summaryrefslogtreecommitdiffstats
path: root/third_party/rust/bindgen/clang.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/bindgen/clang.rs')
-rw-r--r--third_party/rust/bindgen/clang.rs2224
1 files changed, 2224 insertions, 0 deletions
diff --git a/third_party/rust/bindgen/clang.rs b/third_party/rust/bindgen/clang.rs
new file mode 100644
index 0000000000..32a25449bc
--- /dev/null
+++ b/third_party/rust/bindgen/clang.rs
@@ -0,0 +1,2224 @@
+//! A higher level Clang API built on top of the generated bindings in the
+//! `clang_sys` module.
+
+#![allow(non_upper_case_globals, dead_code)]
+
+use crate::ir::context::BindgenContext;
+use clang_sys::*;
+use std::ffi::{CStr, CString};
+use std::fmt;
+use std::hash::Hash;
+use std::hash::Hasher;
+use std::os::raw::{c_char, c_int, c_longlong, c_uint, c_ulong, c_ulonglong};
+use std::{mem, ptr, slice};
+
+/// Type representing a clang attribute.
+///
+/// Values of this type can be used to check for different attributes using the `has_attrs`
+/// function.
+pub struct Attribute {
+ name: &'static [u8],
+ kind: Option<CXCursorKind>,
+ token_kind: CXTokenKind,
+}
+
+impl Attribute {
+ /// A `warn_unused_result` attribute.
+ pub const MUST_USE: Self = Self {
+ name: b"warn_unused_result",
+ // FIXME(emilio): clang-sys doesn't expose `CXCursor_WarnUnusedResultAttr` (from clang 9).
+ kind: Some(440),
+ token_kind: CXToken_Identifier,
+ };
+
+ /// A `_Noreturn` attribute.
+ pub const NO_RETURN: Self = Self {
+ name: b"_Noreturn",
+ kind: None,
+ token_kind: CXToken_Keyword,
+ };
+
+ /// A `[[noreturn]]` attribute.
+ pub const NO_RETURN_CPP: Self = Self {
+ name: b"noreturn",
+ kind: None,
+ token_kind: CXToken_Identifier,
+ };
+}
+
+/// A cursor into the Clang AST, pointing to an AST node.
+///
+/// We call the AST node pointed to by the cursor the cursor's "referent".
+#[derive(Copy, Clone)]
+pub struct Cursor {
+ x: CXCursor,
+}
+
+impl fmt::Debug for Cursor {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(
+ fmt,
+ "Cursor({} kind: {}, loc: {}, usr: {:?})",
+ self.spelling(),
+ kind_to_str(self.kind()),
+ self.location(),
+ self.usr()
+ )
+ }
+}
+
+impl Cursor {
+ /// Get the Unified Symbol Resolution for this cursor's referent, if
+ /// available.
+ ///
+ /// The USR can be used to compare entities across translation units.
+ pub fn usr(&self) -> Option<String> {
+ let s = unsafe { cxstring_into_string(clang_getCursorUSR(self.x)) };
+ if s.is_empty() {
+ None
+ } else {
+ Some(s)
+ }
+ }
+
+ /// Is this cursor's referent a declaration?
+ pub fn is_declaration(&self) -> bool {
+ unsafe { clang_isDeclaration(self.kind()) != 0 }
+ }
+
+ /// Is this cursor's referent an anonymous record or so?
+ pub fn is_anonymous(&self) -> bool {
+ unsafe { clang_Cursor_isAnonymous(self.x) != 0 }
+ }
+
+ /// Get this cursor's referent's spelling.
+ pub fn spelling(&self) -> String {
+ unsafe { cxstring_into_string(clang_getCursorSpelling(self.x)) }
+ }
+
+ /// Get this cursor's referent's display name.
+ ///
+ /// This is not necessarily a valid identifier. It includes extra
+ /// information, such as parameters for a function, etc.
+ pub fn display_name(&self) -> String {
+ unsafe { cxstring_into_string(clang_getCursorDisplayName(self.x)) }
+ }
+
+ /// Get the mangled name of this cursor's referent.
+ pub fn mangling(&self) -> String {
+ unsafe { cxstring_into_string(clang_Cursor_getMangling(self.x)) }
+ }
+
+ /// Gets the C++ manglings for this cursor, or an error if the manglings
+ /// are not available.
+ pub fn cxx_manglings(&self) -> Result<Vec<String>, ()> {
+ use clang_sys::*;
+ unsafe {
+ let manglings = clang_Cursor_getCXXManglings(self.x);
+ if manglings.is_null() {
+ return Err(());
+ }
+ let count = (*manglings).Count as usize;
+
+ let mut result = Vec::with_capacity(count);
+ for i in 0..count {
+ let string_ptr = (*manglings).Strings.add(i);
+ result.push(cxstring_to_string_leaky(*string_ptr));
+ }
+ clang_disposeStringSet(manglings);
+ Ok(result)
+ }
+ }
+
+ /// Returns whether the cursor refers to a built-in definition.
+ pub fn is_builtin(&self) -> bool {
+ let (file, _, _, _) = self.location().location();
+ file.name().is_none()
+ }
+
+ /// Get the `Cursor` for this cursor's referent's lexical parent.
+ ///
+ /// The lexical parent is the parent of the definition. The semantic parent
+ /// is the parent of the declaration. Generally, the lexical parent doesn't
+ /// have any effect on semantics, while the semantic parent does.
+ ///
+ /// In the following snippet, the `Foo` class would be the semantic parent
+ /// of the out-of-line `method` definition, while the lexical parent is the
+ /// translation unit.
+ ///
+ /// ```c++
+ /// class Foo {
+ /// void method();
+ /// };
+ ///
+ /// void Foo::method() { /* ... */ }
+ /// ```
+ pub fn lexical_parent(&self) -> Cursor {
+ unsafe {
+ Cursor {
+ x: clang_getCursorLexicalParent(self.x),
+ }
+ }
+ }
+
+ /// Get the referent's semantic parent, if one is available.
+ ///
+ /// See documentation for `lexical_parent` for details on semantic vs
+ /// lexical parents.
+ pub fn fallible_semantic_parent(&self) -> Option<Cursor> {
+ let sp = unsafe {
+ Cursor {
+ x: clang_getCursorSemanticParent(self.x),
+ }
+ };
+ if sp == *self || !sp.is_valid() {
+ return None;
+ }
+ Some(sp)
+ }
+
+ /// Get the referent's semantic parent.
+ ///
+ /// See documentation for `lexical_parent` for details on semantic vs
+ /// lexical parents.
+ pub fn semantic_parent(&self) -> Cursor {
+ self.fallible_semantic_parent().unwrap()
+ }
+
+ /// Return the number of template arguments used by this cursor's referent,
+ /// if the referent is either a template instantiation. Returns `None`
+ /// otherwise.
+ ///
+ /// NOTE: This may not return `Some` for partial template specializations,
+ /// see #193 and #194.
+ pub fn num_template_args(&self) -> Option<u32> {
+ // XXX: `clang_Type_getNumTemplateArguments` is sort of reliable, while
+ // `clang_Cursor_getNumTemplateArguments` is totally unreliable.
+ // Therefore, try former first, and only fallback to the latter if we
+ // have to.
+ self.cur_type()
+ .num_template_args()
+ .or_else(|| {
+ let n: c_int =
+ unsafe { clang_Cursor_getNumTemplateArguments(self.x) };
+
+ if n >= 0 {
+ Some(n as u32)
+ } else {
+ debug_assert_eq!(n, -1);
+ None
+ }
+ })
+ .or_else(|| {
+ let canonical = self.canonical();
+ if canonical != *self {
+ canonical.num_template_args()
+ } else {
+ None
+ }
+ })
+ }
+
+ /// Get a cursor pointing to this referent's containing translation unit.
+ ///
+ /// Note that we shouldn't create a `TranslationUnit` struct here, because
+ /// bindgen assumes there will only be one of them alive at a time, and
+ /// disposes it on drop. That can change if this would be required, but I
+ /// think we can survive fine without it.
+ pub fn translation_unit(&self) -> Cursor {
+ assert!(self.is_valid());
+ unsafe {
+ let tu = clang_Cursor_getTranslationUnit(self.x);
+ let cursor = Cursor {
+ x: clang_getTranslationUnitCursor(tu),
+ };
+ assert!(cursor.is_valid());
+ cursor
+ }
+ }
+
+ /// Is the referent a top level construct?
+ pub fn is_toplevel(&self) -> bool {
+ let mut semantic_parent = self.fallible_semantic_parent();
+
+ while semantic_parent.is_some() &&
+ (semantic_parent.unwrap().kind() == CXCursor_Namespace ||
+ semantic_parent.unwrap().kind() ==
+ CXCursor_NamespaceAlias ||
+ semantic_parent.unwrap().kind() == CXCursor_NamespaceRef)
+ {
+ semantic_parent =
+ semantic_parent.unwrap().fallible_semantic_parent();
+ }
+
+ let tu = self.translation_unit();
+ // Yes, this can happen with, e.g., macro definitions.
+ semantic_parent == tu.fallible_semantic_parent()
+ }
+
+ /// There are a few kinds of types that we need to treat specially, mainly
+ /// not tracking the type declaration but the location of the cursor, given
+ /// clang doesn't expose a proper declaration for these types.
+ pub fn is_template_like(&self) -> bool {
+ matches!(
+ self.kind(),
+ CXCursor_ClassTemplate |
+ CXCursor_ClassTemplatePartialSpecialization |
+ CXCursor_TypeAliasTemplateDecl
+ )
+ }
+
+ /// Is this Cursor pointing to a function-like macro definition?
+ pub fn is_macro_function_like(&self) -> bool {
+ unsafe { clang_Cursor_isMacroFunctionLike(self.x) != 0 }
+ }
+
+ /// Get the kind of referent this cursor is pointing to.
+ pub fn kind(&self) -> CXCursorKind {
+ self.x.kind
+ }
+
+ /// Returns true if the cursor is a definition
+ pub fn is_definition(&self) -> bool {
+ unsafe { clang_isCursorDefinition(self.x) != 0 }
+ }
+
+ /// Is the referent a template specialization?
+ pub fn is_template_specialization(&self) -> bool {
+ self.specialized().is_some()
+ }
+
+ /// Is the referent a fully specialized template specialization without any
+ /// remaining free template arguments?
+ pub fn is_fully_specialized_template(&self) -> bool {
+ self.is_template_specialization() &&
+ self.kind() != CXCursor_ClassTemplatePartialSpecialization &&
+ self.num_template_args().unwrap_or(0) > 0
+ }
+
+ /// Is the referent a template specialization that still has remaining free
+ /// template arguments?
+ pub fn is_in_non_fully_specialized_template(&self) -> bool {
+ if self.is_toplevel() {
+ return false;
+ }
+
+ let parent = self.semantic_parent();
+ if parent.is_fully_specialized_template() {
+ return false;
+ }
+
+ if !parent.is_template_like() {
+ return parent.is_in_non_fully_specialized_template();
+ }
+
+ true
+ }
+
+ /// Is the referent any kind of template parameter?
+ pub fn is_template_parameter(&self) -> bool {
+ matches!(
+ self.kind(),
+ CXCursor_TemplateTemplateParameter |
+ CXCursor_TemplateTypeParameter |
+ CXCursor_NonTypeTemplateParameter
+ )
+ }
+
+ /// Does the referent's type or value depend on a template parameter?
+ pub fn is_dependent_on_template_parameter(&self) -> bool {
+ fn visitor(
+ found_template_parameter: &mut bool,
+ cur: Cursor,
+ ) -> CXChildVisitResult {
+ // If we found a template parameter, it is dependent.
+ if cur.is_template_parameter() {
+ *found_template_parameter = true;
+ return CXChildVisit_Break;
+ }
+
+ // Get the referent and traverse it as well.
+ if let Some(referenced) = cur.referenced() {
+ if referenced.is_template_parameter() {
+ *found_template_parameter = true;
+ return CXChildVisit_Break;
+ }
+
+ referenced
+ .visit(|next| visitor(found_template_parameter, next));
+ if *found_template_parameter {
+ return CXChildVisit_Break;
+ }
+ }
+
+ // Continue traversing the AST at the original cursor.
+ CXChildVisit_Recurse
+ }
+
+ if self.is_template_parameter() {
+ return true;
+ }
+
+ let mut found_template_parameter = false;
+ self.visit(|next| visitor(&mut found_template_parameter, next));
+
+ found_template_parameter
+ }
+
+ /// Is this cursor pointing a valid referent?
+ pub fn is_valid(&self) -> bool {
+ unsafe { clang_isInvalid(self.kind()) == 0 }
+ }
+
+ /// Get the source location for the referent.
+ pub fn location(&self) -> SourceLocation {
+ unsafe {
+ SourceLocation {
+ x: clang_getCursorLocation(self.x),
+ }
+ }
+ }
+
+ /// Get the source location range for the referent.
+ pub fn extent(&self) -> CXSourceRange {
+ unsafe { clang_getCursorExtent(self.x) }
+ }
+
+ /// Get the raw declaration comment for this referent, if one exists.
+ pub fn raw_comment(&self) -> Option<String> {
+ let s = unsafe {
+ cxstring_into_string(clang_Cursor_getRawCommentText(self.x))
+ };
+ if s.is_empty() {
+ None
+ } else {
+ Some(s)
+ }
+ }
+
+ /// Get the referent's parsed comment.
+ pub fn comment(&self) -> Comment {
+ unsafe {
+ Comment {
+ x: clang_Cursor_getParsedComment(self.x),
+ }
+ }
+ }
+
+ /// Get the referent's type.
+ pub fn cur_type(&self) -> Type {
+ unsafe {
+ Type {
+ x: clang_getCursorType(self.x),
+ }
+ }
+ }
+
+ /// Given that this cursor's referent is a reference to another type, or is
+ /// a declaration, get the cursor pointing to the referenced type or type of
+ /// the declared thing.
+ pub fn definition(&self) -> Option<Cursor> {
+ unsafe {
+ let ret = Cursor {
+ x: clang_getCursorDefinition(self.x),
+ };
+
+ if ret.is_valid() && ret.kind() != CXCursor_NoDeclFound {
+ Some(ret)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Given that this cursor's referent is reference type, get the cursor
+ /// pointing to the referenced type.
+ pub fn referenced(&self) -> Option<Cursor> {
+ unsafe {
+ let ret = Cursor {
+ x: clang_getCursorReferenced(self.x),
+ };
+
+ if ret.is_valid() {
+ Some(ret)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Get the canonical cursor for this referent.
+ ///
+ /// Many types can be declared multiple times before finally being properly
+ /// defined. This method allows us to get the canonical cursor for the
+ /// referent type.
+ pub fn canonical(&self) -> Cursor {
+ unsafe {
+ Cursor {
+ x: clang_getCanonicalCursor(self.x),
+ }
+ }
+ }
+
+ /// Given that this cursor points to either a template specialization or a
+ /// template instantiation, get a cursor pointing to the template definition
+ /// that is being specialized.
+ pub fn specialized(&self) -> Option<Cursor> {
+ unsafe {
+ let ret = Cursor {
+ x: clang_getSpecializedCursorTemplate(self.x),
+ };
+ if ret.is_valid() {
+ Some(ret)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Assuming that this cursor's referent is a template declaration, get the
+ /// kind of cursor that would be generated for its specializations.
+ pub fn template_kind(&self) -> CXCursorKind {
+ unsafe { clang_getTemplateCursorKind(self.x) }
+ }
+
+ /// Traverse this cursor's referent and its children.
+ ///
+ /// Call the given function on each AST node traversed.
+ pub fn visit<Visitor>(&self, mut visitor: Visitor)
+ where
+ Visitor: FnMut(Cursor) -> CXChildVisitResult,
+ {
+ let data = &mut visitor as *mut Visitor;
+ unsafe {
+ clang_visitChildren(self.x, visit_children::<Visitor>, data.cast());
+ }
+ }
+
+ /// Collect all of this cursor's children into a vec and return them.
+ pub fn collect_children(&self) -> Vec<Cursor> {
+ let mut children = vec![];
+ self.visit(|c| {
+ children.push(c);
+ CXChildVisit_Continue
+ });
+ children
+ }
+
+ /// Does this cursor have any children?
+ pub fn has_children(&self) -> bool {
+ let mut has_children = false;
+ self.visit(|_| {
+ has_children = true;
+ CXChildVisit_Break
+ });
+ has_children
+ }
+
+ /// Does this cursor have at least `n` children?
+ pub fn has_at_least_num_children(&self, n: usize) -> bool {
+ assert!(n > 0);
+ let mut num_left = n;
+ self.visit(|_| {
+ num_left -= 1;
+ if num_left == 0 {
+ CXChildVisit_Break
+ } else {
+ CXChildVisit_Continue
+ }
+ });
+ num_left == 0
+ }
+
+ /// Returns whether the given location contains a cursor with the given
+ /// kind in the first level of nesting underneath (doesn't look
+ /// recursively).
+ pub fn contains_cursor(&self, kind: CXCursorKind) -> bool {
+ let mut found = false;
+
+ self.visit(|c| {
+ if c.kind() == kind {
+ found = true;
+ CXChildVisit_Break
+ } else {
+ CXChildVisit_Continue
+ }
+ });
+
+ found
+ }
+
+ /// Is the referent an inlined function?
+ pub fn is_inlined_function(&self) -> bool {
+ unsafe { clang_Cursor_isFunctionInlined(self.x) != 0 }
+ }
+
+ /// Is the referent a defaulted function?
+ pub fn is_defaulted_function(&self) -> bool {
+ unsafe { clang_CXXMethod_isDefaulted(self.x) != 0 }
+ }
+
+ /// Is the referent a deleted function?
+ pub fn is_deleted_function(&self) -> bool {
+ // Unfortunately, libclang doesn't yet have an API for checking if a
+ // member function is deleted, but the following should be a good
+ // enough approximation.
+ // Deleted functions are implicitly inline according to paragraph 4 of
+ // [dcl.fct.def.delete] in the C++ standard. Normal inline functions
+ // have a definition in the same translation unit, so if this is an
+ // inline function without a definition, and it's not a defaulted
+ // function, we can reasonably safely conclude that it's a deleted
+ // function.
+ self.is_inlined_function() &&
+ self.definition().is_none() &&
+ !self.is_defaulted_function()
+ }
+
+ /// Is the referent a bit field declaration?
+ pub fn is_bit_field(&self) -> bool {
+ unsafe { clang_Cursor_isBitField(self.x) != 0 }
+ }
+
+ /// Get a cursor to the bit field's width expression, or `None` if it's not
+ /// a bit field.
+ pub fn bit_width_expr(&self) -> Option<Cursor> {
+ if !self.is_bit_field() {
+ return None;
+ }
+
+ let mut result = None;
+ self.visit(|cur| {
+ // The first child may or may not be a TypeRef, depending on whether
+ // the field's type is builtin. Skip it.
+ if cur.kind() == CXCursor_TypeRef {
+ return CXChildVisit_Continue;
+ }
+
+ // The next expression or literal is the bit width.
+ result = Some(cur);
+
+ CXChildVisit_Break
+ });
+
+ result
+ }
+
+ /// Get the width of this cursor's referent bit field, or `None` if the
+ /// referent is not a bit field or if the width could not be evaluated.
+ pub fn bit_width(&self) -> Option<u32> {
+ // It is not safe to check the bit width without ensuring it doesn't
+ // depend on a template parameter. See
+ // https://github.com/rust-lang/rust-bindgen/issues/2239
+ if self.bit_width_expr()?.is_dependent_on_template_parameter() {
+ return None;
+ }
+
+ unsafe {
+ let w = clang_getFieldDeclBitWidth(self.x);
+ if w == -1 {
+ None
+ } else {
+ Some(w as u32)
+ }
+ }
+ }
+
+ /// Get the integer representation type used to hold this cursor's referent
+ /// enum type.
+ pub fn enum_type(&self) -> Option<Type> {
+ unsafe {
+ let t = Type {
+ x: clang_getEnumDeclIntegerType(self.x),
+ };
+ if t.is_valid() {
+ Some(t)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Get the boolean constant value for this cursor's enum variant referent.
+ ///
+ /// Returns None if the cursor's referent is not an enum variant.
+ pub fn enum_val_boolean(&self) -> Option<bool> {
+ unsafe {
+ if self.kind() == CXCursor_EnumConstantDecl {
+ Some(clang_getEnumConstantDeclValue(self.x) != 0)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Get the signed constant value for this cursor's enum variant referent.
+ ///
+ /// Returns None if the cursor's referent is not an enum variant.
+ pub fn enum_val_signed(&self) -> Option<i64> {
+ unsafe {
+ if self.kind() == CXCursor_EnumConstantDecl {
+ #[allow(clippy::unnecessary_cast)]
+ Some(clang_getEnumConstantDeclValue(self.x) as i64)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Get the unsigned constant value for this cursor's enum variant referent.
+ ///
+ /// Returns None if the cursor's referent is not an enum variant.
+ pub fn enum_val_unsigned(&self) -> Option<u64> {
+ unsafe {
+ if self.kind() == CXCursor_EnumConstantDecl {
+ #[allow(clippy::unnecessary_cast)]
+ Some(clang_getEnumConstantDeclUnsignedValue(self.x) as u64)
+ } else {
+ None
+ }
+ }
+ }
+
+ /// Does this cursor have the given attributes?
+ pub fn has_attrs<const N: usize>(
+ &self,
+ attrs: &[Attribute; N],
+ ) -> [bool; N] {
+ let mut found_attrs = [false; N];
+ let mut found_count = 0;
+
+ self.visit(|cur| {
+ let kind = cur.kind();
+ for (idx, attr) in attrs.iter().enumerate() {
+ let found_attr = &mut found_attrs[idx];
+ if !*found_attr {
+ // `attr.name` and` attr.token_kind` are checked against unexposed attributes only.
+ if attr.kind.map_or(false, |k| k == kind) ||
+ (kind == CXCursor_UnexposedAttr &&
+ cur.tokens().iter().any(|t| {
+ t.kind == attr.token_kind &&
+ t.spelling() == attr.name
+ }))
+ {
+ *found_attr = true;
+ found_count += 1;
+
+ if found_count == N {
+ return CXChildVisit_Break;
+ }
+ }
+ }
+ }
+
+ CXChildVisit_Continue
+ });
+
+ found_attrs
+ }
+
+ /// Given that this cursor's referent is a `typedef`, get the `Type` that is
+ /// being aliased.
+ pub fn typedef_type(&self) -> Option<Type> {
+ let inner = Type {
+ x: unsafe { clang_getTypedefDeclUnderlyingType(self.x) },
+ };
+
+ if inner.is_valid() {
+ Some(inner)
+ } else {
+ None
+ }
+ }
+
+ /// Get the linkage kind for this cursor's referent.
+ ///
+ /// This only applies to functions and variables.
+ pub fn linkage(&self) -> CXLinkageKind {
+ unsafe { clang_getCursorLinkage(self.x) }
+ }
+
+ /// Get the visibility of this cursor's referent.
+ pub fn visibility(&self) -> CXVisibilityKind {
+ unsafe { clang_getCursorVisibility(self.x) }
+ }
+
+ /// Given that this cursor's referent is a function, return cursors to its
+ /// parameters.
+ ///
+ /// Returns None if the cursor's referent is not a function/method call or
+ /// declaration.
+ pub fn args(&self) -> Option<Vec<Cursor>> {
+ // match self.kind() {
+ // CXCursor_FunctionDecl |
+ // CXCursor_CXXMethod => {
+ self.num_args().ok().map(|num| {
+ (0..num)
+ .map(|i| Cursor {
+ x: unsafe { clang_Cursor_getArgument(self.x, i as c_uint) },
+ })
+ .collect()
+ })
+ }
+
+ /// Given that this cursor's referent is a function/method call or
+ /// declaration, return the number of arguments it takes.
+ ///
+ /// Returns Err if the cursor's referent is not a function/method call or
+ /// declaration.
+ pub fn num_args(&self) -> Result<u32, ()> {
+ unsafe {
+ let w = clang_Cursor_getNumArguments(self.x);
+ if w == -1 {
+ Err(())
+ } else {
+ Ok(w as u32)
+ }
+ }
+ }
+
+ /// Get the access specifier for this cursor's referent.
+ pub fn access_specifier(&self) -> CX_CXXAccessSpecifier {
+ unsafe { clang_getCXXAccessSpecifier(self.x) }
+ }
+
+ /// Is the cursor's referrent publically accessible in C++?
+ ///
+ /// Returns true if self.access_specifier() is `CX_CXXPublic` or
+ /// `CX_CXXInvalidAccessSpecifier`.
+ pub fn public_accessible(&self) -> bool {
+ let access = self.access_specifier();
+ access == CX_CXXPublic || access == CX_CXXInvalidAccessSpecifier
+ }
+
+ /// Is this cursor's referent a field declaration that is marked as
+ /// `mutable`?
+ pub fn is_mutable_field(&self) -> bool {
+ unsafe { clang_CXXField_isMutable(self.x) != 0 }
+ }
+
+ /// Get the offset of the field represented by the Cursor.
+ pub fn offset_of_field(&self) -> Result<usize, LayoutError> {
+ let offset = unsafe { clang_Cursor_getOffsetOfField(self.x) };
+
+ if offset < 0 {
+ Err(LayoutError::from(offset as i32))
+ } else {
+ Ok(offset as usize)
+ }
+ }
+
+ /// Is this cursor's referent a member function that is declared `static`?
+ pub fn method_is_static(&self) -> bool {
+ unsafe { clang_CXXMethod_isStatic(self.x) != 0 }
+ }
+
+ /// Is this cursor's referent a member function that is declared `const`?
+ pub fn method_is_const(&self) -> bool {
+ unsafe { clang_CXXMethod_isConst(self.x) != 0 }
+ }
+
+ /// Is this cursor's referent a member function that is virtual?
+ pub fn method_is_virtual(&self) -> bool {
+ unsafe { clang_CXXMethod_isVirtual(self.x) != 0 }
+ }
+
+ /// Is this cursor's referent a member function that is pure virtual?
+ pub fn method_is_pure_virtual(&self) -> bool {
+ unsafe { clang_CXXMethod_isPureVirtual(self.x) != 0 }
+ }
+
+ /// Is this cursor's referent a struct or class with virtual members?
+ pub fn is_virtual_base(&self) -> bool {
+ unsafe { clang_isVirtualBase(self.x) != 0 }
+ }
+
+ /// Try to evaluate this cursor.
+ pub fn evaluate(&self) -> Option<EvalResult> {
+ EvalResult::new(*self)
+ }
+
+ /// Return the result type for this cursor
+ pub fn ret_type(&self) -> Option<Type> {
+ let rt = Type {
+ x: unsafe { clang_getCursorResultType(self.x) },
+ };
+ if rt.is_valid() {
+ Some(rt)
+ } else {
+ None
+ }
+ }
+
+ /// Gets the tokens that correspond to that cursor.
+ pub fn tokens(&self) -> RawTokens {
+ RawTokens::new(self)
+ }
+
+ /// Gets the tokens that correspond to that cursor as `cexpr` tokens.
+ pub fn cexpr_tokens(self) -> Vec<cexpr::token::Token> {
+ self.tokens()
+ .iter()
+ .filter_map(|token| token.as_cexpr_token())
+ .collect()
+ }
+
+ /// Obtain the real path name of a cursor of InclusionDirective kind.
+ ///
+ /// Returns None if the cursor does not include a file, otherwise the file's full name
+ pub fn get_included_file_name(&self) -> Option<String> {
+ let file = unsafe { clang_sys::clang_getIncludedFile(self.x) };
+ if file.is_null() {
+ None
+ } else {
+ Some(unsafe {
+ cxstring_into_string(clang_sys::clang_getFileName(file))
+ })
+ }
+ }
+}
+
+/// A struct that owns the tokenizer result from a given cursor.
+pub struct RawTokens<'a> {
+ cursor: &'a Cursor,
+ tu: CXTranslationUnit,
+ tokens: *mut CXToken,
+ token_count: c_uint,
+}
+
+impl<'a> RawTokens<'a> {
+ fn new(cursor: &'a Cursor) -> Self {
+ let mut tokens = ptr::null_mut();
+ let mut token_count = 0;
+ let range = cursor.extent();
+ let tu = unsafe { clang_Cursor_getTranslationUnit(cursor.x) };
+ unsafe { clang_tokenize(tu, range, &mut tokens, &mut token_count) };
+ Self {
+ cursor,
+ tu,
+ tokens,
+ token_count,
+ }
+ }
+
+ fn as_slice(&self) -> &[CXToken] {
+ if self.tokens.is_null() {
+ return &[];
+ }
+ unsafe { slice::from_raw_parts(self.tokens, self.token_count as usize) }
+ }
+
+ /// Get an iterator over these tokens.
+ pub fn iter(&self) -> ClangTokenIterator {
+ ClangTokenIterator {
+ tu: self.tu,
+ raw: self.as_slice().iter(),
+ }
+ }
+}
+
+impl<'a> Drop for RawTokens<'a> {
+ fn drop(&mut self) {
+ if !self.tokens.is_null() {
+ unsafe {
+ clang_disposeTokens(
+ self.tu,
+ self.tokens,
+ self.token_count as c_uint,
+ );
+ }
+ }
+ }
+}
+
+/// A raw clang token, that exposes only kind, spelling, and extent. This is a
+/// slightly more convenient version of `CXToken` which owns the spelling
+/// string and extent.
+#[derive(Debug)]
+pub struct ClangToken {
+ spelling: CXString,
+ /// The extent of the token. This is the same as the relevant member from
+ /// `CXToken`.
+ pub extent: CXSourceRange,
+ /// The kind of the token. This is the same as the relevant member from
+ /// `CXToken`.
+ pub kind: CXTokenKind,
+}
+
+impl ClangToken {
+ /// Get the token spelling, without being converted to utf-8.
+ pub fn spelling(&self) -> &[u8] {
+ let c_str = unsafe {
+ CStr::from_ptr(clang_getCString(self.spelling) as *const _)
+ };
+ c_str.to_bytes()
+ }
+
+ /// Converts a ClangToken to a `cexpr` token if possible.
+ pub fn as_cexpr_token(&self) -> Option<cexpr::token::Token> {
+ use cexpr::token;
+
+ let kind = match self.kind {
+ CXToken_Punctuation => token::Kind::Punctuation,
+ CXToken_Literal => token::Kind::Literal,
+ CXToken_Identifier => token::Kind::Identifier,
+ CXToken_Keyword => token::Kind::Keyword,
+ // NB: cexpr is not too happy about comments inside
+ // expressions, so we strip them down here.
+ CXToken_Comment => return None,
+ _ => {
+ warn!("Found unexpected token kind: {:?}", self);
+ return None;
+ }
+ };
+
+ Some(token::Token {
+ kind,
+ raw: self.spelling().to_vec().into_boxed_slice(),
+ })
+ }
+}
+
+impl Drop for ClangToken {
+ fn drop(&mut self) {
+ unsafe { clang_disposeString(self.spelling) }
+ }
+}
+
+/// An iterator over a set of Tokens.
+pub struct ClangTokenIterator<'a> {
+ tu: CXTranslationUnit,
+ raw: slice::Iter<'a, CXToken>,
+}
+
+impl<'a> Iterator for ClangTokenIterator<'a> {
+ type Item = ClangToken;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ let raw = self.raw.next()?;
+ unsafe {
+ let kind = clang_getTokenKind(*raw);
+ let spelling = clang_getTokenSpelling(self.tu, *raw);
+ let extent = clang_getTokenExtent(self.tu, *raw);
+ Some(ClangToken {
+ kind,
+ extent,
+ spelling,
+ })
+ }
+ }
+}
+
+/// Checks whether the name looks like an identifier, i.e. is alphanumeric
+/// (including '_') and does not start with a digit.
+pub fn is_valid_identifier(name: &str) -> bool {
+ let mut chars = name.chars();
+ let first_valid = chars
+ .next()
+ .map(|c| c.is_alphabetic() || c == '_')
+ .unwrap_or(false);
+
+ first_valid && chars.all(|c| c.is_alphanumeric() || c == '_')
+}
+
+extern "C" fn visit_children<Visitor>(
+ cur: CXCursor,
+ _parent: CXCursor,
+ data: CXClientData,
+) -> CXChildVisitResult
+where
+ Visitor: FnMut(Cursor) -> CXChildVisitResult,
+{
+ let func: &mut Visitor = unsafe { &mut *(data as *mut Visitor) };
+ let child = Cursor { x: cur };
+
+ (*func)(child)
+}
+
+impl PartialEq for Cursor {
+ fn eq(&self, other: &Cursor) -> bool {
+ unsafe { clang_equalCursors(self.x, other.x) == 1 }
+ }
+}
+
+impl Eq for Cursor {}
+
+impl Hash for Cursor {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ unsafe { clang_hashCursor(self.x) }.hash(state)
+ }
+}
+
+/// The type of a node in clang's AST.
+#[derive(Clone, Copy)]
+pub struct Type {
+ x: CXType,
+}
+
+impl PartialEq for Type {
+ fn eq(&self, other: &Self) -> bool {
+ unsafe { clang_equalTypes(self.x, other.x) != 0 }
+ }
+}
+
+impl Eq for Type {}
+
+impl fmt::Debug for Type {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(
+ fmt,
+ "Type({}, kind: {}, cconv: {}, decl: {:?}, canon: {:?})",
+ self.spelling(),
+ type_to_str(self.kind()),
+ self.call_conv(),
+ self.declaration(),
+ self.declaration().canonical()
+ )
+ }
+}
+
+/// An error about the layout of a struct, class, or type.
+#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
+pub enum LayoutError {
+ /// Asked for the layout of an invalid type.
+ Invalid,
+ /// Asked for the layout of an incomplete type.
+ Incomplete,
+ /// Asked for the layout of a dependent type.
+ Dependent,
+ /// Asked for the layout of a type that does not have constant size.
+ NotConstantSize,
+ /// Asked for the layout of a field in a type that does not have such a
+ /// field.
+ InvalidFieldName,
+ /// An unknown layout error.
+ Unknown,
+}
+
+impl ::std::convert::From<i32> for LayoutError {
+ fn from(val: i32) -> Self {
+ use self::LayoutError::*;
+
+ match val {
+ CXTypeLayoutError_Invalid => Invalid,
+ CXTypeLayoutError_Incomplete => Incomplete,
+ CXTypeLayoutError_Dependent => Dependent,
+ CXTypeLayoutError_NotConstantSize => NotConstantSize,
+ CXTypeLayoutError_InvalidFieldName => InvalidFieldName,
+ _ => Unknown,
+ }
+ }
+}
+
+impl Type {
+ /// Get this type's kind.
+ pub fn kind(&self) -> CXTypeKind {
+ self.x.kind
+ }
+
+ /// Get a cursor pointing to this type's declaration.
+ pub fn declaration(&self) -> Cursor {
+ unsafe {
+ Cursor {
+ x: clang_getTypeDeclaration(self.x),
+ }
+ }
+ }
+
+ /// Get the canonical declaration of this type, if it is available.
+ pub fn canonical_declaration(
+ &self,
+ location: Option<&Cursor>,
+ ) -> Option<CanonicalTypeDeclaration> {
+ let mut declaration = self.declaration();
+ if !declaration.is_valid() {
+ if let Some(location) = location {
+ let mut location = *location;
+ if let Some(referenced) = location.referenced() {
+ location = referenced;
+ }
+ if location.is_template_like() {
+ declaration = location;
+ }
+ }
+ }
+
+ let canonical = declaration.canonical();
+ if canonical.is_valid() && canonical.kind() != CXCursor_NoDeclFound {
+ Some(CanonicalTypeDeclaration(*self, canonical))
+ } else {
+ None
+ }
+ }
+
+ /// Get a raw display name for this type.
+ pub fn spelling(&self) -> String {
+ let s = unsafe { cxstring_into_string(clang_getTypeSpelling(self.x)) };
+ // Clang 5.0 introduced changes in the spelling API so it returned the
+ // full qualified name. Let's undo that here.
+ if s.split("::").all(is_valid_identifier) {
+ if let Some(s) = s.split("::").last() {
+ return s.to_owned();
+ }
+ }
+
+ s
+ }
+
+ /// Is this type const qualified?
+ pub fn is_const(&self) -> bool {
+ unsafe { clang_isConstQualifiedType(self.x) != 0 }
+ }
+
+ #[inline]
+ fn is_non_deductible_auto_type(&self) -> bool {
+ debug_assert_eq!(self.kind(), CXType_Auto);
+ self.canonical_type() == *self
+ }
+
+ #[inline]
+ fn clang_size_of(&self, ctx: &BindgenContext) -> c_longlong {
+ match self.kind() {
+ // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975
+ CXType_RValueReference | CXType_LValueReference => {
+ ctx.target_pointer_size() as c_longlong
+ }
+ // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813
+ CXType_Auto if self.is_non_deductible_auto_type() => -6,
+ _ => unsafe { clang_Type_getSizeOf(self.x) },
+ }
+ }
+
+ #[inline]
+ fn clang_align_of(&self, ctx: &BindgenContext) -> c_longlong {
+ match self.kind() {
+ // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975
+ CXType_RValueReference | CXType_LValueReference => {
+ ctx.target_pointer_size() as c_longlong
+ }
+ // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813
+ CXType_Auto if self.is_non_deductible_auto_type() => -6,
+ _ => unsafe { clang_Type_getAlignOf(self.x) },
+ }
+ }
+
+ /// What is the size of this type? Paper over invalid types by returning `0`
+ /// for them.
+ pub fn size(&self, ctx: &BindgenContext) -> usize {
+ let val = self.clang_size_of(ctx);
+ if val < 0 {
+ 0
+ } else {
+ val as usize
+ }
+ }
+
+ /// What is the size of this type?
+ pub fn fallible_size(
+ &self,
+ ctx: &BindgenContext,
+ ) -> Result<usize, LayoutError> {
+ let val = self.clang_size_of(ctx);
+ if val < 0 {
+ Err(LayoutError::from(val as i32))
+ } else {
+ Ok(val as usize)
+ }
+ }
+
+ /// What is the alignment of this type? Paper over invalid types by
+ /// returning `0`.
+ pub fn align(&self, ctx: &BindgenContext) -> usize {
+ let val = self.clang_align_of(ctx);
+ if val < 0 {
+ 0
+ } else {
+ val as usize
+ }
+ }
+
+ /// What is the alignment of this type?
+ pub fn fallible_align(
+ &self,
+ ctx: &BindgenContext,
+ ) -> Result<usize, LayoutError> {
+ let val = self.clang_align_of(ctx);
+ if val < 0 {
+ Err(LayoutError::from(val as i32))
+ } else {
+ Ok(val as usize)
+ }
+ }
+
+ /// Get the layout for this type, or an error describing why it does not
+ /// have a valid layout.
+ pub fn fallible_layout(
+ &self,
+ ctx: &BindgenContext,
+ ) -> Result<crate::ir::layout::Layout, LayoutError> {
+ use crate::ir::layout::Layout;
+ let size = self.fallible_size(ctx)?;
+ let align = self.fallible_align(ctx)?;
+ Ok(Layout::new(size, align))
+ }
+
+ /// Get the number of template arguments this type has, or `None` if it is
+ /// not some kind of template.
+ pub fn num_template_args(&self) -> Option<u32> {
+ let n = unsafe { clang_Type_getNumTemplateArguments(self.x) };
+ if n >= 0 {
+ Some(n as u32)
+ } else {
+ debug_assert_eq!(n, -1);
+ None
+ }
+ }
+
+ /// If this type is a class template specialization, return its
+ /// template arguments. Otherwise, return None.
+ pub fn template_args(&self) -> Option<TypeTemplateArgIterator> {
+ self.num_template_args().map(|n| TypeTemplateArgIterator {
+ x: self.x,
+ length: n,
+ index: 0,
+ })
+ }
+
+ /// Given that this type is a function prototype, return the types of its parameters.
+ ///
+ /// Returns None if the type is not a function prototype.
+ pub fn args(&self) -> Option<Vec<Type>> {
+ self.num_args().ok().map(|num| {
+ (0..num)
+ .map(|i| Type {
+ x: unsafe { clang_getArgType(self.x, i as c_uint) },
+ })
+ .collect()
+ })
+ }
+
+ /// Given that this type is a function prototype, return the number of arguments it takes.
+ ///
+ /// Returns Err if the type is not a function prototype.
+ pub fn num_args(&self) -> Result<u32, ()> {
+ unsafe {
+ let w = clang_getNumArgTypes(self.x);
+ if w == -1 {
+ Err(())
+ } else {
+ Ok(w as u32)
+ }
+ }
+ }
+
+ /// Given that this type is a pointer type, return the type that it points
+ /// to.
+ pub fn pointee_type(&self) -> Option<Type> {
+ match self.kind() {
+ CXType_Pointer |
+ CXType_RValueReference |
+ CXType_LValueReference |
+ CXType_MemberPointer |
+ CXType_BlockPointer |
+ CXType_ObjCObjectPointer => {
+ let ret = Type {
+ x: unsafe { clang_getPointeeType(self.x) },
+ };
+ debug_assert!(ret.is_valid());
+ Some(ret)
+ }
+ _ => None,
+ }
+ }
+
+ /// Given that this type is an array, vector, or complex type, return the
+ /// type of its elements.
+ pub fn elem_type(&self) -> Option<Type> {
+ let current_type = Type {
+ x: unsafe { clang_getElementType(self.x) },
+ };
+ if current_type.is_valid() {
+ Some(current_type)
+ } else {
+ None
+ }
+ }
+
+ /// Given that this type is an array or vector type, return its number of
+ /// elements.
+ pub fn num_elements(&self) -> Option<usize> {
+ let num_elements_returned = unsafe { clang_getNumElements(self.x) };
+ if num_elements_returned != -1 {
+ Some(num_elements_returned as usize)
+ } else {
+ None
+ }
+ }
+
+ /// Get the canonical version of this type. This sees through `typedef`s and
+ /// aliases to get the underlying, canonical type.
+ pub fn canonical_type(&self) -> Type {
+ unsafe {
+ Type {
+ x: clang_getCanonicalType(self.x),
+ }
+ }
+ }
+
+ /// Is this type a variadic function type?
+ pub fn is_variadic(&self) -> bool {
+ unsafe { clang_isFunctionTypeVariadic(self.x) != 0 }
+ }
+
+ /// Given that this type is a function type, get the type of its return
+ /// value.
+ pub fn ret_type(&self) -> Option<Type> {
+ let rt = Type {
+ x: unsafe { clang_getResultType(self.x) },
+ };
+ if rt.is_valid() {
+ Some(rt)
+ } else {
+ None
+ }
+ }
+
+ /// Given that this type is a function type, get its calling convention. If
+ /// this is not a function type, `CXCallingConv_Invalid` is returned.
+ pub fn call_conv(&self) -> CXCallingConv {
+ unsafe { clang_getFunctionTypeCallingConv(self.x) }
+ }
+
+ /// For elaborated types (types which use `class`, `struct`, or `union` to
+ /// disambiguate types from local bindings), get the underlying type.
+ pub fn named(&self) -> Type {
+ unsafe {
+ Type {
+ x: clang_Type_getNamedType(self.x),
+ }
+ }
+ }
+
+ /// Is this a valid type?
+ pub fn is_valid(&self) -> bool {
+ self.kind() != CXType_Invalid
+ }
+
+ /// Is this a valid and exposed type?
+ pub fn is_valid_and_exposed(&self) -> bool {
+ self.is_valid() && self.kind() != CXType_Unexposed
+ }
+
+ /// Is this type a fully instantiated template?
+ pub fn is_fully_instantiated_template(&self) -> bool {
+ // Yep, the spelling of this containing type-parameter is extremely
+ // nasty... But can happen in <type_traits>. Unfortunately I couldn't
+ // reduce it enough :(
+ self.template_args().map_or(false, |args| args.len() > 0) &&
+ !matches!(
+ self.declaration().kind(),
+ CXCursor_ClassTemplatePartialSpecialization |
+ CXCursor_TypeAliasTemplateDecl |
+ CXCursor_TemplateTemplateParameter
+ )
+ }
+
+ /// Is this type an associated template type? Eg `T::Associated` in
+ /// this example:
+ ///
+ /// ```c++
+ /// template <typename T>
+ /// class Foo {
+ /// typename T::Associated member;
+ /// };
+ /// ```
+ pub fn is_associated_type(&self) -> bool {
+ // This is terrible :(
+ fn hacky_parse_associated_type<S: AsRef<str>>(spelling: S) -> bool {
+ lazy_static! {
+ static ref ASSOC_TYPE_RE: regex::Regex = regex::Regex::new(
+ r"typename type\-parameter\-\d+\-\d+::.+"
+ )
+ .unwrap();
+ }
+ ASSOC_TYPE_RE.is_match(spelling.as_ref())
+ }
+
+ self.kind() == CXType_Unexposed &&
+ (hacky_parse_associated_type(self.spelling()) ||
+ hacky_parse_associated_type(
+ self.canonical_type().spelling(),
+ ))
+ }
+}
+
+/// The `CanonicalTypeDeclaration` type exists as proof-by-construction that its
+/// cursor is the canonical declaration for its type. If you have a
+/// `CanonicalTypeDeclaration` instance, you know for sure that the type and
+/// cursor match up in a canonical declaration relationship, and it simply
+/// cannot be otherwise.
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+pub struct CanonicalTypeDeclaration(Type, Cursor);
+
+impl CanonicalTypeDeclaration {
+ /// Get the type.
+ pub fn ty(&self) -> &Type {
+ &self.0
+ }
+
+ /// Get the type's canonical declaration cursor.
+ pub fn cursor(&self) -> &Cursor {
+ &self.1
+ }
+}
+
+/// An iterator for a type's template arguments.
+pub struct TypeTemplateArgIterator {
+ x: CXType,
+ length: u32,
+ index: u32,
+}
+
+impl Iterator for TypeTemplateArgIterator {
+ type Item = Type;
+ fn next(&mut self) -> Option<Type> {
+ if self.index < self.length {
+ let idx = self.index as c_uint;
+ self.index += 1;
+ Some(Type {
+ x: unsafe { clang_Type_getTemplateArgumentAsType(self.x, idx) },
+ })
+ } else {
+ None
+ }
+ }
+}
+
+impl ExactSizeIterator for TypeTemplateArgIterator {
+ fn len(&self) -> usize {
+ assert!(self.index <= self.length);
+ (self.length - self.index) as usize
+ }
+}
+
+/// A `SourceLocation` is a file, line, column, and byte offset location for
+/// some source text.
+pub struct SourceLocation {
+ x: CXSourceLocation,
+}
+
+impl SourceLocation {
+ /// Get the (file, line, column, byte offset) tuple for this source
+ /// location.
+ pub fn location(&self) -> (File, usize, usize, usize) {
+ unsafe {
+ let mut file = mem::zeroed();
+ let mut line = 0;
+ let mut col = 0;
+ let mut off = 0;
+ clang_getSpellingLocation(
+ self.x, &mut file, &mut line, &mut col, &mut off,
+ );
+ (File { x: file }, line as usize, col as usize, off as usize)
+ }
+ }
+}
+
+impl fmt::Display for SourceLocation {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let (file, line, col, _) = self.location();
+ if let Some(name) = file.name() {
+ write!(f, "{}:{}:{}", name, line, col)
+ } else {
+ "builtin definitions".fmt(f)
+ }
+ }
+}
+
+impl fmt::Debug for SourceLocation {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "{}", self)
+ }
+}
+
+/// A comment in the source text.
+///
+/// Comments are sort of parsed by Clang, and have a tree structure.
+pub struct Comment {
+ x: CXComment,
+}
+
+impl Comment {
+ /// What kind of comment is this?
+ pub fn kind(&self) -> CXCommentKind {
+ unsafe { clang_Comment_getKind(self.x) }
+ }
+
+ /// Get this comment's children comment
+ pub fn get_children(&self) -> CommentChildrenIterator {
+ CommentChildrenIterator {
+ parent: self.x,
+ length: unsafe { clang_Comment_getNumChildren(self.x) },
+ index: 0,
+ }
+ }
+
+ /// Given that this comment is the start or end of an HTML tag, get its tag
+ /// name.
+ pub fn get_tag_name(&self) -> String {
+ unsafe { cxstring_into_string(clang_HTMLTagComment_getTagName(self.x)) }
+ }
+
+ /// Given that this comment is an HTML start tag, get its attributes.
+ pub fn get_tag_attrs(&self) -> CommentAttributesIterator {
+ CommentAttributesIterator {
+ x: self.x,
+ length: unsafe { clang_HTMLStartTag_getNumAttrs(self.x) },
+ index: 0,
+ }
+ }
+}
+
+/// An iterator for a comment's children
+pub struct CommentChildrenIterator {
+ parent: CXComment,
+ length: c_uint,
+ index: c_uint,
+}
+
+impl Iterator for CommentChildrenIterator {
+ type Item = Comment;
+ fn next(&mut self) -> Option<Comment> {
+ if self.index < self.length {
+ let idx = self.index;
+ self.index += 1;
+ Some(Comment {
+ x: unsafe { clang_Comment_getChild(self.parent, idx) },
+ })
+ } else {
+ None
+ }
+ }
+}
+
+/// An HTML start tag comment attribute
+pub struct CommentAttribute {
+ /// HTML start tag attribute name
+ pub name: String,
+ /// HTML start tag attribute value
+ pub value: String,
+}
+
+/// An iterator for a comment's attributes
+pub struct CommentAttributesIterator {
+ x: CXComment,
+ length: c_uint,
+ index: c_uint,
+}
+
+impl Iterator for CommentAttributesIterator {
+ type Item = CommentAttribute;
+ fn next(&mut self) -> Option<CommentAttribute> {
+ if self.index < self.length {
+ let idx = self.index;
+ self.index += 1;
+ Some(CommentAttribute {
+ name: unsafe {
+ cxstring_into_string(clang_HTMLStartTag_getAttrName(
+ self.x, idx,
+ ))
+ },
+ value: unsafe {
+ cxstring_into_string(clang_HTMLStartTag_getAttrValue(
+ self.x, idx,
+ ))
+ },
+ })
+ } else {
+ None
+ }
+ }
+}
+
+/// A source file.
+pub struct File {
+ x: CXFile,
+}
+
+impl File {
+ /// Get the name of this source file.
+ pub fn name(&self) -> Option<String> {
+ if self.x.is_null() {
+ return None;
+ }
+ Some(unsafe { cxstring_into_string(clang_getFileName(self.x)) })
+ }
+}
+
+fn cxstring_to_string_leaky(s: CXString) -> String {
+ if s.data.is_null() {
+ return "".to_owned();
+ }
+ let c_str = unsafe { CStr::from_ptr(clang_getCString(s) as *const _) };
+ c_str.to_string_lossy().into_owned()
+}
+
+fn cxstring_into_string(s: CXString) -> String {
+ let ret = cxstring_to_string_leaky(s);
+ unsafe { clang_disposeString(s) };
+ ret
+}
+
+/// An `Index` is an environment for a set of translation units that will
+/// typically end up linked together in one final binary.
+pub struct Index {
+ x: CXIndex,
+}
+
+impl Index {
+ /// Construct a new `Index`.
+ ///
+ /// The `pch` parameter controls whether declarations in pre-compiled
+ /// headers are included when enumerating a translation unit's "locals".
+ ///
+ /// The `diag` parameter controls whether debugging diagnostics are enabled.
+ pub fn new(pch: bool, diag: bool) -> Index {
+ unsafe {
+ Index {
+ x: clang_createIndex(pch as c_int, diag as c_int),
+ }
+ }
+ }
+}
+
+impl fmt::Debug for Index {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(fmt, "Index {{ }}")
+ }
+}
+
+impl Drop for Index {
+ fn drop(&mut self) {
+ unsafe {
+ clang_disposeIndex(self.x);
+ }
+ }
+}
+
+/// A translation unit (or "compilation unit").
+pub struct TranslationUnit {
+ x: CXTranslationUnit,
+}
+
+impl fmt::Debug for TranslationUnit {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(fmt, "TranslationUnit {{ }}")
+ }
+}
+
+impl TranslationUnit {
+ /// Parse a source file into a translation unit.
+ pub fn parse(
+ ix: &Index,
+ file: &str,
+ cmd_args: &[String],
+ unsaved: &[UnsavedFile],
+ opts: CXTranslationUnit_Flags,
+ ) -> Option<TranslationUnit> {
+ let fname = CString::new(file).unwrap();
+ let _c_args: Vec<CString> = cmd_args
+ .iter()
+ .map(|s| CString::new(s.clone()).unwrap())
+ .collect();
+ let c_args: Vec<*const c_char> =
+ _c_args.iter().map(|s| s.as_ptr()).collect();
+ let mut c_unsaved: Vec<CXUnsavedFile> =
+ unsaved.iter().map(|f| f.x).collect();
+ let tu = unsafe {
+ clang_parseTranslationUnit(
+ ix.x,
+ fname.as_ptr(),
+ c_args.as_ptr(),
+ c_args.len() as c_int,
+ c_unsaved.as_mut_ptr(),
+ c_unsaved.len() as c_uint,
+ opts,
+ )
+ };
+ if tu.is_null() {
+ None
+ } else {
+ Some(TranslationUnit { x: tu })
+ }
+ }
+
+ /// Get the Clang diagnostic information associated with this translation
+ /// unit.
+ pub fn diags(&self) -> Vec<Diagnostic> {
+ unsafe {
+ let num = clang_getNumDiagnostics(self.x) as usize;
+ let mut diags = vec![];
+ for i in 0..num {
+ diags.push(Diagnostic {
+ x: clang_getDiagnostic(self.x, i as c_uint),
+ });
+ }
+ diags
+ }
+ }
+
+ /// Get a cursor pointing to the root of this translation unit's AST.
+ pub fn cursor(&self) -> Cursor {
+ unsafe {
+ Cursor {
+ x: clang_getTranslationUnitCursor(self.x),
+ }
+ }
+ }
+
+ /// Is this the null translation unit?
+ pub fn is_null(&self) -> bool {
+ self.x.is_null()
+ }
+}
+
+impl Drop for TranslationUnit {
+ fn drop(&mut self) {
+ unsafe {
+ clang_disposeTranslationUnit(self.x);
+ }
+ }
+}
+
+/// A diagnostic message generated while parsing a translation unit.
+pub struct Diagnostic {
+ x: CXDiagnostic,
+}
+
+impl Diagnostic {
+ /// Format this diagnostic message as a string, using the given option bit
+ /// flags.
+ pub fn format(&self) -> String {
+ unsafe {
+ let opts = clang_defaultDiagnosticDisplayOptions();
+ cxstring_into_string(clang_formatDiagnostic(self.x, opts))
+ }
+ }
+
+ /// What is the severity of this diagnostic message?
+ pub fn severity(&self) -> CXDiagnosticSeverity {
+ unsafe { clang_getDiagnosticSeverity(self.x) }
+ }
+}
+
+impl Drop for Diagnostic {
+ /// Destroy this diagnostic message.
+ fn drop(&mut self) {
+ unsafe {
+ clang_disposeDiagnostic(self.x);
+ }
+ }
+}
+
+/// A file which has not been saved to disk.
+pub struct UnsavedFile {
+ x: CXUnsavedFile,
+ /// The name of the unsaved file. Kept here to avoid leaving dangling pointers in
+ /// `CXUnsavedFile`.
+ pub name: CString,
+ contents: CString,
+}
+
+impl UnsavedFile {
+ /// Construct a new unsaved file with the given `name` and `contents`.
+ pub fn new(name: String, contents: String) -> UnsavedFile {
+ let name = CString::new(name).unwrap();
+ let contents = CString::new(contents).unwrap();
+ let x = CXUnsavedFile {
+ Filename: name.as_ptr(),
+ Contents: contents.as_ptr(),
+ Length: contents.as_bytes().len() as c_ulong,
+ };
+ UnsavedFile { x, name, contents }
+ }
+}
+
+impl fmt::Debug for UnsavedFile {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ write!(
+ fmt,
+ "UnsavedFile(name: {:?}, contents: {:?})",
+ self.name, self.contents
+ )
+ }
+}
+
+/// Convert a cursor kind into a static string.
+pub fn kind_to_str(x: CXCursorKind) -> String {
+ unsafe { cxstring_into_string(clang_getCursorKindSpelling(x)) }
+}
+
+/// Convert a type kind to a static string.
+pub fn type_to_str(x: CXTypeKind) -> String {
+ unsafe { cxstring_into_string(clang_getTypeKindSpelling(x)) }
+}
+
+/// Dump the Clang AST to stdout for debugging purposes.
+pub fn ast_dump(c: &Cursor, depth: isize) -> CXChildVisitResult {
+ fn print_indent<S: AsRef<str>>(depth: isize, s: S) {
+ for _ in 0..depth {
+ print!(" ");
+ }
+ println!("{}", s.as_ref());
+ }
+
+ fn print_cursor<S: AsRef<str>>(depth: isize, prefix: S, c: &Cursor) {
+ let prefix = prefix.as_ref();
+ print_indent(
+ depth,
+ format!(" {}kind = {}", prefix, kind_to_str(c.kind())),
+ );
+ print_indent(
+ depth,
+ format!(" {}spelling = \"{}\"", prefix, c.spelling()),
+ );
+ print_indent(depth, format!(" {}location = {}", prefix, c.location()));
+ print_indent(
+ depth,
+ format!(" {}is-definition? {}", prefix, c.is_definition()),
+ );
+ print_indent(
+ depth,
+ format!(" {}is-declaration? {}", prefix, c.is_declaration()),
+ );
+ print_indent(
+ depth,
+ format!(
+ " {}is-inlined-function? {}",
+ prefix,
+ c.is_inlined_function()
+ ),
+ );
+
+ let templ_kind = c.template_kind();
+ if templ_kind != CXCursor_NoDeclFound {
+ print_indent(
+ depth,
+ format!(
+ " {}template-kind = {}",
+ prefix,
+ kind_to_str(templ_kind)
+ ),
+ );
+ }
+ if let Some(usr) = c.usr() {
+ print_indent(depth, format!(" {}usr = \"{}\"", prefix, usr));
+ }
+ if let Ok(num) = c.num_args() {
+ print_indent(depth, format!(" {}number-of-args = {}", prefix, num));
+ }
+ if let Some(num) = c.num_template_args() {
+ print_indent(
+ depth,
+ format!(" {}number-of-template-args = {}", prefix, num),
+ );
+ }
+
+ if c.is_bit_field() {
+ let width = match c.bit_width() {
+ Some(w) => w.to_string(),
+ None => "<unevaluable>".to_string(),
+ };
+ print_indent(depth, format!(" {}bit-width = {}", prefix, width));
+ }
+
+ if let Some(ty) = c.enum_type() {
+ print_indent(
+ depth,
+ format!(" {}enum-type = {}", prefix, type_to_str(ty.kind())),
+ );
+ }
+ if let Some(val) = c.enum_val_signed() {
+ print_indent(depth, format!(" {}enum-val = {}", prefix, val));
+ }
+ if let Some(ty) = c.typedef_type() {
+ print_indent(
+ depth,
+ format!(" {}typedef-type = {}", prefix, type_to_str(ty.kind())),
+ );
+ }
+ if let Some(ty) = c.ret_type() {
+ print_indent(
+ depth,
+ format!(" {}ret-type = {}", prefix, type_to_str(ty.kind())),
+ );
+ }
+
+ if let Some(refd) = c.referenced() {
+ if refd != *c {
+ println!();
+ print_cursor(
+ depth,
+ String::from(prefix) + "referenced.",
+ &refd,
+ );
+ }
+ }
+
+ let canonical = c.canonical();
+ if canonical != *c {
+ println!();
+ print_cursor(
+ depth,
+ String::from(prefix) + "canonical.",
+ &canonical,
+ );
+ }
+
+ if let Some(specialized) = c.specialized() {
+ if specialized != *c {
+ println!();
+ print_cursor(
+ depth,
+ String::from(prefix) + "specialized.",
+ &specialized,
+ );
+ }
+ }
+
+ if let Some(parent) = c.fallible_semantic_parent() {
+ println!();
+ print_cursor(
+ depth,
+ String::from(prefix) + "semantic-parent.",
+ &parent,
+ );
+ }
+ }
+
+ fn print_type<S: AsRef<str>>(depth: isize, prefix: S, ty: &Type) {
+ let prefix = prefix.as_ref();
+
+ let kind = ty.kind();
+ print_indent(depth, format!(" {}kind = {}", prefix, type_to_str(kind)));
+ if kind == CXType_Invalid {
+ return;
+ }
+
+ print_indent(depth, format!(" {}cconv = {}", prefix, ty.call_conv()));
+
+ print_indent(
+ depth,
+ format!(" {}spelling = \"{}\"", prefix, ty.spelling()),
+ );
+ let num_template_args =
+ unsafe { clang_Type_getNumTemplateArguments(ty.x) };
+ if num_template_args >= 0 {
+ print_indent(
+ depth,
+ format!(
+ " {}number-of-template-args = {}",
+ prefix, num_template_args
+ ),
+ );
+ }
+ if let Some(num) = ty.num_elements() {
+ print_indent(
+ depth,
+ format!(" {}number-of-elements = {}", prefix, num),
+ );
+ }
+ print_indent(
+ depth,
+ format!(" {}is-variadic? {}", prefix, ty.is_variadic()),
+ );
+
+ let canonical = ty.canonical_type();
+ if canonical != *ty {
+ println!();
+ print_type(depth, String::from(prefix) + "canonical.", &canonical);
+ }
+
+ if let Some(pointee) = ty.pointee_type() {
+ if pointee != *ty {
+ println!();
+ print_type(depth, String::from(prefix) + "pointee.", &pointee);
+ }
+ }
+
+ if let Some(elem) = ty.elem_type() {
+ if elem != *ty {
+ println!();
+ print_type(depth, String::from(prefix) + "elements.", &elem);
+ }
+ }
+
+ if let Some(ret) = ty.ret_type() {
+ if ret != *ty {
+ println!();
+ print_type(depth, String::from(prefix) + "return.", &ret);
+ }
+ }
+
+ let named = ty.named();
+ if named != *ty && named.is_valid() {
+ println!();
+ print_type(depth, String::from(prefix) + "named.", &named);
+ }
+ }
+
+ print_indent(depth, "(");
+ print_cursor(depth, "", c);
+
+ println!();
+ let ty = c.cur_type();
+ print_type(depth, "type.", &ty);
+
+ let declaration = ty.declaration();
+ if declaration != *c && declaration.kind() != CXCursor_NoDeclFound {
+ println!();
+ print_cursor(depth, "type.declaration.", &declaration);
+ }
+
+ // Recurse.
+ let mut found_children = false;
+ c.visit(|s| {
+ if !found_children {
+ println!();
+ found_children = true;
+ }
+ ast_dump(&s, depth + 1)
+ });
+
+ print_indent(depth, ")");
+
+ CXChildVisit_Continue
+}
+
+/// Try to extract the clang version to a string
+pub fn extract_clang_version() -> String {
+ unsafe { cxstring_into_string(clang_getClangVersion()) }
+}
+
+/// A wrapper for the result of evaluating an expression.
+#[derive(Debug)]
+pub struct EvalResult {
+ x: CXEvalResult,
+}
+
+impl EvalResult {
+ /// Evaluate `cursor` and return the result.
+ pub fn new(cursor: Cursor) -> Option<Self> {
+ // Work around https://bugs.llvm.org/show_bug.cgi?id=42532, see:
+ // * https://github.com/rust-lang/rust-bindgen/issues/283
+ // * https://github.com/rust-lang/rust-bindgen/issues/1590
+ {
+ let mut found_cant_eval = false;
+ cursor.visit(|c| {
+ if c.kind() == CXCursor_TypeRef &&
+ c.cur_type().canonical_type().kind() == CXType_Unexposed
+ {
+ found_cant_eval = true;
+ return CXChildVisit_Break;
+ }
+
+ CXChildVisit_Recurse
+ });
+
+ if found_cant_eval {
+ return None;
+ }
+ }
+ Some(EvalResult {
+ x: unsafe { clang_Cursor_Evaluate(cursor.x) },
+ })
+ }
+
+ fn kind(&self) -> CXEvalResultKind {
+ unsafe { clang_EvalResult_getKind(self.x) }
+ }
+
+ /// Try to get back the result as a double.
+ pub fn as_double(&self) -> Option<f64> {
+ match self.kind() {
+ CXEval_Float => {
+ Some(unsafe { clang_EvalResult_getAsDouble(self.x) })
+ }
+ _ => None,
+ }
+ }
+
+ /// Try to get back the result as an integer.
+ pub fn as_int(&self) -> Option<i64> {
+ if self.kind() != CXEval_Int {
+ return None;
+ }
+
+ if unsafe { clang_EvalResult_isUnsignedInt(self.x) } != 0 {
+ let value = unsafe { clang_EvalResult_getAsUnsigned(self.x) };
+ if value > i64::max_value() as c_ulonglong {
+ return None;
+ }
+
+ return Some(value as i64);
+ }
+
+ let value = unsafe { clang_EvalResult_getAsLongLong(self.x) };
+ if value > i64::max_value() as c_longlong {
+ return None;
+ }
+ if value < i64::min_value() as c_longlong {
+ return None;
+ }
+ #[allow(clippy::unnecessary_cast)]
+ Some(value as i64)
+ }
+
+ /// Evaluates the expression as a literal string, that may or may not be
+ /// valid utf-8.
+ pub fn as_literal_string(&self) -> Option<Vec<u8>> {
+ match self.kind() {
+ CXEval_StrLiteral => {
+ let ret = unsafe {
+ CStr::from_ptr(clang_EvalResult_getAsStr(self.x))
+ };
+ Some(ret.to_bytes().to_vec())
+ }
+ _ => None,
+ }
+ }
+}
+
+impl Drop for EvalResult {
+ fn drop(&mut self) {
+ unsafe { clang_EvalResult_dispose(self.x) };
+ }
+}
+
+/// Target information obtained from libclang.
+#[derive(Debug)]
+pub struct TargetInfo {
+ /// The target triple.
+ pub triple: String,
+ /// The width of the pointer _in bits_.
+ pub pointer_width: usize,
+}
+
+impl TargetInfo {
+ /// Tries to obtain target information from libclang.
+ pub fn new(tu: &TranslationUnit) -> Self {
+ let triple;
+ let pointer_width;
+ unsafe {
+ let ti = clang_getTranslationUnitTargetInfo(tu.x);
+ triple = cxstring_into_string(clang_TargetInfo_getTriple(ti));
+ pointer_width = clang_TargetInfo_getPointerWidth(ti);
+ clang_TargetInfo_dispose(ti);
+ }
+ assert!(pointer_width > 0);
+ assert_eq!(pointer_width % 8, 0);
+ TargetInfo {
+ triple,
+ pointer_width: pointer_width as usize,
+ }
+ }
+}