diff options
Diffstat (limited to 'third_party/rust/bumpalo/src/collections/raw_vec.rs')
-rw-r--r-- | third_party/rust/bumpalo/src/collections/raw_vec.rs | 730 |
1 files changed, 730 insertions, 0 deletions
diff --git a/third_party/rust/bumpalo/src/collections/raw_vec.rs b/third_party/rust/bumpalo/src/collections/raw_vec.rs new file mode 100644 index 0000000000..ac3bd0758c --- /dev/null +++ b/third_party/rust/bumpalo/src/collections/raw_vec.rs @@ -0,0 +1,730 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![allow(unstable_name_collisions)] +#![allow(dead_code)] + +use crate::Bump; + +use core::cmp; +use core::mem; +use core::ptr::{self, NonNull}; + +use crate::alloc::{handle_alloc_error, Alloc, Layout, UnstableLayoutMethods}; +use crate::collections::CollectionAllocErr; +use crate::collections::CollectionAllocErr::*; +// use boxed::Box; + +/// A low-level utility for more ergonomically allocating, reallocating, and deallocating +/// a buffer of memory on the heap without having to worry about all the corner cases +/// involved. This type is excellent for building your own data structures like Vec and VecDeque. +/// In particular: +/// +/// * Produces Unique::empty() on zero-sized types +/// * Produces Unique::empty() on zero-length allocations +/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics) +/// * Guards against 32-bit systems allocating more than isize::MAX bytes +/// * Guards against overflowing your length +/// * Aborts on OOM +/// * Avoids freeing Unique::empty() +/// * Contains a ptr::Unique and thus endows the user with all related benefits +/// +/// This type does not in anyway inspect the memory that it manages. When dropped it *will* +/// free its memory, but it *won't* try to Drop its contents. It is up to the user of RawVec +/// to handle the actual things *stored* inside of a RawVec. +/// +/// Note that a RawVec always forces its capacity to be usize::MAX for zero-sized types. +/// This enables you to use capacity growing logic catch the overflows in your length +/// that might occur with zero-sized types. +/// +/// However this means that you need to be careful when round-tripping this type +/// with a `Box<[T]>`: `cap()` won't yield the len. However `with_capacity`, +/// `shrink_to_fit`, and `from_box` will actually set RawVec's private capacity +/// field. This allows zero-sized types to not be special-cased by consumers of +/// this type. +#[allow(missing_debug_implementations)] +pub struct RawVec<'a, T> { + ptr: NonNull<T>, + cap: usize, + a: &'a Bump, +} + +impl<'a, T> RawVec<'a, T> { + /// Like `new` but parameterized over the choice of allocator for + /// the returned RawVec. + pub fn new_in(a: &'a Bump) -> Self { + // `cap: 0` means "unallocated". zero-sized types are ignored. + RawVec { + ptr: NonNull::dangling(), + cap: 0, + a, + } + } + + /// Like `with_capacity` but parameterized over the choice of + /// allocator for the returned RawVec. + #[inline] + pub fn with_capacity_in(cap: usize, a: &'a Bump) -> Self { + RawVec::allocate_in(cap, false, a) + } + + /// Like `with_capacity_zeroed` but parameterized over the choice + /// of allocator for the returned RawVec. + #[inline] + pub fn with_capacity_zeroed_in(cap: usize, a: &'a Bump) -> Self { + RawVec::allocate_in(cap, true, a) + } + + fn allocate_in(cap: usize, zeroed: bool, mut a: &'a Bump) -> Self { + unsafe { + let elem_size = mem::size_of::<T>(); + + let alloc_size = cap + .checked_mul(elem_size) + .unwrap_or_else(|| capacity_overflow()); + alloc_guard(alloc_size).unwrap_or_else(|_| capacity_overflow()); + + // handles ZSTs and `cap = 0` alike + let ptr = if alloc_size == 0 { + NonNull::<T>::dangling() + } else { + let align = mem::align_of::<T>(); + let layout = Layout::from_size_align(alloc_size, align).unwrap(); + let result = if zeroed { + a.alloc_zeroed(layout) + } else { + Alloc::alloc(&mut a, layout) + }; + match result { + Ok(ptr) => ptr.cast(), + Err(_) => handle_alloc_error(layout), + } + }; + + RawVec { ptr, cap, a } + } + } +} + +impl<'a, T> RawVec<'a, T> { + /// Reconstitutes a RawVec from a pointer, capacity, and allocator. + /// + /// # Undefined Behavior + /// + /// The ptr must be allocated (via the given allocator `a`), and with the given capacity. The + /// capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems). + /// If the ptr and capacity come from a RawVec created via `a`, then this is guaranteed. + pub unsafe fn from_raw_parts_in(ptr: *mut T, cap: usize, a: &'a Bump) -> Self { + RawVec { + ptr: NonNull::new_unchecked(ptr), + cap, + a, + } + } +} + +impl<'a, T> RawVec<'a, T> { + /// Gets a raw pointer to the start of the allocation. Note that this is + /// Unique::empty() if `cap = 0` or T is zero-sized. In the former case, you must + /// be careful. + pub fn ptr(&self) -> *mut T { + self.ptr.as_ptr() + } + + /// Gets the capacity of the allocation. + /// + /// This will always be `usize::MAX` if `T` is zero-sized. + #[inline(always)] + pub fn cap(&self) -> usize { + if mem::size_of::<T>() == 0 { + !0 + } else { + self.cap + } + } + + /// Returns a shared reference to the allocator backing this RawVec. + pub fn bump(&self) -> &'a Bump { + self.a + } + + fn current_layout(&self) -> Option<Layout> { + if self.cap == 0 { + None + } else { + // We have an allocated chunk of memory, so we can bypass runtime + // checks to get our current layout. + unsafe { + let align = mem::align_of::<T>(); + let size = mem::size_of::<T>() * self.cap; + Some(Layout::from_size_align_unchecked(size, align)) + } + } + } + + /// Doubles the size of the type's backing allocation. This is common enough + /// to want to do that it's easiest to just have a dedicated method. Slightly + /// more efficient logic can be provided for this than the general case. + /// + /// This function is ideal for when pushing elements one-at-a-time because + /// you don't need to incur the costs of the more general computations + /// reserve needs to do to guard against overflow. You do however need to + /// manually check if your `len == cap`. + /// + /// # Panics + /// + /// * Panics if T is zero-sized on the assumption that you managed to exhaust + /// all `usize::MAX` slots in your imaginary buffer. + /// * Panics on 32-bit platforms if the requested capacity exceeds + /// `isize::MAX` bytes. + /// + /// # Aborts + /// + /// Aborts on OOM + /// + /// # Examples + /// + /// ```ignore + /// # #![feature(alloc, raw_vec_internals)] + /// # extern crate alloc; + /// # use std::ptr; + /// # use alloc::raw_vec::RawVec; + /// struct MyVec<T> { + /// buf: RawVec<T>, + /// len: usize, + /// } + /// + /// impl<T> MyVec<T> { + /// pub fn push(&mut self, elem: T) { + /// if self.len == self.buf.cap() { self.buf.double(); } + /// // double would have aborted or panicked if the len exceeded + /// // `isize::MAX` so this is safe to do unchecked now. + /// unsafe { + /// ptr::write(self.buf.ptr().add(self.len), elem); + /// } + /// self.len += 1; + /// } + /// } + /// # fn main() { + /// # let mut vec = MyVec { buf: RawVec::new(), len: 0 }; + /// # vec.push(1); + /// # } + /// ``` + #[inline(never)] + #[cold] + pub fn double(&mut self) { + unsafe { + let elem_size = mem::size_of::<T>(); + + // since we set the capacity to usize::MAX when elem_size is + // 0, getting to here necessarily means the RawVec is overfull. + assert!(elem_size != 0, "capacity overflow"); + + let (new_cap, uniq) = match self.current_layout() { + Some(cur) => { + // Since we guarantee that we never allocate more than + // isize::MAX bytes, `elem_size * self.cap <= isize::MAX` as + // a precondition, so this can't overflow. Additionally the + // alignment will never be too large as to "not be + // satisfiable", so `Layout::from_size_align` will always + // return `Some`. + // + // tl;dr; we bypass runtime checks due to dynamic assertions + // in this module, allowing us to use + // `from_size_align_unchecked`. + let new_cap = 2 * self.cap; + let new_size = new_cap * elem_size; + alloc_guard(new_size).unwrap_or_else(|_| capacity_overflow()); + let ptr_res = self.a.realloc(self.ptr.cast(), cur, new_size); + match ptr_res { + Ok(ptr) => (new_cap, ptr.cast()), + Err(_) => handle_alloc_error(Layout::from_size_align_unchecked( + new_size, + cur.align(), + )), + } + } + None => { + // skip to 4 because tiny Vec's are dumb; but not if that + // would cause overflow + let new_cap = if elem_size > (!0) / 8 { 1 } else { 4 }; + match self.a.alloc_array::<T>(new_cap) { + Ok(ptr) => (new_cap, ptr), + Err(_) => handle_alloc_error(Layout::array::<T>(new_cap).unwrap()), + } + } + }; + self.ptr = uniq; + self.cap = new_cap; + } + } + + /// Attempts to double the size of the type's backing allocation in place. This is common + /// enough to want to do that it's easiest to just have a dedicated method. Slightly + /// more efficient logic can be provided for this than the general case. + /// + /// Returns true if the reallocation attempt has succeeded, or false otherwise. + /// + /// # Panics + /// + /// * Panics if T is zero-sized on the assumption that you managed to exhaust + /// all `usize::MAX` slots in your imaginary buffer. + /// * Panics on 32-bit platforms if the requested capacity exceeds + /// `isize::MAX` bytes. + #[inline(never)] + #[cold] + pub fn double_in_place(&mut self) -> bool { + unsafe { + let elem_size = mem::size_of::<T>(); + let old_layout = match self.current_layout() { + Some(layout) => layout, + None => return false, // nothing to double + }; + + // since we set the capacity to usize::MAX when elem_size is + // 0, getting to here necessarily means the RawVec is overfull. + assert!(elem_size != 0, "capacity overflow"); + + // Since we guarantee that we never allocate more than isize::MAX + // bytes, `elem_size * self.cap <= isize::MAX` as a precondition, so + // this can't overflow. + // + // Similarly like with `double` above we can go straight to + // `Layout::from_size_align_unchecked` as we know this won't + // overflow and the alignment is sufficiently small. + let new_cap = 2 * self.cap; + let new_size = new_cap * elem_size; + alloc_guard(new_size).unwrap_or_else(|_| capacity_overflow()); + match self.a.grow_in_place(self.ptr.cast(), old_layout, new_size) { + Ok(_) => { + // We can't directly divide `size`. + self.cap = new_cap; + true + } + Err(_) => false, + } + } + } + + /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. + pub fn try_reserve_exact( + &mut self, + used_cap: usize, + needed_extra_cap: usize, + ) -> Result<(), CollectionAllocErr> { + self.reserve_internal(used_cap, needed_extra_cap, Fallible, Exact) + } + + /// Ensures that the buffer contains at least enough space to hold + /// `used_cap + needed_extra_cap` elements. If it doesn't already, + /// will reallocate the minimum possible amount of memory necessary. + /// Generally this will be exactly the amount of memory necessary, + /// but in principle the allocator is free to give back more than + /// we asked for. + /// + /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate + /// the requested space. This is not really unsafe, but the unsafe + /// code *you* write that relies on the behavior of this function may break. + /// + /// # Panics + /// + /// * Panics if the requested capacity exceeds `usize::MAX` bytes. + /// * Panics on 32-bit platforms if the requested capacity exceeds + /// `isize::MAX` bytes. + /// + /// # Aborts + /// + /// Aborts on OOM + pub fn reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize) { + match self.reserve_internal(used_cap, needed_extra_cap, Infallible, Exact) { + Err(CapacityOverflow) => capacity_overflow(), + Err(AllocErr) => unreachable!(), + Ok(()) => { /* yay */ } + } + } + + /// Calculates the buffer's new size given that it'll hold `used_cap + + /// needed_extra_cap` elements. This logic is used in amortized reserve methods. + /// Returns `(new_capacity, new_alloc_size)`. + fn amortized_new_size( + &self, + used_cap: usize, + needed_extra_cap: usize, + ) -> Result<usize, CollectionAllocErr> { + // Nothing we can really do about these checks :( + let required_cap = used_cap + .checked_add(needed_extra_cap) + .ok_or(CapacityOverflow)?; + // Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`. + let double_cap = self.cap * 2; + // `double_cap` guarantees exponential growth. + Ok(cmp::max(double_cap, required_cap)) + } + + /// The same as `reserve`, but returns on errors instead of panicking or aborting. + pub fn try_reserve( + &mut self, + used_cap: usize, + needed_extra_cap: usize, + ) -> Result<(), CollectionAllocErr> { + self.reserve_internal(used_cap, needed_extra_cap, Fallible, Amortized) + } + + /// Ensures that the buffer contains at least enough space to hold + /// `used_cap + needed_extra_cap` elements. If it doesn't already have + /// enough capacity, will reallocate enough space plus comfortable slack + /// space to get amortized `O(1)` behavior. Will limit this behavior + /// if it would needlessly cause itself to panic. + /// + /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate + /// the requested space. This is not really unsafe, but the unsafe + /// code *you* write that relies on the behavior of this function may break. + /// + /// This is ideal for implementing a bulk-push operation like `extend`. + /// + /// # Panics + /// + /// * Panics if the requested capacity exceeds `usize::MAX` bytes. + /// * Panics on 32-bit platforms if the requested capacity exceeds + /// `isize::MAX` bytes. + /// + /// # Aborts + /// + /// Aborts on OOM + /// + /// # Examples + /// + /// ```ignore + /// # #![feature(alloc, raw_vec_internals)] + /// # extern crate alloc; + /// # use std::ptr; + /// # use alloc::raw_vec::RawVec; + /// struct MyVec<T> { + /// buf: RawVec<T>, + /// len: usize, + /// } + /// + /// impl<T: Clone> MyVec<T> { + /// pub fn push_all(&mut self, elems: &[T]) { + /// self.buf.reserve(self.len, elems.len()); + /// // reserve would have aborted or panicked if the len exceeded + /// // `isize::MAX` so this is safe to do unchecked now. + /// for x in elems { + /// unsafe { + /// ptr::write(self.buf.ptr().add(self.len), x.clone()); + /// } + /// self.len += 1; + /// } + /// } + /// } + /// # fn main() { + /// # let mut vector = MyVec { buf: RawVec::new(), len: 0 }; + /// # vector.push_all(&[1, 3, 5, 7, 9]); + /// # } + /// ``` + pub fn reserve(&mut self, used_cap: usize, needed_extra_cap: usize) { + match self.reserve_internal(used_cap, needed_extra_cap, Infallible, Amortized) { + Err(CapacityOverflow) => capacity_overflow(), + Err(AllocErr) => unreachable!(), + Ok(()) => { /* yay */ } + } + } + /// Attempts to ensure that the buffer contains at least enough space to hold + /// `used_cap + needed_extra_cap` elements. If it doesn't already have + /// enough capacity, will reallocate in place enough space plus comfortable slack + /// space to get amortized `O(1)` behavior. Will limit this behaviour + /// if it would needlessly cause itself to panic. + /// + /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate + /// the requested space. This is not really unsafe, but the unsafe + /// code *you* write that relies on the behavior of this function may break. + /// + /// Returns true if the reallocation attempt has succeeded, or false otherwise. + /// + /// # Panics + /// + /// * Panics if the requested capacity exceeds `usize::MAX` bytes. + /// * Panics on 32-bit platforms if the requested capacity exceeds + /// `isize::MAX` bytes. + pub fn reserve_in_place(&mut self, used_cap: usize, needed_extra_cap: usize) -> bool { + unsafe { + // NOTE: we don't early branch on ZSTs here because we want this + // to actually catch "asking for more than usize::MAX" in that case. + // If we make it past the first branch then we are guaranteed to + // panic. + + // Don't actually need any more capacity. If the current `cap` is 0, we can't + // reallocate in place. + // Wrapping in case they give a bad `used_cap` + let old_layout = match self.current_layout() { + Some(layout) => layout, + None => return false, + }; + if self.cap().wrapping_sub(used_cap) >= needed_extra_cap { + return false; + } + + let new_cap = self + .amortized_new_size(used_cap, needed_extra_cap) + .unwrap_or_else(|_| capacity_overflow()); + + // Here, `cap < used_cap + needed_extra_cap <= new_cap` + // (regardless of whether `self.cap - used_cap` wrapped). + // Therefore we can safely call grow_in_place. + + let new_layout = Layout::new::<T>().repeat(new_cap).unwrap().0; + // FIXME: may crash and burn on over-reserve + alloc_guard(new_layout.size()).unwrap_or_else(|_| capacity_overflow()); + match self + .a + .grow_in_place(self.ptr.cast(), old_layout, new_layout.size()) + { + Ok(_) => { + self.cap = new_cap; + true + } + Err(_) => false, + } + } + } + + /// Shrinks the allocation down to the specified amount. If the given amount + /// is 0, actually completely deallocates. + /// + /// # Panics + /// + /// Panics if the given amount is *larger* than the current capacity. + /// + /// # Aborts + /// + /// Aborts on OOM. + pub fn shrink_to_fit(&mut self, amount: usize) { + let elem_size = mem::size_of::<T>(); + + // Set the `cap` because they might be about to promote to a `Box<[T]>` + if elem_size == 0 { + self.cap = amount; + return; + } + + // This check is my waterloo; it's the only thing Vec wouldn't have to do. + assert!(self.cap >= amount, "Tried to shrink to a larger capacity"); + + if amount == 0 { + // We want to create a new zero-length vector within the + // same allocator. We use ptr::write to avoid an + // erroneous attempt to drop the contents, and we use + // ptr::read to sidestep condition against destructuring + // types that implement Drop. + + unsafe { + let a = self.a; + self.dealloc_buffer(); + ptr::write(self, RawVec::new_in(a)); + } + } else if self.cap != amount { + unsafe { + // We know here that our `amount` is greater than zero. This + // implies, via the assert above, that capacity is also greater + // than zero, which means that we've got a current layout that + // "fits" + // + // We also know that `self.cap` is greater than `amount`, and + // consequently we don't need runtime checks for creating either + // layout + let old_size = elem_size * self.cap; + let new_size = elem_size * amount; + let align = mem::align_of::<T>(); + let old_layout = Layout::from_size_align_unchecked(old_size, align); + match self.a.realloc(self.ptr.cast(), old_layout, new_size) { + Ok(p) => self.ptr = p.cast(), + Err(_) => { + handle_alloc_error(Layout::from_size_align_unchecked(new_size, align)) + } + } + } + self.cap = amount; + } + } +} + +#[cfg(feature = "boxed")] +impl<'a, T> RawVec<'a, T> { + /// Converts the entire buffer into `Box<[T]>`. + /// + /// Note that this will correctly reconstitute any `cap` changes + /// that may have been performed. (See description of type for details.) + /// + /// # Undefined Behavior + /// + /// All elements of `RawVec<T>` must be initialized. Notice that + /// the rules around uninitialized boxed values are not finalized yet, + /// but until they are, it is advisable to avoid them. + pub unsafe fn into_box(self) -> crate::boxed::Box<'a, [T]> { + use crate::boxed::Box; + + // NOTE: not calling `cap()` here; actually using the real `cap` field! + let slice = core::slice::from_raw_parts_mut(self.ptr(), self.cap); + let output: Box<'a, [T]> = Box::from_raw(slice); + mem::forget(self); + output + } +} + +enum Fallibility { + Fallible, + Infallible, +} + +use self::Fallibility::*; + +enum ReserveStrategy { + Exact, + Amortized, +} + +use self::ReserveStrategy::*; + +impl<'a, T> RawVec<'a, T> { + fn reserve_internal( + &mut self, + used_cap: usize, + needed_extra_cap: usize, + fallibility: Fallibility, + strategy: ReserveStrategy, + ) -> Result<(), CollectionAllocErr> { + unsafe { + use crate::AllocErr; + + // NOTE: we don't early branch on ZSTs here because we want this + // to actually catch "asking for more than usize::MAX" in that case. + // If we make it past the first branch then we are guaranteed to + // panic. + + // Don't actually need any more capacity. + // Wrapping in case they gave a bad `used_cap`. + if self.cap().wrapping_sub(used_cap) >= needed_extra_cap { + return Ok(()); + } + + // Nothing we can really do about these checks :( + let new_cap = match strategy { + Exact => used_cap + .checked_add(needed_extra_cap) + .ok_or(CapacityOverflow)?, + Amortized => self.amortized_new_size(used_cap, needed_extra_cap)?, + }; + let new_layout = Layout::array::<T>(new_cap).map_err(|_| CapacityOverflow)?; + + alloc_guard(new_layout.size())?; + + let res = match self.current_layout() { + Some(layout) => { + debug_assert!(new_layout.align() == layout.align()); + self.a.realloc(self.ptr.cast(), layout, new_layout.size()) + } + None => Alloc::alloc(&mut self.a, new_layout), + }; + + if let (Err(AllocErr), Infallible) = (&res, fallibility) { + handle_alloc_error(new_layout); + } + + self.ptr = res?.cast(); + self.cap = new_cap; + + Ok(()) + } + } +} + +impl<'a, T> RawVec<'a, T> { + /// Frees the memory owned by the RawVec *without* trying to Drop its contents. + pub unsafe fn dealloc_buffer(&mut self) { + let elem_size = mem::size_of::<T>(); + if elem_size != 0 { + if let Some(layout) = self.current_layout() { + self.a.dealloc(self.ptr.cast(), layout); + } + } + } +} + +impl<'a, T> Drop for RawVec<'a, T> { + /// Frees the memory owned by the RawVec *without* trying to Drop its contents. + fn drop(&mut self) { + unsafe { + self.dealloc_buffer(); + } + } +} + +// We need to guarantee the following: +// * We don't ever allocate `> isize::MAX` byte-size objects +// * We don't overflow `usize::MAX` and actually allocate too little +// +// On 64-bit we just need to check for overflow since trying to allocate +// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add +// an extra guard for this in case we're running on a platform which can use +// all 4GB in user-space. e.g. PAE or x32 + +#[inline] +fn alloc_guard(alloc_size: usize) -> Result<(), CollectionAllocErr> { + if mem::size_of::<usize>() < 8 && alloc_size > ::core::isize::MAX as usize { + Err(CapacityOverflow) + } else { + Ok(()) + } +} + +// One central function responsible for reporting capacity overflows. This'll +// ensure that the code generation related to these panics is minimal as there's +// only one location which panics rather than a bunch throughout the module. +fn capacity_overflow() -> ! { + panic!("capacity overflow") +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn reserve_does_not_overallocate() { + let bump = Bump::new(); + { + let mut v: RawVec<u32> = RawVec::new_in(&bump); + // First `reserve` allocates like `reserve_exact` + v.reserve(0, 9); + assert_eq!(9, v.cap()); + } + + { + let mut v: RawVec<u32> = RawVec::new_in(&bump); + v.reserve(0, 7); + assert_eq!(7, v.cap()); + // 97 if more than double of 7, so `reserve` should work + // like `reserve_exact`. + v.reserve(7, 90); + assert_eq!(97, v.cap()); + } + + { + let mut v: RawVec<u32> = RawVec::new_in(&bump); + v.reserve(0, 12); + assert_eq!(12, v.cap()); + v.reserve(12, 3); + // 3 is less than half of 12, so `reserve` must grow + // exponentially. At the time of writing this test grow + // factor is 2, so new capacity is 24, however, grow factor + // of 1.5 is OK too. Hence `>= 18` in assert. + assert!(v.cap() >= 12 + 12 / 2); + } + } +} |