespace internal + +// An Unused object can be implicitly constructed from ANY value. +// This is handy when defining actions that ignore some or all of the +// mock function arguments. For example, given +// +// MOCK_METHOD3(Foo, double(const string& label, double x, double y)); +// MOCK_METHOD3(Bar, double(int index, double x, double y)); +// +// instead of +// +// double DistanceToOriginWithLabel(const string& label, double x, double y) { +// return sqrt(x*x + y*y); +// } +// double DistanceToOriginWithIndex(int index, double x, double y) { +// return sqrt(x*x + y*y); +// } +// ... +// EXPECT_CALL(mock, Foo("abc", _, _)) +// .WillOnce(Invoke(DistanceToOriginWithLabel)); +// EXPECT_CALL(mock, Bar(5, _, _)) +// .WillOnce(Invoke(DistanceToOriginWithIndex)); +// +// you could write +// +// // We can declare any uninteresting argument as Unused. +// double DistanceToOrigin(Unused, double x, double y) { +// return sqrt(x*x + y*y); +// } +// ... +// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); +// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); +typedef internal::IgnoredValue Unused; + +// Creates an action that does actions a1, a2, ..., sequentially in +// each invocation. All but the last action will have a readonly view of the +// arguments. +template <typename... Action> +internal::DoAllAction<typename std::decay<Action>::type...> DoAll( + Action&&... action) { + return internal::DoAllAction<typename std::decay<Action>::type...>( + {}, std::forward<Action>(action)...); +} + +// WithArg<k>(an_action) creates an action that passes the k-th +// (0-based) argument of the mock function to an_action and performs +// it. It adapts an action accepting one argument to one that accepts +// multiple arguments. For convenience, we also provide +// WithArgs<k>(an_action) (defined below) as a synonym. +template <size_t k, typename InnerAction> +internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( + InnerAction&& action) { + return {std::forward<InnerAction>(action)}; +} + +// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes +// the selected arguments of the mock function to an_action and +// performs it. It serves as an adaptor between actions with +// different argument lists. +template <size_t k, size_t... ks, typename InnerAction> +internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> +WithArgs(InnerAction&& action) { + return {std::forward<InnerAction>(action)}; +} + +// WithoutArgs(inner_action) can be used in a mock function with a +// non-empty argument list to perform inner_action, which takes no +// argument. In other words, it adapts an action accepting no +// argument to one that accepts (and ignores) arguments. +template <typename InnerAction> +internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( + InnerAction&& action) { + return {std::forward<InnerAction>(action)}; +} + +// Creates an action that returns a value. +// +// The returned type can be used with a mock function returning a non-void, +// non-reference type U as follows: +// +// * If R is convertible to U and U is move-constructible, then the action can +// be used with WillOnce. +// +// * If const R& is convertible to U and U is copy-constructible, then the +// action can be used with both WillOnce and WillRepeatedly. +// +// The mock expectation contains the R value from which the U return value is +// constructed (a move/copy of the argument to Return). This means that the R +// value will survive at least until the mock object's expectations are cleared +// or the mock object is destroyed, meaning that U can safely be a +// reference-like type such as std::string_view: +// +// // The mock function returns a view of a copy of the string fed to +// // Return. The view is valid even after the action is performed. +// MockFunction<std::string_view()> mock; +// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); +// const std::string_view result = mock.AsStdFunction()(); +// EXPECT_EQ("taco", result); +// +template <typename R> +internal::ReturnAction<R> Return(R value) { + return internal::ReturnAction<R>(std::move(value)); +} + +// Creates an action that returns NULL. +inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { + return MakePolymorphicAction(internal::ReturnNullAction()); +} + +// Creates an action that returns from a void function. +inline PolymorphicAction<internal::ReturnVoidAction> Return() { + return MakePolymorphicAction(internal::ReturnVoidAction()); +} + +// Creates an action that returns the reference to a variable. +template <typename R> +inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT + return internal::ReturnRefAction<R>(x); +} + +// Prevent using ReturnRef on reference to temporary. +template <typename R, R* = nullptr> +internal::ReturnRefAction<R> ReturnRef(R&&) = delete; + +// Creates an action that returns the reference to a copy of the +// argument. The copy is created when the action is constructed and +// lives as long as the action. +template <typename R> +inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { + return internal::ReturnRefOfCopyAction<R>(x); +} + +// DEPRECATED: use Return(x) directly with WillOnce. +// +// Modifies the parent action (a Return() action) to perform a move of the +// argument instead of a copy. +// Return(ByMove()) actions can only be executed once and will assert this +// invariant. +template <typename R> +internal::ByMoveWrapper<R> ByMove(R x) { + return internal::ByMoveWrapper<R>(std::move(x)); +} + +// Creates an action that returns an element of `vals`. Calling this action will +// repeatedly return the next value from `vals` until it reaches the end and +// will restart from the beginning. +template <typename T> +internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { + return internal::ReturnRoundRobinAction<T>(std::move(vals)); +} + +// Creates an action that returns an element of `vals`. Calling this action will +// repeatedly return the next value from `vals` until it reaches the end and +// will restart from the beginning. +template <typename T> +internal::ReturnRoundRobinAction<T> ReturnRoundRobin( + std::initializer_list<T> vals) { + return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); +} + +// Creates an action that does the default action for the give mock function. +inline internal::DoDefaultAction DoDefault() { + return internal::DoDefaultAction(); +} + +// Creates an action that sets the variable pointed by the N-th +// (0-based) function argument to 'value'. +template <size_t N, typename T> +internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { + return {std::move(value)}; +} + +// The following version is DEPRECATED. +template <size_t N, typename T> +internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { + return {std::move(value)}; +} + +// Creates an action that sets a pointer referent to a given value. +template <typename T1, typename T2> +PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { + return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); +} + +#if !GTEST_OS_WINDOWS_MOBILE + +// Creates an action that sets errno and returns the appropriate error. +template <typename T> +PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( + int errval, T result) { + return MakePolymorphicAction( + internal::SetErrnoAndReturnAction<T>(errval, result)); +} + +#endif // !GTEST_OS_WINDOWS_MOBILE + +// Various overloads for Invoke(). + +// Legacy function. +// Actions can now be implicitly constructed from callables. No need to create +// wrapper objects. +// This function exists for backwards compatibility. +template <typename FunctionImpl> +typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { + return std::forward<FunctionImpl>(function_impl); +} + +// Creates an action that invokes the given method on the given object +// with the mock function's arguments. +template <class Class, typename MethodPtr> +internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, + MethodPtr method_ptr) { + return {obj_ptr, method_ptr}; +} + +// Creates an action that invokes 'function_impl' with no argument. +template <typename FunctionImpl> +internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> +InvokeWithoutArgs(FunctionImpl function_impl) { + return {std::move(function_impl)}; +} + +// Creates an action that invokes the given method on the given object +// with no argument. +template <class Class, typename MethodPtr> +internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( + Class* obj_ptr, MethodPtr method_ptr) { + return {obj_ptr, method_ptr}; +} + +// Creates an action that performs an_action and throws away its +// result. In other words, it changes the return type of an_action to +// void. an_action MUST NOT return void, or the code won't compile. +template <typename A> +inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { + return internal::IgnoreResultAction<A>(an_action); +} + +// Creates a reference wrapper for the given L-value. If necessary, +// you can explicitly specify the type of the reference. For example, +// suppose 'derived' is an object of type Derived, ByRef(derived) +// would wrap a Derived&. If you want to wrap a const Base& instead, +// where Base is a base class of Derived, just write: +// +// ByRef<const Base>(derived) +// +// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. +// However, it may still be used for consistency with ByMove(). +template <typename T> +inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT + return ::std::reference_wrapper<T>(l_value); +} + +// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new +// instance of type T, constructed on the heap with constructor arguments +// a1, a2, ..., and a_k. The caller assumes ownership of the returned value. +template <typename T, typename... Params> +internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( + Params&&... params) { + return {std::forward_as_tuple(std::forward<Params>(params)...)}; +} + +// Action ReturnArg<k>() returns the k-th argument of the mock function. +template <size_t k> +internal::ReturnArgAction<k> ReturnArg() { + return {}; +} + +// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the +// mock function to *pointer. +template <size_t k, typename Ptr> +internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { + return {pointer}; +} + +// Action SaveArgPointee<k>(pointer) saves the value pointed to +// by the k-th (0-based) argument of the mock function to *pointer. +template <size_t k, typename Ptr> +internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { + return {pointer}; +} + +// Action SetArgReferee<k>(value) assigns 'value' to the variable +// referenced by the k-th (0-based) argument of the mock function. +template <size_t k, typename T> +internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( + T&& value) { + return {std::forward<T>(value)}; +} + +// Action SetArrayArgument<k>(first, last) copies the elements in +// source range [first, last) to the array pointed to by the k-th +// (0-based) argument, which can be either a pointer or an +// iterator. The action does not take ownership of the elements in the +// source range. +template <size_t k, typename I1, typename I2> +internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, + I2 last) { + return {first, last}; +} + +// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock +// function. +template <size_t k> +internal::DeleteArgAction<k> DeleteArg() { + return {}; +} + +// This action returns the value pointed to by 'pointer'. +template <typename Ptr> +internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { + return {pointer}; +} + +// Action Throw(exception) can be used in a mock function of any type +// to throw the given exception. Any copyable value can be thrown. +#if GTEST_HAS_EXCEPTIONS +template <typename T> +internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { + return {std::forward<T>(exception)}; +} +#endif // GTEST_HAS_EXCEPTIONS + +namespace internal { + +// A macro from the ACTION* family (defined later in gmock-generated-actions.h) +// defines an action that can be used in a mock function. Typically, +// these actions only care about a subset of the arguments of the mock +// function. For example, if such an action only uses the second +// argument, it can be used in any mock function that takes >= 2 +// arguments where the type of the second argument is compatible. +// +// Therefore, the action implementation must be prepared to take more +// arguments than it needs. The ExcessiveArg type is used to +// represent those excessive arguments. In order to keep the compiler +// error messages tractable, we define it in the testing namespace +// instead of testing::internal. However, this is an INTERNAL TYPE +// and subject to change without notice, so a user MUST NOT USE THIS +// TYPE DIRECTLY. +struct ExcessiveArg {}; + +// Builds an implementation of an Action<> for some particular signature, using +// a class defined by an ACTION* macro. +template <typename F, typename Impl> +struct ActionImpl; + +template <typename Impl> +struct ImplBase { + struct Holder { + // Allows each copy of the Action<> to get to the Impl. + explicit operator const Impl&() const { return *ptr; } + std::shared_ptr<Impl> ptr; + }; + using type = typename std::conditional<std::is_constructible<Impl>::value, + Impl, Holder>::type; +}; + +template <typename R, typename... Args, typename Impl> +struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { + using Base = typename ImplBase<Impl>::type; + using function_type = R(Args...); + using args_type = std::tuple<Args...>; + + ActionImpl() = default; // Only defined if appropriate for Base. + explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} + + R operator()(Args&&... arg) const { + static constexpr size_t kMaxArgs = + sizeof...(Args) <= 10 ? sizeof...(Args) : 10; + return Apply(MakeIndexSequence<kMaxArgs>{}, + MakeIndexSequence<10 - kMaxArgs>{}, + args_type{std::forward<Args>(arg)...}); + } + + template <std::size_t... arg_id, std::size_t... excess_id> + R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, + const args_type& args) const { + // Impl need not be specific to the signature of action being implemented; + // only the implementing function body needs to have all of the specific + // types instantiated. Up to 10 of the args that are provided by the + // args_type get passed, followed by a dummy of unspecified type for the + // remainder up to 10 explicit args. + static constexpr ExcessiveArg kExcessArg{}; + return static_cast<const Impl&>(*this) + .template gmock_PerformImpl< + /*function_type=*/function_type, /*return_type=*/R, + /*args_type=*/args_type, + /*argN_type=*/ + typename std::tuple_element<arg_id, args_type>::type...>( + /*args=*/args, std::get<arg_id>(args)..., + ((void)excess_id, kExcessArg)...); + } +}; + +// Stores a default-constructed Impl as part of the Action<>'s +// std::function<>. The Impl should be trivial to copy. +template <typename F, typename Impl> +::testing::Action<F> MakeAction() { + return ::testing::Action<F>(ActionImpl<F, Impl>()); +} + +// Stores just the one given instance of Impl. +template <typename F, typename Impl> +::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { + return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); +} + +#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ + , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ +#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ + const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ + GMOCK_INTERNAL_ARG_UNUSED, , 10) + +#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i +#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ + const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) + +#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type +#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ + GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) + +#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type +#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) + +#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type +#define GMOCK_ACTION_TYPE_PARAMS_(params) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) + +#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ + , param##_type gmock_p##i +#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) + +#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ + , std::forward<param##_type>(gmock_p##i) +#define GMOCK_ACTION_GVALUE_PARAMS_(params) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) + +#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ + , param(::std::forward<param##_type>(gmock_p##i)) +#define GMOCK_ACTION_INIT_PARAMS_(params) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) + +#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; +#define GMOCK_ACTION_FIELD_PARAMS_(params) \ + GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) + +#define GMOCK_INTERNAL_ACTION(name, full_name, params) \ + template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ + class full_name { \ + public: \ + explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ + : impl_(std::make_shared<gmock_Impl>( \ + GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ + full_name(const full_name&) = default; \ + full_name(full_name&&) noexcept = default; \ + template <typename F> \ + operator ::testing::Action<F>() const { \ + return ::testing::internal::MakeAction<F>(impl_); \ + } \ + \ + private: \ + class gmock_Impl { \ + public: \ + explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ + : GMOCK_ACTION_INIT_PARAMS_(params) {} \ + template <typename function_type, typename return_type, \ + typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ + return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ + GMOCK_ACTION_FIELD_PARAMS_(params) \ + }; \ + std::shared_ptr<const gmock_Impl> impl_; \ + }; \ + template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ + inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ + GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ + template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ + inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ + GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ + return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ + GMOCK_ACTION_GVALUE_PARAMS_(params)); \ + } \ + template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ + template <typename function_type, typename return_type, typename args_type, \ + GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ + return_type \ + full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ + GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const + +} // namespace internal + +// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. +#define ACTION(name) \ + class name##Action { \ + public: \ + explicit name##Action() noexcept {} \ + name##Action(const name##Action&) noexcept {} \ + template <typename F> \ + operator ::testing::Action<F>() const { \ + return ::testing::internal::MakeAction<F, gmock_Impl>(); \ + } \ + \ + private: \ + class gmock_Impl { \ + public: \ + template <typename function_type, typename return_type, \ + typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ + return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ + }; \ + }; \ + inline name##Action name() GTEST_MUST_USE_RESULT_; \ + inline name##Action name() { return name##Action(); } \ + template <typename function_type, typename return_type, typename args_type, \ + GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ + return_type name##Action::gmock_Impl::gmock_PerformImpl( \ + GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const + +#define ACTION_P(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) + +#define ACTION_P2(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) + +#define ACTION_P3(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) + +#define ACTION_P4(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) + +#define ACTION_P5(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) + +#define ACTION_P6(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) + +#define ACTION_P7(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) + +#define ACTION_P8(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) + +#define ACTION_P9(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) + +#define ACTION_P10(name, ...) \ + GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) + +} // namespace testing + +#ifdef _MSC_VER +#pragma warning(pop) +#endif + +#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |