summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/net/dcsctp/public/dcsctp_socket.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/net/dcsctp/public/dcsctp_socket.h')
-rw-r--r--third_party/libwebrtc/net/dcsctp/public/dcsctp_socket.h617
1 files changed, 617 insertions, 0 deletions
diff --git a/third_party/libwebrtc/net/dcsctp/public/dcsctp_socket.h b/third_party/libwebrtc/net/dcsctp/public/dcsctp_socket.h
new file mode 100644
index 0000000000..2df6a2c009
--- /dev/null
+++ b/third_party/libwebrtc/net/dcsctp/public/dcsctp_socket.h
@@ -0,0 +1,617 @@
+/*
+ * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#ifndef NET_DCSCTP_PUBLIC_DCSCTP_SOCKET_H_
+#define NET_DCSCTP_PUBLIC_DCSCTP_SOCKET_H_
+
+#include <cstdint>
+#include <memory>
+#include <utility>
+
+#include "absl/strings/string_view.h"
+#include "absl/types/optional.h"
+#include "api/array_view.h"
+#include "api/task_queue/task_queue_base.h"
+#include "net/dcsctp/public/dcsctp_handover_state.h"
+#include "net/dcsctp/public/dcsctp_message.h"
+#include "net/dcsctp/public/dcsctp_options.h"
+#include "net/dcsctp/public/packet_observer.h"
+#include "net/dcsctp/public/timeout.h"
+#include "net/dcsctp/public/types.h"
+
+namespace dcsctp {
+
+// The socket/association state
+enum class SocketState {
+ // The socket is closed.
+ kClosed,
+ // The socket has initiated a connection, which is not yet established. Note
+ // that for incoming connections and for reconnections when the socket is
+ // already connected, the socket will not transition to this state.
+ kConnecting,
+ // The socket is connected, and the connection is established.
+ kConnected,
+ // The socket is shutting down, and the connection is not yet closed.
+ kShuttingDown,
+};
+
+// Send options for sending messages
+struct SendOptions {
+ // If the message should be sent with unordered message delivery.
+ IsUnordered unordered = IsUnordered(false);
+
+ // If set, will discard messages that haven't been correctly sent and
+ // received before the lifetime has expired. This is only available if the
+ // peer supports Partial Reliability Extension (RFC3758).
+ absl::optional<DurationMs> lifetime = absl::nullopt;
+
+ // If set, limits the number of retransmissions. This is only available
+ // if the peer supports Partial Reliability Extension (RFC3758).
+ absl::optional<size_t> max_retransmissions = absl::nullopt;
+
+ // If set, will generate lifecycle events for this message. See e.g.
+ // `DcSctpSocketCallbacks::OnLifecycleMessageFullySent`. This value is decided
+ // by the client and the library will provide it to all lifecycle callbacks.
+ LifecycleId lifecycle_id = LifecycleId::NotSet();
+};
+
+enum class ErrorKind {
+ // Indicates that no error has occurred. This will never be the case when
+ // `OnError` or `OnAborted` is called.
+ kNoError,
+ // There have been too many retries or timeouts, and the library has given up.
+ kTooManyRetries,
+ // A command was received that is only possible to execute when the socket is
+ // connected, which it is not.
+ kNotConnected,
+ // Parsing of the command or its parameters failed.
+ kParseFailed,
+ // Commands are received in the wrong sequence, which indicates a
+ // synchronisation mismatch between the peers.
+ kWrongSequence,
+ // The peer has reported an issue using ERROR or ABORT command.
+ kPeerReported,
+ // The peer has performed a protocol violation.
+ kProtocolViolation,
+ // The receive or send buffers have been exhausted.
+ kResourceExhaustion,
+ // The client has performed an invalid operation.
+ kUnsupportedOperation,
+};
+
+inline constexpr absl::string_view ToString(ErrorKind error) {
+ switch (error) {
+ case ErrorKind::kNoError:
+ return "NO_ERROR";
+ case ErrorKind::kTooManyRetries:
+ return "TOO_MANY_RETRIES";
+ case ErrorKind::kNotConnected:
+ return "NOT_CONNECTED";
+ case ErrorKind::kParseFailed:
+ return "PARSE_FAILED";
+ case ErrorKind::kWrongSequence:
+ return "WRONG_SEQUENCE";
+ case ErrorKind::kPeerReported:
+ return "PEER_REPORTED";
+ case ErrorKind::kProtocolViolation:
+ return "PROTOCOL_VIOLATION";
+ case ErrorKind::kResourceExhaustion:
+ return "RESOURCE_EXHAUSTION";
+ case ErrorKind::kUnsupportedOperation:
+ return "UNSUPPORTED_OPERATION";
+ }
+}
+
+enum class SendStatus {
+ // The message was enqueued successfully. As sending the message is done
+ // asynchronously, this is no guarantee that the message has been actually
+ // sent.
+ kSuccess,
+ // The message was rejected as the payload was empty (which is not allowed in
+ // SCTP).
+ kErrorMessageEmpty,
+ // The message was rejected as the payload was larger than what has been set
+ // as `DcSctpOptions.max_message_size`.
+ kErrorMessageTooLarge,
+ // The message could not be enqueued as the socket is out of resources. This
+ // mainly indicates that the send queue is full.
+ kErrorResourceExhaustion,
+ // The message could not be sent as the socket is shutting down.
+ kErrorShuttingDown,
+};
+
+inline constexpr absl::string_view ToString(SendStatus error) {
+ switch (error) {
+ case SendStatus::kSuccess:
+ return "SUCCESS";
+ case SendStatus::kErrorMessageEmpty:
+ return "ERROR_MESSAGE_EMPTY";
+ case SendStatus::kErrorMessageTooLarge:
+ return "ERROR_MESSAGE_TOO_LARGE";
+ case SendStatus::kErrorResourceExhaustion:
+ return "ERROR_RESOURCE_EXHAUSTION";
+ case SendStatus::kErrorShuttingDown:
+ return "ERROR_SHUTTING_DOWN";
+ }
+}
+
+// Return value of ResetStreams.
+enum class ResetStreamsStatus {
+ // If the connection is not yet established, this will be returned.
+ kNotConnected,
+ // Indicates that ResetStreams operation has been successfully initiated.
+ kPerformed,
+ // Indicates that ResetStreams has failed as it's not supported by the peer.
+ kNotSupported,
+};
+
+inline constexpr absl::string_view ToString(ResetStreamsStatus error) {
+ switch (error) {
+ case ResetStreamsStatus::kNotConnected:
+ return "NOT_CONNECTED";
+ case ResetStreamsStatus::kPerformed:
+ return "PERFORMED";
+ case ResetStreamsStatus::kNotSupported:
+ return "NOT_SUPPORTED";
+ }
+}
+
+// Return value of DcSctpSocketCallbacks::SendPacketWithStatus.
+enum class SendPacketStatus {
+ // Indicates that the packet was successfully sent. As sending is unreliable,
+ // there are no guarantees that the packet was actually delivered.
+ kSuccess,
+ // The packet was not sent due to a temporary failure, such as the local send
+ // buffer becoming exhausted. This return value indicates that the socket will
+ // recover and sending that packet can be retried at a later time.
+ kTemporaryFailure,
+ // The packet was not sent due to other reasons.
+ kError,
+};
+
+// Represent known SCTP implementations.
+enum class SctpImplementation {
+ // There is not enough information toto determine any SCTP implementation.
+ kUnknown,
+ // This implementation.
+ kDcsctp,
+ // https://github.com/sctplab/usrsctp.
+ kUsrSctp,
+ // Any other implementation.
+ kOther,
+};
+
+inline constexpr absl::string_view ToString(SctpImplementation implementation) {
+ switch (implementation) {
+ case SctpImplementation::kUnknown:
+ return "unknown";
+ case SctpImplementation::kDcsctp:
+ return "dcsctp";
+ case SctpImplementation::kUsrSctp:
+ return "usrsctp";
+ case SctpImplementation::kOther:
+ return "other";
+ }
+}
+
+// Tracked metrics, which is the return value of GetMetrics. Optional members
+// will be unset when they are not yet known.
+struct Metrics {
+ // Transmission stats and metrics.
+
+ // Number of packets sent.
+ size_t tx_packets_count = 0;
+
+ // Number of messages requested to be sent.
+ size_t tx_messages_count = 0;
+
+ // The current congestion window (cwnd) in bytes, corresponding to spinfo_cwnd
+ // defined in RFC6458.
+ size_t cwnd_bytes = 0;
+
+ // Smoothed round trip time, corresponding to spinfo_srtt defined in RFC6458.
+ int srtt_ms = 0;
+
+ // Number of data items in the retransmission queue that haven’t been
+ // acked/nacked yet and are in-flight. Corresponding to sstat_unackdata
+ // defined in RFC6458. This may be an approximation when there are messages in
+ // the send queue that haven't been fragmented/packetized yet.
+ size_t unack_data_count = 0;
+
+ // Receive stats and metrics.
+
+ // Number of packets received.
+ size_t rx_packets_count = 0;
+
+ // Number of messages received.
+ size_t rx_messages_count = 0;
+
+ // The peer’s last announced receiver window size, corresponding to
+ // sstat_rwnd defined in RFC6458.
+ uint32_t peer_rwnd_bytes = 0;
+
+ // Returns the detected SCTP implementation of the peer. As this is not
+ // explicitly signalled during the connection establishment, heuristics is
+ // used to analyze e.g. the state cookie in the INIT-ACK chunk.
+ SctpImplementation peer_implementation = SctpImplementation::kUnknown;
+
+ // Indicates if RFC8260 User Message Interleaving has been negotiated by both
+ // peers.
+ bool uses_message_interleaving = false;
+
+ // The number of negotiated incoming and outgoing streams, which is configured
+ // locally as `DcSctpOptions::announced_maximum_incoming_streams` and
+ // `DcSctpOptions::announced_maximum_outgoing_streams`, and which will be
+ // signaled by the peer during connection.
+ uint16_t negotiated_maximum_incoming_streams = 0;
+ uint16_t negotiated_maximum_outgoing_streams = 0;
+};
+
+// Callbacks that the DcSctpSocket will call synchronously to the owning
+// client. It is allowed to call back into the library from callbacks that start
+// with "On". It has been explicitly documented when it's not allowed to call
+// back into this library from within a callback.
+//
+// Theses callbacks are only synchronously triggered as a result of the client
+// calling a public method in `DcSctpSocketInterface`.
+class DcSctpSocketCallbacks {
+ public:
+ virtual ~DcSctpSocketCallbacks() = default;
+
+ // Called when the library wants the packet serialized as `data` to be sent.
+ //
+ // TODO(bugs.webrtc.org/12943): This method is deprecated, see
+ // `SendPacketWithStatus`.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual void SendPacket(rtc::ArrayView<const uint8_t> data) {}
+
+ // Called when the library wants the packet serialized as `data` to be sent.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual SendPacketStatus SendPacketWithStatus(
+ rtc::ArrayView<const uint8_t> data) {
+ SendPacket(data);
+ return SendPacketStatus::kSuccess;
+ }
+
+ // Called when the library wants to create a Timeout. The callback must return
+ // an object that implements that interface.
+ //
+ // Low precision tasks are scheduled more efficiently by using leeway to
+ // reduce Idle Wake Ups and is the preferred precision whenever possible. High
+ // precision timeouts do not have this leeway, but is still limited by OS
+ // timer precision. At the time of writing, kLow's additional leeway may be up
+ // to 17 ms, but please see webrtc::TaskQueueBase::DelayPrecision for
+ // up-to-date information.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual std::unique_ptr<Timeout> CreateTimeout(
+ webrtc::TaskQueueBase::DelayPrecision precision) {
+ // TODO(hbos): When dependencies have migrated to this new signature, make
+ // this pure virtual and delete the other version.
+ return CreateTimeout();
+ }
+ // TODO(hbos): When dependencies have migrated to the other signature, delete
+ // this version.
+ virtual std::unique_ptr<Timeout> CreateTimeout() {
+ return CreateTimeout(webrtc::TaskQueueBase::DelayPrecision::kLow);
+ }
+
+ // Returns the current time in milliseconds (from any epoch).
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual TimeMs TimeMillis() = 0;
+
+ // Called when the library needs a random number uniformly distributed between
+ // `low` (inclusive) and `high` (exclusive). The random numbers used by the
+ // library are not used for cryptographic purposes. There are no requirements
+ // that the random number generator must be secure.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual uint32_t GetRandomInt(uint32_t low, uint32_t high) = 0;
+
+ // Triggered when the outgoing message buffer is empty, meaning that there are
+ // no more queued messages, but there can still be packets in-flight or to be
+ // retransmitted. (in contrast to SCTP_SENDER_DRY_EVENT).
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ ABSL_DEPRECATED("Use OnTotalBufferedAmountLow instead")
+ virtual void NotifyOutgoingMessageBufferEmpty() {}
+
+ // Called when the library has received an SCTP message in full and delivers
+ // it to the upper layer.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnMessageReceived(DcSctpMessage message) = 0;
+
+ // Triggered when an non-fatal error is reported by either this library or
+ // from the other peer (by sending an ERROR command). These should be logged,
+ // but no other action need to be taken as the association is still viable.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnError(ErrorKind error, absl::string_view message) = 0;
+
+ // Triggered when the socket has aborted - either as decided by this socket
+ // due to e.g. too many retransmission attempts, or by the peer when
+ // receiving an ABORT command. No other callbacks will be done after this
+ // callback, unless reconnecting.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnAborted(ErrorKind error, absl::string_view message) = 0;
+
+ // Called when calling `Connect` succeeds, but also for incoming successful
+ // connection attempts.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnConnected() = 0;
+
+ // Called when the socket is closed in a controlled way. No other
+ // callbacks will be done after this callback, unless reconnecting.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnClosed() = 0;
+
+ // On connection restarted (by peer). This is just a notification, and the
+ // association is expected to work fine after this call, but there could have
+ // been packet loss as a result of restarting the association.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnConnectionRestarted() = 0;
+
+ // Indicates that a stream reset request has failed.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnStreamsResetFailed(
+ rtc::ArrayView<const StreamID> outgoing_streams,
+ absl::string_view reason) = 0;
+
+ // Indicates that a stream reset request has been performed.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnStreamsResetPerformed(
+ rtc::ArrayView<const StreamID> outgoing_streams) = 0;
+
+ // When a peer has reset some of its outgoing streams, this will be called. An
+ // empty list indicates that all streams have been reset.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnIncomingStreamsReset(
+ rtc::ArrayView<const StreamID> incoming_streams) = 0;
+
+ // Will be called when the amount of data buffered to be sent falls to or
+ // below the threshold set when calling `SetBufferedAmountLowThreshold`.
+ //
+ // It is allowed to call into this library from within this callback.
+ virtual void OnBufferedAmountLow(StreamID stream_id) {}
+
+ // Will be called when the total amount of data buffered (in the entire send
+ // buffer, for all streams) falls to or below the threshold specified in
+ // `DcSctpOptions::total_buffered_amount_low_threshold`.
+ virtual void OnTotalBufferedAmountLow() {}
+
+ // == Lifecycle Events ==
+ //
+ // If a `lifecycle_id` is provided as `SendOptions`, lifecycle callbacks will
+ // be triggered as the message is processed by the library.
+ //
+ // The possible transitions are shown in the graph below:
+ //
+ // DcSctpSocket::Send ────────────────────────┐
+ // │ │
+ // │ │
+ // v v
+ // OnLifecycleMessageFullySent ───────> OnLifecycleMessageExpired
+ // │ │
+ // │ │
+ // v v
+ // OnLifeCycleMessageDelivered ────────────> OnLifecycleEnd
+
+ // OnLifecycleMessageFullySent will be called when a message has been fully
+ // sent, meaning that the last fragment has been produced from the send queue
+ // and sent on the network. Note that this will trigger at most once per
+ // message even if the message was retransmitted due to packet loss.
+ //
+ // This is a lifecycle event.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual void OnLifecycleMessageFullySent(LifecycleId lifecycle_id) {}
+
+ // OnLifecycleMessageExpired will be called when a message has expired. If it
+ // was expired with data remaining in the send queue that had not been sent
+ // ever, `maybe_delivered` will be set to false. If `maybe_delivered` is true,
+ // the message has at least once been sent and may have been correctly
+ // received by the peer, but it has expired before the receiver managed to
+ // acknowledge it. This means that if `maybe_delivered` is true, it's unknown
+ // if the message was lost or was delivered, and if `maybe_delivered` is
+ // false, it's guaranteed to not be delivered.
+ //
+ // It's guaranteed that `OnLifecycleMessageDelivered` is not called if this
+ // callback has triggered.
+ //
+ // This is a lifecycle event.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual void OnLifecycleMessageExpired(LifecycleId lifecycle_id,
+ bool maybe_delivered) {}
+
+ // OnLifecycleMessageDelivered will be called when a non-expired message has
+ // been acknowledged by the peer as delivered.
+ //
+ // Note that this will trigger only when the peer moves its cumulative TSN ack
+ // beyond this message, and will not fire for messages acked using
+ // gap-ack-blocks as those are renegable. This means that this may fire a bit
+ // later than the message was actually first "acked" by the peer, as -
+ // according to the protocol - those acks may be unacked later by the client.
+ //
+ // It's guaranteed that `OnLifecycleMessageExpired` is not called if this
+ // callback has triggered.
+ //
+ // This is a lifecycle event.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual void OnLifecycleMessageDelivered(LifecycleId lifecycle_id) {}
+
+ // OnLifecycleEnd will be called when a lifecycle event has reached its end.
+ // It will be called when processing of a message is complete, no matter how
+ // it completed. It will be called after all other lifecycle events, if any.
+ //
+ // Note that it's possible that this callback triggers without any other
+ // lifecycle callbacks having been called before in case of errors, such as
+ // attempting to send an empty message or failing to enqueue a message if the
+ // send queue is full.
+ //
+ // NOTE: When the socket is deallocated, there will be no `OnLifecycleEnd`
+ // callbacks sent for messages that were enqueued. But as long as the socket
+ // is alive, `OnLifecycleEnd` callbacks are guaranteed to be sent as messages
+ // are either expired or successfully acknowledged.
+ //
+ // This is a lifecycle event.
+ //
+ // Note that it's NOT ALLOWED to call into this library from within this
+ // callback.
+ virtual void OnLifecycleEnd(LifecycleId lifecycle_id) {}
+};
+
+// The DcSctpSocket implementation implements the following interface.
+// This class is thread-compatible.
+class DcSctpSocketInterface {
+ public:
+ virtual ~DcSctpSocketInterface() = default;
+
+ // To be called when an incoming SCTP packet is to be processed.
+ virtual void ReceivePacket(rtc::ArrayView<const uint8_t> data) = 0;
+
+ // To be called when a timeout has expired. The `timeout_id` is provided
+ // when the timeout was initiated.
+ virtual void HandleTimeout(TimeoutID timeout_id) = 0;
+
+ // Connects the socket. This is an asynchronous operation, and
+ // `DcSctpSocketCallbacks::OnConnected` will be called on success.
+ virtual void Connect() = 0;
+
+ // Puts this socket to the state in which the original socket was when its
+ // `DcSctpSocketHandoverState` was captured by `GetHandoverStateAndClose`.
+ // `RestoreFromState` is allowed only on the closed socket.
+ // `DcSctpSocketCallbacks::OnConnected` will be called if a connected socket
+ // state is restored.
+ // `DcSctpSocketCallbacks::OnError` will be called on error.
+ virtual void RestoreFromState(const DcSctpSocketHandoverState& state) = 0;
+
+ // Gracefully shutdowns the socket and sends all outstanding data. This is an
+ // asynchronous operation and `DcSctpSocketCallbacks::OnClosed` will be called
+ // on success.
+ virtual void Shutdown() = 0;
+
+ // Closes the connection non-gracefully. Will send ABORT if the connection is
+ // not already closed. No callbacks will be made after Close() has returned.
+ virtual void Close() = 0;
+
+ // The socket state.
+ virtual SocketState state() const = 0;
+
+ // The options it was created with.
+ virtual const DcSctpOptions& options() const = 0;
+
+ // Update the options max_message_size.
+ virtual void SetMaxMessageSize(size_t max_message_size) = 0;
+
+ // Sets the priority of an outgoing stream. The initial value, when not set,
+ // is `DcSctpOptions::default_stream_priority`.
+ virtual void SetStreamPriority(StreamID stream_id,
+ StreamPriority priority) = 0;
+
+ // Returns the currently set priority for an outgoing stream. The initial
+ // value, when not set, is `DcSctpOptions::default_stream_priority`.
+ virtual StreamPriority GetStreamPriority(StreamID stream_id) const = 0;
+
+ // Sends the message `message` using the provided send options.
+ // Sending a message is an asynchronous operation, and the `OnError` callback
+ // may be invoked to indicate any errors in sending the message.
+ //
+ // The association does not have to be established before calling this method.
+ // If it's called before there is an established association, the message will
+ // be queued.
+ virtual SendStatus Send(DcSctpMessage message,
+ const SendOptions& send_options) = 0;
+
+ // Resetting streams is an asynchronous operation and the results will
+ // be notified using `DcSctpSocketCallbacks::OnStreamsResetDone()` on success
+ // and `DcSctpSocketCallbacks::OnStreamsResetFailed()` on failure. Note that
+ // only outgoing streams can be reset.
+ //
+ // When it's known that the peer has reset its own outgoing streams,
+ // `DcSctpSocketCallbacks::OnIncomingStreamReset` is called.
+ //
+ // Note that resetting a stream will also remove all queued messages on those
+ // streams, but will ensure that the currently sent message (if any) is fully
+ // sent before closing the stream.
+ //
+ // Resetting streams can only be done on an established association that
+ // supports stream resetting. Calling this method on e.g. a closed association
+ // or streams that don't support resetting will not perform any operation.
+ virtual ResetStreamsStatus ResetStreams(
+ rtc::ArrayView<const StreamID> outgoing_streams) = 0;
+
+ // Returns the number of bytes of data currently queued to be sent on a given
+ // stream.
+ virtual size_t buffered_amount(StreamID stream_id) const = 0;
+
+ // Returns the number of buffered outgoing bytes that is considered "low" for
+ // a given stream. See `SetBufferedAmountLowThreshold`.
+ virtual size_t buffered_amount_low_threshold(StreamID stream_id) const = 0;
+
+ // Used to specify the number of bytes of buffered outgoing data that is
+ // considered "low" for a given stream, which will trigger an
+ // OnBufferedAmountLow event. The default value is zero (0).
+ virtual void SetBufferedAmountLowThreshold(StreamID stream_id,
+ size_t bytes) = 0;
+
+ // Retrieves the latest metrics. If the socket is not fully connected,
+ // `absl::nullopt` will be returned.
+ virtual absl::optional<Metrics> GetMetrics() const = 0;
+
+ // Returns empty bitmask if the socket is in the state in which a snapshot of
+ // the state can be made by `GetHandoverStateAndClose()`. Return value is
+ // invalidated by a call to any non-const method.
+ virtual HandoverReadinessStatus GetHandoverReadiness() const = 0;
+
+ // Collects a snapshot of the socket state that can be used to reconstruct
+ // this socket in another process. On success this socket object is closed
+ // synchronously and no callbacks will be made after the method has returned.
+ // The method fails if the socket is not in a state ready for handover.
+ // nullopt indicates the failure. `DcSctpSocketCallbacks::OnClosed` will be
+ // called on success.
+ virtual absl::optional<DcSctpSocketHandoverState>
+ GetHandoverStateAndClose() = 0;
+
+ // Returns the detected SCTP implementation of the peer. As this is not
+ // explicitly signalled during the connection establishment, heuristics is
+ // used to analyze e.g. the state cookie in the INIT-ACK chunk.
+ //
+ // If this method is called too early (before
+ // `DcSctpSocketCallbacks::OnConnected` has triggered), this will likely
+ // return `SctpImplementation::kUnknown`.
+ ABSL_DEPRECATED("See Metrics::peer_implementation instead")
+ virtual SctpImplementation peer_implementation() const {
+ return SctpImplementation::kUnknown;
+ }
+};
+} // namespace dcsctp
+
+#endif // NET_DCSCTP_PUBLIC_DCSCTP_SOCKET_H_