diff options
Diffstat (limited to 'third_party/rust/adler/src/algo.rs')
-rw-r--r-- | third_party/rust/adler/src/algo.rs | 146 |
1 files changed, 146 insertions, 0 deletions
diff --git a/third_party/rust/adler/src/algo.rs b/third_party/rust/adler/src/algo.rs new file mode 100644 index 0000000000..650cffa6cd --- /dev/null +++ b/third_party/rust/adler/src/algo.rs @@ -0,0 +1,146 @@ +use crate::Adler32; +use std::ops::{AddAssign, MulAssign, RemAssign}; + +impl Adler32 { + pub(crate) fn compute(&mut self, bytes: &[u8]) { + // The basic algorithm is, for every byte: + // a = (a + byte) % MOD + // b = (b + a) % MOD + // where MOD = 65521. + // + // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows: + // - Between calls to `write`, we ensure that a and b are always in range 0..MOD. + // - We use 32-bit arithmetic in this function. + // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD` + // operation. + // + // According to Wikipedia, b is calculated as follows for non-incremental checksumming: + // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521) + // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account + // for the previous values of a and b, as well as treat every input Byte as being 255: + // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520 + // Or in other words: + // b_inc = n*65520 + n(n+1)/2*255 + // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521. + // 2^32-65521 = n*65520 + n(n+1)/2*255 + // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552. + // + // On top of the optimization outlined above, the algorithm can also be parallelized with a + // bit more work: + // + // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn). + // + // If we fix some value k<N and rewrite indices 1, ..., N as + // + // 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k, + // + // then we can express a and b in terms of sums of smaller sequences kb and ka: + // + // ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k + // kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k + // + // a = ka(1) + ka(2) + ... + ka(k) + 1 + // b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N + // + // We use this insight to unroll the main loop and process k=4 bytes at a time. + // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups + // stem from increased pipeline parallelism rather than auto-vectorization. + // + // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\ + // en/develop/articles/fast-computation-of-fletcher-checksums.html] + + const MOD: u32 = 65521; + const CHUNK_SIZE: usize = 5552 * 4; + + let mut a = u32::from(self.a); + let mut b = u32::from(self.b); + let mut a_vec = U32X4([0; 4]); + let mut b_vec = a_vec; + + let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4); + + // iterate over 4 bytes at a time + let chunk_iter = bytes.chunks_exact(CHUNK_SIZE); + let remainder_chunk = chunk_iter.remainder(); + for chunk in chunk_iter { + for byte_vec in chunk.chunks_exact(4) { + let val = U32X4::from(byte_vec); + a_vec += val; + b_vec += a_vec; + } + b += CHUNK_SIZE as u32 * a; + a_vec %= MOD; + b_vec %= MOD; + b %= MOD; + } + // special-case the final chunk because it may be shorter than the rest + for byte_vec in remainder_chunk.chunks_exact(4) { + let val = U32X4::from(byte_vec); + a_vec += val; + b_vec += a_vec; + } + b += remainder_chunk.len() as u32 * a; + a_vec %= MOD; + b_vec %= MOD; + b %= MOD; + + // combine the sub-sum results into the main sum + b_vec *= 4; + b_vec.0[1] += MOD - a_vec.0[1]; + b_vec.0[2] += (MOD - a_vec.0[2]) * 2; + b_vec.0[3] += (MOD - a_vec.0[3]) * 3; + for &av in a_vec.0.iter() { + a += av; + } + for &bv in b_vec.0.iter() { + b += bv; + } + + // iterate over the remaining few bytes in serial + for &byte in remainder.iter() { + a += u32::from(byte); + b += a; + } + + self.a = (a % MOD) as u16; + self.b = (b % MOD) as u16; + } +} + +#[derive(Copy, Clone)] +struct U32X4([u32; 4]); + +impl U32X4 { + fn from(bytes: &[u8]) -> Self { + U32X4([ + u32::from(bytes[0]), + u32::from(bytes[1]), + u32::from(bytes[2]), + u32::from(bytes[3]), + ]) + } +} + +impl AddAssign<Self> for U32X4 { + fn add_assign(&mut self, other: Self) { + for (s, o) in self.0.iter_mut().zip(other.0.iter()) { + *s += o; + } + } +} + +impl RemAssign<u32> for U32X4 { + fn rem_assign(&mut self, quotient: u32) { + for s in self.0.iter_mut() { + *s %= quotient; + } + } +} + +impl MulAssign<u32> for U32X4 { + fn mul_assign(&mut self, rhs: u32) { + for s in self.0.iter_mut() { + *s *= rhs; + } + } +} |