diff options
Diffstat (limited to 'third_party/rust/nom/src/multi')
-rw-r--r-- | third_party/rust/nom/src/multi/mod.rs | 1049 | ||||
-rw-r--r-- | third_party/rust/nom/src/multi/tests.rs | 534 |
2 files changed, 1583 insertions, 0 deletions
diff --git a/third_party/rust/nom/src/multi/mod.rs b/third_party/rust/nom/src/multi/mod.rs new file mode 100644 index 0000000000..73129084e2 --- /dev/null +++ b/third_party/rust/nom/src/multi/mod.rs @@ -0,0 +1,1049 @@ +//! Combinators applying their child parser multiple times + +#[cfg(test)] +mod tests; + +use crate::error::ErrorKind; +use crate::error::ParseError; +use crate::internal::{Err, IResult, Needed, Parser}; +#[cfg(feature = "alloc")] +use crate::lib::std::vec::Vec; +use crate::traits::{InputLength, InputTake, ToUsize}; +use core::num::NonZeroUsize; + +/// Don't pre-allocate more than 64KiB when calling `Vec::with_capacity`. +/// +/// Pre-allocating memory is a nice optimization but count fields can't +/// always be trusted. We should clamp initial capacities to some reasonable +/// amount. This reduces the risk of a bogus count value triggering a panic +/// due to an OOM error. +/// +/// This does not affect correctness. Nom will always read the full number +/// of elements regardless of the capacity cap. +#[cfg(feature = "alloc")] +const MAX_INITIAL_CAPACITY_BYTES: usize = 65536; + +/// Repeats the embedded parser, gathering the results in a `Vec`. +/// +/// This stops on [`Err::Error`] and returns the results that were accumulated. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `f` The parser to apply. +/// +/// *Note*: if the parser passed in accepts empty inputs (like `alpha0` or `digit0`), `many0` will +/// return an error, to prevent going into an infinite loop +/// +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::multi::many0; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// many0(tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Ok(("123", vec!["abc"]))); +/// assert_eq!(parser("123123"), Ok(("123123", vec![]))); +/// assert_eq!(parser(""), Ok(("", vec![]))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn many0<I, O, E, F>(mut f: F) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + E: ParseError<I>, +{ + move |mut i: I| { + let mut acc = crate::lib::std::vec::Vec::with_capacity(4); + loop { + let len = i.input_len(); + match f.parse(i.clone()) { + Err(Err::Error(_)) => return Ok((i, acc)), + Err(e) => return Err(e), + Ok((i1, o)) => { + // infinite loop check: the parser must always consume + if i1.input_len() == len { + return Err(Err::Error(E::from_error_kind(i, ErrorKind::Many0))); + } + + i = i1; + acc.push(o); + } + } + } + } +} + +/// Runs the embedded parser, gathering the results in a `Vec`. +/// +/// This stops on [`Err::Error`] if there is at least one result, and returns the results that were accumulated. To instead chain an error up, +/// see [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `f` The parser to apply. +/// +/// *Note*: If the parser passed to `many1` accepts empty inputs +/// (like `alpha0` or `digit0`), `many1` will return an error, +/// to prevent going into an infinite loop. +/// +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::many1; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// many1(tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Ok(("123", vec!["abc"]))); +/// assert_eq!(parser("123123"), Err(Err::Error(Error::new("123123", ErrorKind::Tag)))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Tag)))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn many1<I, O, E, F>(mut f: F) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + E: ParseError<I>, +{ + move |mut i: I| match f.parse(i.clone()) { + Err(Err::Error(err)) => Err(Err::Error(E::append(i, ErrorKind::Many1, err))), + Err(e) => Err(e), + Ok((i1, o)) => { + let mut acc = crate::lib::std::vec::Vec::with_capacity(4); + acc.push(o); + i = i1; + + loop { + let len = i.input_len(); + match f.parse(i.clone()) { + Err(Err::Error(_)) => return Ok((i, acc)), + Err(e) => return Err(e), + Ok((i1, o)) => { + // infinite loop check: the parser must always consume + if i1.input_len() == len { + return Err(Err::Error(E::from_error_kind(i, ErrorKind::Many1))); + } + + i = i1; + acc.push(o); + } + } + } + } + } +} + +/// Applies the parser `f` until the parser `g` produces a result. +/// +/// Returns a tuple of the results of `f` in a `Vec` and the result of `g`. +/// +/// `f` keeps going so long as `g` produces [`Err::Error`]. To instead chain an error up, see [`cut`][crate::combinator::cut]. +/// +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::many_till; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, (Vec<&str>, &str)> { +/// many_till(tag("abc"), tag("end"))(s) +/// }; +/// +/// assert_eq!(parser("abcabcend"), Ok(("", (vec!["abc", "abc"], "end")))); +/// assert_eq!(parser("abc123end"), Err(Err::Error(Error::new("123end", ErrorKind::Tag)))); +/// assert_eq!(parser("123123end"), Err(Err::Error(Error::new("123123end", ErrorKind::Tag)))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Tag)))); +/// assert_eq!(parser("abcendefg"), Ok(("efg", (vec!["abc"], "end")))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn many_till<I, O, P, E, F, G>( + mut f: F, + mut g: G, +) -> impl FnMut(I) -> IResult<I, (Vec<O>, P), E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + G: Parser<I, P, E>, + E: ParseError<I>, +{ + move |mut i: I| { + let mut res = crate::lib::std::vec::Vec::new(); + loop { + let len = i.input_len(); + match g.parse(i.clone()) { + Ok((i1, o)) => return Ok((i1, (res, o))), + Err(Err::Error(_)) => { + match f.parse(i.clone()) { + Err(Err::Error(err)) => return Err(Err::Error(E::append(i, ErrorKind::ManyTill, err))), + Err(e) => return Err(e), + Ok((i1, o)) => { + // infinite loop check: the parser must always consume + if i1.input_len() == len { + return Err(Err::Error(E::from_error_kind(i1, ErrorKind::ManyTill))); + } + + res.push(o); + i = i1; + } + } + } + Err(e) => return Err(e), + } + } + } +} + +/// Alternates between two parsers to produce a list of elements. +/// +/// This stops when either parser returns [`Err::Error`] and returns the results that were accumulated. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `sep` Parses the separator between list elements. +/// * `f` Parses the elements of the list. +/// +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::multi::separated_list0; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// separated_list0(tag("|"), tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abc|abc|abc"), Ok(("", vec!["abc", "abc", "abc"]))); +/// assert_eq!(parser("abc123abc"), Ok(("123abc", vec!["abc"]))); +/// assert_eq!(parser("abc|def"), Ok(("|def", vec!["abc"]))); +/// assert_eq!(parser(""), Ok(("", vec![]))); +/// assert_eq!(parser("def|abc"), Ok(("def|abc", vec![]))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn separated_list0<I, O, O2, E, F, G>( + mut sep: G, + mut f: F, +) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + G: Parser<I, O2, E>, + E: ParseError<I>, +{ + move |mut i: I| { + let mut res = Vec::new(); + + match f.parse(i.clone()) { + Err(Err::Error(_)) => return Ok((i, res)), + Err(e) => return Err(e), + Ok((i1, o)) => { + res.push(o); + i = i1; + } + } + + loop { + let len = i.input_len(); + match sep.parse(i.clone()) { + Err(Err::Error(_)) => return Ok((i, res)), + Err(e) => return Err(e), + Ok((i1, _)) => { + // infinite loop check: the parser must always consume + if i1.input_len() == len { + return Err(Err::Error(E::from_error_kind(i1, ErrorKind::SeparatedList))); + } + + match f.parse(i1.clone()) { + Err(Err::Error(_)) => return Ok((i, res)), + Err(e) => return Err(e), + Ok((i2, o)) => { + res.push(o); + i = i2; + } + } + } + } + } + } +} + +/// Alternates between two parsers to produce a list of elements until [`Err::Error`]. +/// +/// Fails if the element parser does not produce at least one element.$ +/// +/// This stops when either parser returns [`Err::Error`] and returns the results that were accumulated. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `sep` Parses the separator between list elements. +/// * `f` Parses the elements of the list. +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::separated_list1; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// separated_list1(tag("|"), tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abc|abc|abc"), Ok(("", vec!["abc", "abc", "abc"]))); +/// assert_eq!(parser("abc123abc"), Ok(("123abc", vec!["abc"]))); +/// assert_eq!(parser("abc|def"), Ok(("|def", vec!["abc"]))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Tag)))); +/// assert_eq!(parser("def|abc"), Err(Err::Error(Error::new("def|abc", ErrorKind::Tag)))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn separated_list1<I, O, O2, E, F, G>( + mut sep: G, + mut f: F, +) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + G: Parser<I, O2, E>, + E: ParseError<I>, +{ + move |mut i: I| { + let mut res = Vec::new(); + + // Parse the first element + match f.parse(i.clone()) { + Err(e) => return Err(e), + Ok((i1, o)) => { + res.push(o); + i = i1; + } + } + + loop { + let len = i.input_len(); + match sep.parse(i.clone()) { + Err(Err::Error(_)) => return Ok((i, res)), + Err(e) => return Err(e), + Ok((i1, _)) => { + // infinite loop check: the parser must always consume + if i1.input_len() == len { + return Err(Err::Error(E::from_error_kind(i1, ErrorKind::SeparatedList))); + } + + match f.parse(i1.clone()) { + Err(Err::Error(_)) => return Ok((i, res)), + Err(e) => return Err(e), + Ok((i2, o)) => { + res.push(o); + i = i2; + } + } + } + } + } + } +} + +/// Repeats the embedded parser `m..=n` times +/// +/// This stops before `n` when the parser returns [`Err::Error`] and returns the results that were accumulated. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `m` The minimum number of iterations. +/// * `n` The maximum number of iterations. +/// * `f` The parser to apply. +/// +/// *Note*: If the parser passed to `many1` accepts empty inputs +/// (like `alpha0` or `digit0`), `many1` will return an error, +/// to prevent going into an infinite loop. +/// +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::multi::many_m_n; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// many_m_n(0, 2, tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Ok(("123", vec!["abc"]))); +/// assert_eq!(parser("123123"), Ok(("123123", vec![]))); +/// assert_eq!(parser(""), Ok(("", vec![]))); +/// assert_eq!(parser("abcabcabc"), Ok(("abc", vec!["abc", "abc"]))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn many_m_n<I, O, E, F>( + min: usize, + max: usize, + mut parse: F, +) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + E: ParseError<I>, +{ + move |mut input: I| { + if min > max { + return Err(Err::Failure(E::from_error_kind(input, ErrorKind::ManyMN))); + } + + let max_initial_capacity = + MAX_INITIAL_CAPACITY_BYTES / crate::lib::std::mem::size_of::<O>().max(1); + let mut res = crate::lib::std::vec::Vec::with_capacity(min.min(max_initial_capacity)); + for count in 0..max { + let len = input.input_len(); + match parse.parse(input.clone()) { + Ok((tail, value)) => { + // infinite loop check: the parser must always consume + if tail.input_len() == len { + return Err(Err::Error(E::from_error_kind(input, ErrorKind::ManyMN))); + } + + res.push(value); + input = tail; + } + Err(Err::Error(e)) => { + if count < min { + return Err(Err::Error(E::append(input, ErrorKind::ManyMN, e))); + } else { + return Ok((input, res)); + } + } + Err(e) => { + return Err(e); + } + } + } + + Ok((input, res)) + } +} + +/// Repeats the embedded parser, counting the results +/// +/// This stops on [`Err::Error`]. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `f` The parser to apply. +/// +/// *Note*: if the parser passed in accepts empty inputs (like `alpha0` or `digit0`), `many0` will +/// return an error, to prevent going into an infinite loop +/// +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::multi::many0_count; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, usize> { +/// many0_count(tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", 2))); +/// assert_eq!(parser("abc123"), Ok(("123", 1))); +/// assert_eq!(parser("123123"), Ok(("123123", 0))); +/// assert_eq!(parser(""), Ok(("", 0))); +/// ``` +pub fn many0_count<I, O, E, F>(mut f: F) -> impl FnMut(I) -> IResult<I, usize, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + E: ParseError<I>, +{ + move |i: I| { + let mut input = i; + let mut count = 0; + + loop { + let input_ = input.clone(); + let len = input.input_len(); + match f.parse(input_) { + Ok((i, _)) => { + // infinite loop check: the parser must always consume + if i.input_len() == len { + return Err(Err::Error(E::from_error_kind(input, ErrorKind::Many0Count))); + } + + input = i; + count += 1; + } + + Err(Err::Error(_)) => return Ok((input, count)), + + Err(e) => return Err(e), + } + } + } +} + +/// Runs the embedded parser, counting the results. +/// +/// This stops on [`Err::Error`] if there is at least one result. To instead chain an error up, +/// see [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `f` The parser to apply. +/// +/// *Note*: If the parser passed to `many1` accepts empty inputs +/// (like `alpha0` or `digit0`), `many1` will return an error, +/// to prevent going into an infinite loop. +/// +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::many1_count; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, usize> { +/// many1_count(tag("abc"))(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", 2))); +/// assert_eq!(parser("abc123"), Ok(("123", 1))); +/// assert_eq!(parser("123123"), Err(Err::Error(Error::new("123123", ErrorKind::Many1Count)))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Many1Count)))); +/// ``` +pub fn many1_count<I, O, E, F>(mut f: F) -> impl FnMut(I) -> IResult<I, usize, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + E: ParseError<I>, +{ + move |i: I| { + let i_ = i.clone(); + match f.parse(i_) { + Err(Err::Error(_)) => Err(Err::Error(E::from_error_kind(i, ErrorKind::Many1Count))), + Err(i) => Err(i), + Ok((i1, _)) => { + let mut count = 1; + let mut input = i1; + + loop { + let len = input.input_len(); + let input_ = input.clone(); + match f.parse(input_) { + Err(Err::Error(_)) => return Ok((input, count)), + Err(e) => return Err(e), + Ok((i, _)) => { + // infinite loop check: the parser must always consume + if i.input_len() == len { + return Err(Err::Error(E::from_error_kind(i, ErrorKind::Many1Count))); + } + + count += 1; + input = i; + } + } + } + } + } + } +} + +/// Runs the embedded parser `count` times, gathering the results in a `Vec` +/// +/// # Arguments +/// * `f` The parser to apply. +/// * `count` How often to apply the parser. +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::count; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// count(tag("abc"), 2)(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Err(Err::Error(Error::new("123", ErrorKind::Tag)))); +/// assert_eq!(parser("123123"), Err(Err::Error(Error::new("123123", ErrorKind::Tag)))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Tag)))); +/// assert_eq!(parser("abcabcabc"), Ok(("abc", vec!["abc", "abc"]))); +/// ``` +#[cfg(feature = "alloc")] +#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))] +pub fn count<I, O, E, F>(mut f: F, count: usize) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone + PartialEq, + F: Parser<I, O, E>, + E: ParseError<I>, +{ + move |i: I| { + let mut input = i.clone(); + let max_initial_capacity = + MAX_INITIAL_CAPACITY_BYTES / crate::lib::std::mem::size_of::<O>().max(1); + let mut res = crate::lib::std::vec::Vec::with_capacity(count.min(max_initial_capacity)); + + for _ in 0..count { + let input_ = input.clone(); + match f.parse(input_) { + Ok((i, o)) => { + res.push(o); + input = i; + } + Err(Err::Error(e)) => { + return Err(Err::Error(E::append(i, ErrorKind::Count, e))); + } + Err(e) => { + return Err(e); + } + } + } + + Ok((input, res)) + } +} + +/// Runs the embedded parser repeatedly, filling the given slice with results. +/// +/// This parser fails if the input runs out before the given slice is full. +/// +/// # Arguments +/// * `f` The parser to apply. +/// * `buf` The slice to fill +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::fill; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, [&str; 2]> { +/// let mut buf = ["", ""]; +/// let (rest, ()) = fill(tag("abc"), &mut buf)(s)?; +/// Ok((rest, buf)) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", ["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Err(Err::Error(Error::new("123", ErrorKind::Tag)))); +/// assert_eq!(parser("123123"), Err(Err::Error(Error::new("123123", ErrorKind::Tag)))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Tag)))); +/// assert_eq!(parser("abcabcabc"), Ok(("abc", ["abc", "abc"]))); +/// ``` +pub fn fill<'a, I, O, E, F>(f: F, buf: &'a mut [O]) -> impl FnMut(I) -> IResult<I, (), E> + 'a +where + I: Clone + PartialEq, + F: Fn(I) -> IResult<I, O, E> + 'a, + E: ParseError<I>, +{ + move |i: I| { + let mut input = i.clone(); + + for elem in buf.iter_mut() { + let input_ = input.clone(); + match f(input_) { + Ok((i, o)) => { + *elem = o; + input = i; + } + Err(Err::Error(e)) => { + return Err(Err::Error(E::append(i, ErrorKind::Count, e))); + } + Err(e) => { + return Err(e); + } + } + } + + Ok((input, ())) + } +} + +/// Repeats the embedded parser, calling `g` to gather the results. +/// +/// This stops on [`Err::Error`]. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `f` The parser to apply. +/// * `init` A function returning the initial value. +/// * `g` The function that combines a result of `f` with +/// the current accumulator. +/// +/// *Note*: if the parser passed in accepts empty inputs (like `alpha0` or `digit0`), `many0` will +/// return an error, to prevent going into an infinite loop +/// +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::multi::fold_many0; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// fold_many0( +/// tag("abc"), +/// Vec::new, +/// |mut acc: Vec<_>, item| { +/// acc.push(item); +/// acc +/// } +/// )(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Ok(("123", vec!["abc"]))); +/// assert_eq!(parser("123123"), Ok(("123123", vec![]))); +/// assert_eq!(parser(""), Ok(("", vec![]))); +/// ``` +pub fn fold_many0<I, O, E, F, G, H, R>( + mut f: F, + mut init: H, + mut g: G, +) -> impl FnMut(I) -> IResult<I, R, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + G: FnMut(R, O) -> R, + H: FnMut() -> R, + E: ParseError<I>, +{ + move |i: I| { + let mut res = init(); + let mut input = i; + + loop { + let i_ = input.clone(); + let len = input.input_len(); + match f.parse(i_) { + Ok((i, o)) => { + // infinite loop check: the parser must always consume + if i.input_len() == len { + return Err(Err::Error(E::from_error_kind(input, ErrorKind::Many0))); + } + + res = g(res, o); + input = i; + } + Err(Err::Error(_)) => { + return Ok((input, res)); + } + Err(e) => { + return Err(e); + } + } + } + } +} + +/// Repeats the embedded parser, calling `g` to gather the results. +/// +/// This stops on [`Err::Error`] if there is at least one result. To instead chain an error up, +/// see [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `f` The parser to apply. +/// * `init` A function returning the initial value. +/// * `g` The function that combines a result of `f` with +/// the current accumulator. +/// +/// *Note*: If the parser passed to `many1` accepts empty inputs +/// (like `alpha0` or `digit0`), `many1` will return an error, +/// to prevent going into an infinite loop. +/// +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::multi::fold_many1; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// fold_many1( +/// tag("abc"), +/// Vec::new, +/// |mut acc: Vec<_>, item| { +/// acc.push(item); +/// acc +/// } +/// )(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Ok(("123", vec!["abc"]))); +/// assert_eq!(parser("123123"), Err(Err::Error(Error::new("123123", ErrorKind::Many1)))); +/// assert_eq!(parser(""), Err(Err::Error(Error::new("", ErrorKind::Many1)))); +/// ``` +pub fn fold_many1<I, O, E, F, G, H, R>( + mut f: F, + mut init: H, + mut g: G, +) -> impl FnMut(I) -> IResult<I, R, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + G: FnMut(R, O) -> R, + H: FnMut() -> R, + E: ParseError<I>, +{ + move |i: I| { + let _i = i.clone(); + let init = init(); + match f.parse(_i) { + Err(Err::Error(_)) => Err(Err::Error(E::from_error_kind(i, ErrorKind::Many1))), + Err(e) => Err(e), + Ok((i1, o1)) => { + let mut acc = g(init, o1); + let mut input = i1; + + loop { + let _input = input.clone(); + let len = input.input_len(); + match f.parse(_input) { + Err(Err::Error(_)) => { + break; + } + Err(e) => return Err(e), + Ok((i, o)) => { + // infinite loop check: the parser must always consume + if i.input_len() == len { + return Err(Err::Failure(E::from_error_kind(i, ErrorKind::Many1))); + } + + acc = g(acc, o); + input = i; + } + } + } + + Ok((input, acc)) + } + } + } +} + +/// Repeats the embedded parser `m..=n` times, calling `g` to gather the results +/// +/// This stops before `n` when the parser returns [`Err::Error`]. To instead chain an error up, see +/// [`cut`][crate::combinator::cut]. +/// +/// # Arguments +/// * `m` The minimum number of iterations. +/// * `n` The maximum number of iterations. +/// * `f` The parser to apply. +/// * `init` A function returning the initial value. +/// * `g` The function that combines a result of `f` with +/// the current accumulator. +/// +/// *Note*: If the parser passed to `many1` accepts empty inputs +/// (like `alpha0` or `digit0`), `many1` will return an error, +/// to prevent going into an infinite loop. +/// +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::multi::fold_many_m_n; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &str) -> IResult<&str, Vec<&str>> { +/// fold_many_m_n( +/// 0, +/// 2, +/// tag("abc"), +/// Vec::new, +/// |mut acc: Vec<_>, item| { +/// acc.push(item); +/// acc +/// } +/// )(s) +/// } +/// +/// assert_eq!(parser("abcabc"), Ok(("", vec!["abc", "abc"]))); +/// assert_eq!(parser("abc123"), Ok(("123", vec!["abc"]))); +/// assert_eq!(parser("123123"), Ok(("123123", vec![]))); +/// assert_eq!(parser(""), Ok(("", vec![]))); +/// assert_eq!(parser("abcabcabc"), Ok(("abc", vec!["abc", "abc"]))); +/// ``` +pub fn fold_many_m_n<I, O, E, F, G, H, R>( + min: usize, + max: usize, + mut parse: F, + mut init: H, + mut fold: G, +) -> impl FnMut(I) -> IResult<I, R, E> +where + I: Clone + InputLength, + F: Parser<I, O, E>, + G: FnMut(R, O) -> R, + H: FnMut() -> R, + E: ParseError<I>, +{ + move |mut input: I| { + if min > max { + return Err(Err::Failure(E::from_error_kind(input, ErrorKind::ManyMN))); + } + + let mut acc = init(); + for count in 0..max { + let len = input.input_len(); + match parse.parse(input.clone()) { + Ok((tail, value)) => { + // infinite loop check: the parser must always consume + if tail.input_len() == len { + return Err(Err::Error(E::from_error_kind(tail, ErrorKind::ManyMN))); + } + + acc = fold(acc, value); + input = tail; + } + //FInputXMError: handle failure properly + Err(Err::Error(err)) => { + if count < min { + return Err(Err::Error(E::append(input, ErrorKind::ManyMN, err))); + } else { + break; + } + } + Err(e) => return Err(e), + } + } + + Ok((input, acc)) + } +} + +/// Gets a number from the parser and returns a +/// subslice of the input of that size. +/// If the parser returns `Incomplete`, +/// `length_data` will return an error. +/// # Arguments +/// * `f` The parser to apply. +/// ```rust +/// # use nom::{Err, error::ErrorKind, Needed, IResult}; +/// use nom::number::complete::be_u16; +/// use nom::multi::length_data; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &[u8]) -> IResult<&[u8], &[u8]> { +/// length_data(be_u16)(s) +/// } +/// +/// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"efg"[..], &b"abc"[..]))); +/// assert_eq!(parser(b"\x00\x03a"), Err(Err::Incomplete(Needed::new(2)))); +/// ``` +pub fn length_data<I, N, E, F>(mut f: F) -> impl FnMut(I) -> IResult<I, I, E> +where + I: InputLength + InputTake, + N: ToUsize, + F: Parser<I, N, E>, + E: ParseError<I>, +{ + move |i: I| { + let (i, length) = f.parse(i)?; + + let length: usize = length.to_usize(); + + if let Some(needed) = length + .checked_sub(i.input_len()) + .and_then(NonZeroUsize::new) + { + Err(Err::Incomplete(Needed::Size(needed))) + } else { + Ok(i.take_split(length)) + } + } +} + +/// Gets a number from the first parser, +/// takes a subslice of the input of that size, +/// then applies the second parser on that subslice. +/// If the second parser returns `Incomplete`, +/// `length_value` will return an error. +/// # Arguments +/// * `f` The parser to apply. +/// * `g` The parser to apply on the subslice. +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::number::complete::be_u16; +/// use nom::multi::length_value; +/// use nom::bytes::complete::tag; +/// +/// fn parser(s: &[u8]) -> IResult<&[u8], &[u8]> { +/// length_value(be_u16, tag("abc"))(s) +/// } +/// +/// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"efg"[..], &b"abc"[..]))); +/// assert_eq!(parser(b"\x00\x03123123"), Err(Err::Error(Error::new(&b"123"[..], ErrorKind::Tag)))); +/// assert_eq!(parser(b"\x00\x03a"), Err(Err::Incomplete(Needed::new(2)))); +/// ``` +pub fn length_value<I, O, N, E, F, G>(mut f: F, mut g: G) -> impl FnMut(I) -> IResult<I, O, E> +where + I: Clone + InputLength + InputTake, + N: ToUsize, + F: Parser<I, N, E>, + G: Parser<I, O, E>, + E: ParseError<I>, +{ + move |i: I| { + let (i, length) = f.parse(i)?; + + let length: usize = length.to_usize(); + + if let Some(needed) = length + .checked_sub(i.input_len()) + .and_then(NonZeroUsize::new) + { + Err(Err::Incomplete(Needed::Size(needed))) + } else { + let (rest, i) = i.take_split(length); + match g.parse(i.clone()) { + Err(Err::Incomplete(_)) => Err(Err::Error(E::from_error_kind(i, ErrorKind::Complete))), + Err(e) => Err(e), + Ok((_, o)) => Ok((rest, o)), + } + } + } +} + +/// Gets a number from the first parser, +/// then applies the second parser that many times. +/// # Arguments +/// * `f` The parser to apply to obtain the count. +/// * `g` The parser to apply repeatedly. +/// ```rust +/// # use nom::{Err, error::{Error, ErrorKind}, Needed, IResult}; +/// use nom::number::complete::u8; +/// use nom::multi::length_count; +/// use nom::bytes::complete::tag; +/// use nom::combinator::map; +/// +/// fn parser(s: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { +/// length_count(map(u8, |i| { +/// println!("got number: {}", i); +/// i +/// }), tag("abc"))(s) +/// } +/// +/// assert_eq!(parser(&b"\x02abcabcabc"[..]), Ok(((&b"abc"[..], vec![&b"abc"[..], &b"abc"[..]])))); +/// assert_eq!(parser(b"\x03123123123"), Err(Err::Error(Error::new(&b"123123123"[..], ErrorKind::Tag)))); +/// ``` +#[cfg(feature = "alloc")] +pub fn length_count<I, O, N, E, F, G>(mut f: F, mut g: G) -> impl FnMut(I) -> IResult<I, Vec<O>, E> +where + I: Clone, + N: ToUsize, + F: Parser<I, N, E>, + G: Parser<I, O, E>, + E: ParseError<I>, +{ + move |i: I| { + let (i, count) = f.parse(i)?; + let mut input = i.clone(); + let mut res = Vec::new(); + + for _ in 0..count.to_usize() { + let input_ = input.clone(); + match g.parse(input_) { + Ok((i, o)) => { + res.push(o); + input = i; + } + Err(Err::Error(e)) => { + return Err(Err::Error(E::append(i, ErrorKind::Count, e))); + } + Err(e) => { + return Err(e); + } + } + } + + Ok((input, res)) + } +} diff --git a/third_party/rust/nom/src/multi/tests.rs b/third_party/rust/nom/src/multi/tests.rs new file mode 100644 index 0000000000..96a6518176 --- /dev/null +++ b/third_party/rust/nom/src/multi/tests.rs @@ -0,0 +1,534 @@ +use super::{length_data, length_value, many0_count, many1_count}; +use crate::{ + bytes::streaming::tag, + character::streaming::digit1 as digit, + error::{ErrorKind, ParseError}, + internal::{Err, IResult, Needed}, + lib::std::str::{self, FromStr}, + number::streaming::{be_u16, be_u8}, + sequence::{pair, tuple}, +}; +#[cfg(feature = "alloc")] +use crate::{ + lib::std::vec::Vec, + multi::{ + count, fold_many0, fold_many1, fold_many_m_n, length_count, many0, many1, many_m_n, many_till, + separated_list0, separated_list1, + }, +}; + +#[test] +#[cfg(feature = "alloc")] +fn separated_list0_test() { + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + separated_list0(tag(","), tag("abcd"))(i) + } + fn multi_empty(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + separated_list0(tag(","), tag(""))(i) + } + fn empty_sep(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + separated_list0(tag(""), tag("abc"))(i) + } + fn multi_longsep(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + separated_list0(tag(".."), tag("abcd"))(i) + } + + let a = &b"abcdef"[..]; + let b = &b"abcd,abcdef"[..]; + let c = &b"azerty"[..]; + let d = &b",,abc"[..]; + let e = &b"abcd,abcd,ef"[..]; + let f = &b"abc"[..]; + let g = &b"abcd."[..]; + let h = &b"abcd,abc"[..]; + let i = &b"abcabc"[..]; + + let res1 = vec![&b"abcd"[..]]; + assert_eq!(multi(a), Ok((&b"ef"[..], res1))); + let res2 = vec![&b"abcd"[..], &b"abcd"[..]]; + assert_eq!(multi(b), Ok((&b"ef"[..], res2))); + assert_eq!(multi(c), Ok((&b"azerty"[..], Vec::new()))); + let res3 = vec![&b""[..], &b""[..], &b""[..]]; + assert_eq!(multi_empty(d), Ok((&b"abc"[..], res3))); + let i_err_pos = &i[3..]; + assert_eq!( + empty_sep(i), + Err(Err::Error(error_position!( + i_err_pos, + ErrorKind::SeparatedList + ))) + ); + let res4 = vec![&b"abcd"[..], &b"abcd"[..]]; + assert_eq!(multi(e), Ok((&b",ef"[..], res4))); + + assert_eq!(multi(f), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!(multi_longsep(g), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!(multi(h), Err(Err::Incomplete(Needed::new(1)))); +} + +#[test] +#[cfg(feature = "alloc")] +fn separated_list1_test() { + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + separated_list1(tag(","), tag("abcd"))(i) + } + fn multi_longsep(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + separated_list1(tag(".."), tag("abcd"))(i) + } + + let a = &b"abcdef"[..]; + let b = &b"abcd,abcdef"[..]; + let c = &b"azerty"[..]; + let d = &b"abcd,abcd,ef"[..]; + + let f = &b"abc"[..]; + let g = &b"abcd."[..]; + let h = &b"abcd,abc"[..]; + + let res1 = vec![&b"abcd"[..]]; + assert_eq!(multi(a), Ok((&b"ef"[..], res1))); + let res2 = vec![&b"abcd"[..], &b"abcd"[..]]; + assert_eq!(multi(b), Ok((&b"ef"[..], res2))); + assert_eq!( + multi(c), + Err(Err::Error(error_position!(c, ErrorKind::Tag))) + ); + let res3 = vec![&b"abcd"[..], &b"abcd"[..]]; + assert_eq!(multi(d), Ok((&b",ef"[..], res3))); + + assert_eq!(multi(f), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!(multi_longsep(g), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!(multi(h), Err(Err::Incomplete(Needed::new(1)))); +} + +#[test] +#[cfg(feature = "alloc")] +fn many0_test() { + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + many0(tag("abcd"))(i) + } + fn multi_empty(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + many0(tag(""))(i) + } + + assert_eq!(multi(&b"abcdef"[..]), Ok((&b"ef"[..], vec![&b"abcd"[..]]))); + assert_eq!( + multi(&b"abcdabcdefgh"[..]), + Ok((&b"efgh"[..], vec![&b"abcd"[..], &b"abcd"[..]])) + ); + assert_eq!(multi(&b"azerty"[..]), Ok((&b"azerty"[..], Vec::new()))); + assert_eq!(multi(&b"abcdab"[..]), Err(Err::Incomplete(Needed::new(2)))); + assert_eq!(multi(&b"abcd"[..]), Err(Err::Incomplete(Needed::new(4)))); + assert_eq!(multi(&b""[..]), Err(Err::Incomplete(Needed::new(4)))); + assert_eq!( + multi_empty(&b"abcdef"[..]), + Err(Err::Error(error_position!( + &b"abcdef"[..], + ErrorKind::Many0 + ))) + ); +} + +#[test] +#[cfg(feature = "alloc")] +fn many1_test() { + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + many1(tag("abcd"))(i) + } + + let a = &b"abcdef"[..]; + let b = &b"abcdabcdefgh"[..]; + let c = &b"azerty"[..]; + let d = &b"abcdab"[..]; + + let res1 = vec![&b"abcd"[..]]; + assert_eq!(multi(a), Ok((&b"ef"[..], res1))); + let res2 = vec![&b"abcd"[..], &b"abcd"[..]]; + assert_eq!(multi(b), Ok((&b"efgh"[..], res2))); + assert_eq!( + multi(c), + Err(Err::Error(error_position!(c, ErrorKind::Tag))) + ); + assert_eq!(multi(d), Err(Err::Incomplete(Needed::new(2)))); +} + +#[test] +#[cfg(feature = "alloc")] +fn many_till_test() { + fn multi(i: &[u8]) -> IResult<&[u8], (Vec<&[u8]>, &[u8])> { + many_till(tag("abcd"), tag("efgh"))(i) + } + + let a = b"abcdabcdefghabcd"; + let b = b"efghabcd"; + let c = b"azerty"; + + let res_a = (vec![&b"abcd"[..], &b"abcd"[..]], &b"efgh"[..]); + let res_b: (Vec<&[u8]>, &[u8]) = (Vec::new(), &b"efgh"[..]); + assert_eq!(multi(&a[..]), Ok((&b"abcd"[..], res_a))); + assert_eq!(multi(&b[..]), Ok((&b"abcd"[..], res_b))); + assert_eq!( + multi(&c[..]), + Err(Err::Error(error_node_position!( + &c[..], + ErrorKind::ManyTill, + error_position!(&c[..], ErrorKind::Tag) + ))) + ); +} + +#[test] +#[cfg(feature = "std")] +fn infinite_many() { + fn tst(input: &[u8]) -> IResult<&[u8], &[u8]> { + println!("input: {:?}", input); + Err(Err::Error(error_position!(input, ErrorKind::Tag))) + } + + // should not go into an infinite loop + fn multi0(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + many0(tst)(i) + } + let a = &b"abcdef"[..]; + assert_eq!(multi0(a), Ok((a, Vec::new()))); + + fn multi1(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + many1(tst)(i) + } + let a = &b"abcdef"[..]; + assert_eq!( + multi1(a), + Err(Err::Error(error_position!(a, ErrorKind::Tag))) + ); +} + +#[test] +#[cfg(feature = "alloc")] +fn many_m_n_test() { + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + many_m_n(2, 4, tag("Abcd"))(i) + } + + let a = &b"Abcdef"[..]; + let b = &b"AbcdAbcdefgh"[..]; + let c = &b"AbcdAbcdAbcdAbcdefgh"[..]; + let d = &b"AbcdAbcdAbcdAbcdAbcdefgh"[..]; + let e = &b"AbcdAb"[..]; + + assert_eq!( + multi(a), + Err(Err::Error(error_position!(&b"ef"[..], ErrorKind::Tag))) + ); + let res1 = vec![&b"Abcd"[..], &b"Abcd"[..]]; + assert_eq!(multi(b), Ok((&b"efgh"[..], res1))); + let res2 = vec![&b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..]]; + assert_eq!(multi(c), Ok((&b"efgh"[..], res2))); + let res3 = vec![&b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..]]; + assert_eq!(multi(d), Ok((&b"Abcdefgh"[..], res3))); + assert_eq!(multi(e), Err(Err::Incomplete(Needed::new(2)))); +} + +#[test] +#[cfg(feature = "alloc")] +fn count_test() { + const TIMES: usize = 2; + fn cnt_2(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + count(tag("abc"), TIMES)(i) + } + + assert_eq!( + cnt_2(&b"abcabcabcdef"[..]), + Ok((&b"abcdef"[..], vec![&b"abc"[..], &b"abc"[..]])) + ); + assert_eq!(cnt_2(&b"ab"[..]), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!(cnt_2(&b"abcab"[..]), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!( + cnt_2(&b"xxx"[..]), + Err(Err::Error(error_position!(&b"xxx"[..], ErrorKind::Tag))) + ); + assert_eq!( + cnt_2(&b"xxxabcabcdef"[..]), + Err(Err::Error(error_position!( + &b"xxxabcabcdef"[..], + ErrorKind::Tag + ))) + ); + assert_eq!( + cnt_2(&b"abcxxxabcdef"[..]), + Err(Err::Error(error_position!( + &b"xxxabcdef"[..], + ErrorKind::Tag + ))) + ); +} + +#[test] +#[cfg(feature = "alloc")] +fn count_zero() { + const TIMES: usize = 0; + fn counter_2(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + count(tag("abc"), TIMES)(i) + } + + let done = &b"abcabcabcdef"[..]; + let parsed_done = Vec::new(); + let rest = done; + let incomplete_1 = &b"ab"[..]; + let parsed_incompl_1 = Vec::new(); + let incomplete_2 = &b"abcab"[..]; + let parsed_incompl_2 = Vec::new(); + let error = &b"xxx"[..]; + let error_remain = &b"xxx"[..]; + let parsed_err = Vec::new(); + let error_1 = &b"xxxabcabcdef"[..]; + let parsed_err_1 = Vec::new(); + let error_1_remain = &b"xxxabcabcdef"[..]; + let error_2 = &b"abcxxxabcdef"[..]; + let parsed_err_2 = Vec::new(); + let error_2_remain = &b"abcxxxabcdef"[..]; + + assert_eq!(counter_2(done), Ok((rest, parsed_done))); + assert_eq!( + counter_2(incomplete_1), + Ok((incomplete_1, parsed_incompl_1)) + ); + assert_eq!( + counter_2(incomplete_2), + Ok((incomplete_2, parsed_incompl_2)) + ); + assert_eq!(counter_2(error), Ok((error_remain, parsed_err))); + assert_eq!(counter_2(error_1), Ok((error_1_remain, parsed_err_1))); + assert_eq!(counter_2(error_2), Ok((error_2_remain, parsed_err_2))); +} + +#[derive(Debug, Clone, PartialEq)] +pub struct NilError; + +impl<I> From<(I, ErrorKind)> for NilError { + fn from(_: (I, ErrorKind)) -> Self { + NilError + } +} + +impl<I> ParseError<I> for NilError { + fn from_error_kind(_: I, _: ErrorKind) -> NilError { + NilError + } + fn append(_: I, _: ErrorKind, _: NilError) -> NilError { + NilError + } +} + +fn number(i: &[u8]) -> IResult<&[u8], u32> { + use crate::combinator::map_res; + + map_res(map_res(digit, str::from_utf8), FromStr::from_str)(i) +} + +#[test] +#[cfg(feature = "alloc")] +fn length_count_test() { + fn cnt(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + length_count(number, tag("abc"))(i) + } + + assert_eq!( + cnt(&b"2abcabcabcdef"[..]), + Ok((&b"abcdef"[..], vec![&b"abc"[..], &b"abc"[..]])) + ); + assert_eq!(cnt(&b"2ab"[..]), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!(cnt(&b"3abcab"[..]), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!( + cnt(&b"xxx"[..]), + Err(Err::Error(error_position!(&b"xxx"[..], ErrorKind::Digit))) + ); + assert_eq!( + cnt(&b"2abcxxx"[..]), + Err(Err::Error(error_position!(&b"xxx"[..], ErrorKind::Tag))) + ); +} + +#[test] +fn length_data_test() { + fn take(i: &[u8]) -> IResult<&[u8], &[u8]> { + length_data(number)(i) + } + + assert_eq!( + take(&b"6abcabcabcdef"[..]), + Ok((&b"abcdef"[..], &b"abcabc"[..])) + ); + assert_eq!(take(&b"3ab"[..]), Err(Err::Incomplete(Needed::new(1)))); + assert_eq!( + take(&b"xxx"[..]), + Err(Err::Error(error_position!(&b"xxx"[..], ErrorKind::Digit))) + ); + assert_eq!(take(&b"2abcxxx"[..]), Ok((&b"cxxx"[..], &b"ab"[..]))); +} + +#[test] +fn length_value_test() { + fn length_value_1(i: &[u8]) -> IResult<&[u8], u16> { + length_value(be_u8, be_u16)(i) + } + fn length_value_2(i: &[u8]) -> IResult<&[u8], (u8, u8)> { + length_value(be_u8, tuple((be_u8, be_u8)))(i) + } + + let i1 = [0, 5, 6]; + assert_eq!( + length_value_1(&i1), + Err(Err::Error(error_position!(&b""[..], ErrorKind::Complete))) + ); + assert_eq!( + length_value_2(&i1), + Err(Err::Error(error_position!(&b""[..], ErrorKind::Complete))) + ); + + let i2 = [1, 5, 6, 3]; + assert_eq!( + length_value_1(&i2), + Err(Err::Error(error_position!(&i2[1..2], ErrorKind::Complete))) + ); + assert_eq!( + length_value_2(&i2), + Err(Err::Error(error_position!(&i2[1..2], ErrorKind::Complete))) + ); + + let i3 = [2, 5, 6, 3, 4, 5, 7]; + assert_eq!(length_value_1(&i3), Ok((&i3[3..], 1286))); + assert_eq!(length_value_2(&i3), Ok((&i3[3..], (5, 6)))); + + let i4 = [3, 5, 6, 3, 4, 5]; + assert_eq!(length_value_1(&i4), Ok((&i4[4..], 1286))); + assert_eq!(length_value_2(&i4), Ok((&i4[4..], (5, 6)))); +} + +#[test] +#[cfg(feature = "alloc")] +fn fold_many0_test() { + fn fold_into_vec<T>(mut acc: Vec<T>, item: T) -> Vec<T> { + acc.push(item); + acc + } + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + fold_many0(tag("abcd"), Vec::new, fold_into_vec)(i) + } + fn multi_empty(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + fold_many0(tag(""), Vec::new, fold_into_vec)(i) + } + + assert_eq!(multi(&b"abcdef"[..]), Ok((&b"ef"[..], vec![&b"abcd"[..]]))); + assert_eq!( + multi(&b"abcdabcdefgh"[..]), + Ok((&b"efgh"[..], vec![&b"abcd"[..], &b"abcd"[..]])) + ); + assert_eq!(multi(&b"azerty"[..]), Ok((&b"azerty"[..], Vec::new()))); + assert_eq!(multi(&b"abcdab"[..]), Err(Err::Incomplete(Needed::new(2)))); + assert_eq!(multi(&b"abcd"[..]), Err(Err::Incomplete(Needed::new(4)))); + assert_eq!(multi(&b""[..]), Err(Err::Incomplete(Needed::new(4)))); + assert_eq!( + multi_empty(&b"abcdef"[..]), + Err(Err::Error(error_position!( + &b"abcdef"[..], + ErrorKind::Many0 + ))) + ); +} + +#[test] +#[cfg(feature = "alloc")] +fn fold_many1_test() { + fn fold_into_vec<T>(mut acc: Vec<T>, item: T) -> Vec<T> { + acc.push(item); + acc + } + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + fold_many1(tag("abcd"), Vec::new, fold_into_vec)(i) + } + + let a = &b"abcdef"[..]; + let b = &b"abcdabcdefgh"[..]; + let c = &b"azerty"[..]; + let d = &b"abcdab"[..]; + + let res1 = vec![&b"abcd"[..]]; + assert_eq!(multi(a), Ok((&b"ef"[..], res1))); + let res2 = vec![&b"abcd"[..], &b"abcd"[..]]; + assert_eq!(multi(b), Ok((&b"efgh"[..], res2))); + assert_eq!( + multi(c), + Err(Err::Error(error_position!(c, ErrorKind::Many1))) + ); + assert_eq!(multi(d), Err(Err::Incomplete(Needed::new(2)))); +} + +#[test] +#[cfg(feature = "alloc")] +fn fold_many_m_n_test() { + fn fold_into_vec<T>(mut acc: Vec<T>, item: T) -> Vec<T> { + acc.push(item); + acc + } + fn multi(i: &[u8]) -> IResult<&[u8], Vec<&[u8]>> { + fold_many_m_n(2, 4, tag("Abcd"), Vec::new, fold_into_vec)(i) + } + + let a = &b"Abcdef"[..]; + let b = &b"AbcdAbcdefgh"[..]; + let c = &b"AbcdAbcdAbcdAbcdefgh"[..]; + let d = &b"AbcdAbcdAbcdAbcdAbcdefgh"[..]; + let e = &b"AbcdAb"[..]; + + assert_eq!( + multi(a), + Err(Err::Error(error_position!(&b"ef"[..], ErrorKind::Tag))) + ); + let res1 = vec![&b"Abcd"[..], &b"Abcd"[..]]; + assert_eq!(multi(b), Ok((&b"efgh"[..], res1))); + let res2 = vec![&b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..]]; + assert_eq!(multi(c), Ok((&b"efgh"[..], res2))); + let res3 = vec![&b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..], &b"Abcd"[..]]; + assert_eq!(multi(d), Ok((&b"Abcdefgh"[..], res3))); + assert_eq!(multi(e), Err(Err::Incomplete(Needed::new(2)))); +} + +#[test] +fn many0_count_test() { + fn count0_nums(i: &[u8]) -> IResult<&[u8], usize> { + many0_count(pair(digit, tag(",")))(i) + } + + assert_eq!(count0_nums(&b"123,junk"[..]), Ok((&b"junk"[..], 1))); + + assert_eq!(count0_nums(&b"123,45,junk"[..]), Ok((&b"junk"[..], 2))); + + assert_eq!( + count0_nums(&b"1,2,3,4,5,6,7,8,9,0,junk"[..]), + Ok((&b"junk"[..], 10)) + ); + + assert_eq!(count0_nums(&b"hello"[..]), Ok((&b"hello"[..], 0))); +} + +#[test] +fn many1_count_test() { + fn count1_nums(i: &[u8]) -> IResult<&[u8], usize> { + many1_count(pair(digit, tag(",")))(i) + } + + assert_eq!(count1_nums(&b"123,45,junk"[..]), Ok((&b"junk"[..], 2))); + + assert_eq!( + count1_nums(&b"1,2,3,4,5,6,7,8,9,0,junk"[..]), + Ok((&b"junk"[..], 10)) + ); + + assert_eq!( + count1_nums(&b"hello"[..]), + Err(Err::Error(error_position!( + &b"hello"[..], + ErrorKind::Many1Count + ))) + ); +} |