summaryrefslogtreecommitdiffstats
path: root/third_party/rust/packed_simd/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/packed_simd/src/lib.rs')
-rw-r--r--third_party/rust/packed_simd/src/lib.rs348
1 files changed, 348 insertions, 0 deletions
diff --git a/third_party/rust/packed_simd/src/lib.rs b/third_party/rust/packed_simd/src/lib.rs
new file mode 100644
index 0000000000..867cc10e9e
--- /dev/null
+++ b/third_party/rust/packed_simd/src/lib.rs
@@ -0,0 +1,348 @@
+//! # Portable packed SIMD vectors
+//!
+//! This crate is proposed for stabilization as `std::packed_simd` in [RFC2366:
+//! `std::simd`](https://github.com/rust-lang/rfcs/pull/2366) .
+//!
+//! The examples available in the
+//! [`examples/`](https://github.com/rust-lang-nursery/packed_simd/tree/master/examples)
+//! sub-directory of the crate showcase how to use the library in practice.
+//!
+//! ## Table of contents
+//!
+//! - [Introduction](#introduction)
+//! - [Vector types](#vector-types)
+//! - [Conditional operations](#conditional-operations)
+//! - [Conversions](#conversions)
+//! - [Hardware Features](#hardware-features)
+//! - [Performance guide](https://rust-lang-nursery.github.io/packed_simd/perf-guide/)
+//!
+//! ## Introduction
+//!
+//! This crate exports [`Simd<[T; N]>`][`Simd`]: a packed vector of `N`
+//! elements of type `T` as well as many type aliases for this type: for
+//! example, [`f32x4`], which is just an alias for `Simd<[f32; 4]>`.
+//!
+//! The operations on packed vectors are, by default, "vertical", that is, they
+//! are applied to each vector lane in isolation of the others:
+//!
+//! ```
+//! # use packed_simd::*;
+//! let a = i32x4::new(1, 2, 3, 4);
+//! let b = i32x4::new(5, 6, 7, 8);
+//! assert_eq!(a + b, i32x4::new(6, 8, 10, 12));
+//! ```
+//!
+//! Many "horizontal" operations are also provided:
+//!
+//! ```
+//! # use packed_simd::*;
+//! # let a = i32x4::new(1, 2, 3, 4);
+//! assert_eq!(a.wrapping_sum(), 10);
+//! ```
+//!
+//! In virtually all architectures vertical operations are fast, while
+//! horizontal operations are, by comparison, much slower. That is, the
+//! most portably-efficient way of performing a reduction over a slice
+//! is to collect the results into a vector using vertical operations,
+//! and performing a single horizontal operation at the end:
+//!
+//! ```
+//! # use packed_simd::*;
+//! fn reduce(x: &[i32]) -> i32 {
+//! assert_eq!(x.len() % 4, 0);
+//! let mut sum = i32x4::splat(0); // [0, 0, 0, 0]
+//! for i in (0..x.len()).step_by(4) {
+//! sum += i32x4::from_slice_unaligned(&x[i..]);
+//! }
+//! sum.wrapping_sum()
+//! }
+//!
+//! let x = [0, 1, 2, 3, 4, 5, 6, 7];
+//! assert_eq!(reduce(&x), 28);
+//! ```
+//!
+//! ## Vector types
+//!
+//! The vector type aliases are named according to the following scheme:
+//!
+//! > `{element_type}x{number_of_lanes} == Simd<[element_type;
+//! number_of_lanes]>`
+//!
+//! where the following element types are supported:
+//!
+//! * `i{element_width}`: signed integer
+//! * `u{element_width}`: unsigned integer
+//! * `f{element_width}`: float
+//! * `m{element_width}`: mask (see below)
+//! * `*{const,mut} T`: `const` and `mut` pointers
+//!
+//! ## Basic operations
+//!
+//! ```
+//! # use packed_simd::*;
+//! // Sets all elements to `0`:
+//! let a = i32x4::splat(0);
+//!
+//! // Reads a vector from a slice:
+//! let mut arr = [0, 0, 0, 1, 2, 3, 4, 5];
+//! let b = i32x4::from_slice_unaligned(&arr);
+//!
+//! // Reads the 4-th element of a vector:
+//! assert_eq!(b.extract(3), 1);
+//!
+//! // Returns a new vector where the 4-th element is replaced with `1`:
+//! let a = a.replace(3, 1);
+//! assert_eq!(a, b);
+//!
+//! // Writes a vector to a slice:
+//! let a = a.replace(2, 1);
+//! a.write_to_slice_unaligned(&mut arr[4..]);
+//! assert_eq!(arr, [0, 0, 0, 1, 0, 0, 1, 1]);
+//! ```
+//!
+//! ## Conditional operations
+//!
+//! One often needs to perform an operation on some lanes of the vector. Vector
+//! masks, like `m32x4`, allow selecting on which vector lanes an operation is
+//! to be performed:
+//!
+//! ```
+//! # use packed_simd::*;
+//! let a = i32x4::new(1, 1, 2, 2);
+//!
+//! // Add `1` to the first two lanes of the vector.
+//! let m = m16x4::new(true, true, false, false);
+//! let a = m.select(a + 1, a);
+//! assert_eq!(a, i32x4::splat(2));
+//! ```
+//!
+//! The elements of a vector mask are either `true` or `false`. Here `true`
+//! means that a lane is "selected", while `false` means that a lane is not
+//! selected.
+//!
+//! All vector masks implement a `mask.select(a: T, b: T) -> T` method that
+//! works on all vectors that have the same number of lanes as the mask. The
+//! resulting vector contains the elements of `a` for those lanes for which the
+//! mask is `true`, and the elements of `b` otherwise.
+//!
+//! The example constructs a mask with the first two lanes set to `true` and
+//! the last two lanes set to `false`. This selects the first two lanes of `a +
+//! 1` and the last two lanes of `a`, producing a vector where the first two
+//! lanes have been incremented by `1`.
+//!
+//! > note: mask `select` can be used on vector types that have the same number
+//! > of lanes as the mask. The example shows this by using [`m16x4`] instead
+//! > of [`m32x4`]. It is _typically_ more performant to use a mask element
+//! > width equal to the element width of the vectors being operated upon.
+//! > This is, however, not true for 512-bit wide vectors when targeting
+//! > AVX-512, where the most efficient masks use only 1-bit per element.
+//!
+//! All vertical comparison operations returns masks:
+//!
+//! ```
+//! # use packed_simd::*;
+//! let a = i32x4::new(1, 1, 3, 3);
+//! let b = i32x4::new(2, 2, 0, 0);
+//!
+//! // ge: >= (Greater Eequal; see also lt, le, gt, eq, ne).
+//! let m = a.ge(i32x4::splat(2));
+//!
+//! if m.any() {
+//! // all / any / none allow coherent control flow
+//! let d = m.select(a, b);
+//! assert_eq!(d, i32x4::new(2, 2, 3, 3));
+//! }
+//! ```
+//!
+//! ## Conversions
+//!
+//! * **lossless widening conversions**: [`From`]/[`Into`] are implemented for
+//! vectors with the same number of lanes when the conversion is value
+//! preserving (same as in `std`).
+//!
+//! * **safe bitwise conversions**: The cargo feature `into_bits` provides the
+//! `IntoBits/FromBits` traits (`x.into_bits()`). These perform safe bitwise
+//! `transmute`s when all bit patterns of the source type are valid bit
+//! patterns of the target type and are also implemented for the
+//! architecture-specific vector types of `std::arch`. For example, `let x:
+//! u8x8 = m8x8::splat(true).into_bits();` is provided because all `m8x8` bit
+//! patterns are valid `u8x8` bit patterns. However, the opposite is not
+//! true, not all `u8x8` bit patterns are valid `m8x8` bit-patterns, so this
+//! operation cannot be performed safely using `x.into_bits()`; one needs to
+//! use `unsafe { crate::mem::transmute(x) }` for that, making sure that the
+//! value in the `u8x8` is a valid bit-pattern of `m8x8`.
+//!
+//! * **numeric casts** (`as`): are performed using [`FromCast`]/[`Cast`]
+//! (`x.cast()`), just like `as`:
+//!
+//! * casting integer vectors whose lane types have the same size (e.g.
+//! `i32xN` -> `u32xN`) is a **no-op**,
+//!
+//! * casting from a larger integer to a smaller integer (e.g. `u32xN` ->
+//! `u8xN`) will **truncate**,
+//!
+//! * casting from a smaller integer to a larger integer (e.g. `u8xN` ->
+//! `u32xN`) will:
+//! * **zero-extend** if the source is unsigned, or
+//! * **sign-extend** if the source is signed,
+//!
+//! * casting from a float to an integer will **round the float towards
+//! zero**,
+//!
+//! * casting from an integer to float will produce the floating point
+//! representation of the integer, **rounding to nearest, ties to even**,
+//!
+//! * casting from an `f32` to an `f64` is perfect and lossless,
+//!
+//! * casting from an `f64` to an `f32` **rounds to nearest, ties to even**.
+//!
+//! Numeric casts are not very "precise": sometimes lossy, sometimes value
+//! preserving, etc.
+//!
+//! ## Hardware Features
+//!
+//! This crate can use different hardware features based on your configured
+//! `RUSTFLAGS`. For example, with no configured `RUSTFLAGS`, `u64x8` on
+//! x86_64 will use SSE2 operations like `PCMPEQD`. If you configure
+//! `RUSTFLAGS='-C target-feature=+avx2,+avx'` on supported x86_64 hardware
+//! the same `u64x8` may use wider AVX2 operations like `VPCMPEQQ`. It is
+//! important for performance and for hardware support requirements that
+//! you choose an appropriate set of `target-feature` and `target-cpu`
+//! options during builds. For more information, see the [Performance
+//! guide](https://rust-lang-nursery.github.io/packed_simd/perf-guide/)
+
+#![feature(
+ adt_const_params,
+ repr_simd,
+ rustc_attrs,
+ platform_intrinsics,
+ stdsimd,
+ arm_target_feature,
+ link_llvm_intrinsics,
+ core_intrinsics,
+ stmt_expr_attributes,
+ custom_inner_attributes,
+)]
+#![allow(non_camel_case_types, non_snake_case,
+ // FIXME: these types are unsound in C FFI already
+ // See https://github.com/rust-lang/rust/issues/53346
+ improper_ctypes_definitions,
+ incomplete_features,
+ clippy::cast_possible_truncation,
+ clippy::cast_lossless,
+ clippy::cast_possible_wrap,
+ clippy::cast_precision_loss,
+ // TODO: manually add the `#[must_use]` attribute where appropriate
+ clippy::must_use_candidate,
+ // This lint is currently broken for generic code
+ // See https://github.com/rust-lang/rust-clippy/issues/3410
+ clippy::use_self,
+ clippy::wrong_self_convention,
+ clippy::from_over_into,
+)]
+#![cfg_attr(test, feature(hashmap_internals))]
+#![cfg_attr(doc_cfg, feature(doc_cfg))]
+#![deny(rust_2018_idioms, clippy::missing_inline_in_public_items)]
+#![no_std]
+
+use cfg_if::cfg_if;
+
+cfg_if! {
+ if #[cfg(feature = "core_arch")] {
+ #[allow(unused_imports)]
+ use core_arch as arch;
+ } else {
+ #[allow(unused_imports)]
+ use core::arch;
+ }
+}
+
+#[cfg(all(target_arch = "wasm32", test))]
+use wasm_bindgen_test::*;
+
+#[allow(unused_imports)]
+use core::{
+ /* arch (handled above), */ cmp, f32, f64, fmt, hash, hint, i128, i16, i32, i64, i8, intrinsics,
+ isize, iter, marker, mem, ops, ptr, slice, u128, u16, u32, u64, u8, usize,
+};
+
+#[macro_use]
+mod testing;
+#[macro_use]
+mod api;
+mod codegen;
+mod sealed;
+
+pub use crate::sealed::{Mask, Shuffle, Simd as SimdVector, SimdArray};
+
+/// Packed SIMD vector type.
+///
+/// # Examples
+///
+/// ```
+/// # use packed_simd::Simd;
+/// let v = Simd::<[i32; 4]>::new(0, 1, 2, 3);
+/// assert_eq!(v.extract(2), 2);
+/// ```
+#[repr(transparent)]
+#[derive(Copy, Clone)]
+pub struct Simd<A: sealed::SimdArray>(
+ // FIXME: this type should be private,
+ // but it currently must be public for the
+ // `shuffle!` macro to work: it needs to
+ // access the internal `repr(simd)` type
+ // to call the shuffle intrinsics.
+ #[doc(hidden)] pub <A as sealed::SimdArray>::Tuple,
+);
+
+impl<A: sealed::SimdArray> sealed::Seal for Simd<A> {}
+
+/// Wrapper over `T` implementing a lexicoraphical order via the `PartialOrd`
+/// and/or `Ord` traits.
+#[repr(transparent)]
+#[derive(Copy, Clone, Debug)]
+#[allow(clippy::missing_inline_in_public_items)]
+pub struct LexicographicallyOrdered<T>(T);
+
+mod masks;
+pub use self::masks::*;
+
+mod v16;
+pub use self::v16::*;
+
+mod v32;
+pub use self::v32::*;
+
+mod v64;
+pub use self::v64::*;
+
+mod v128;
+pub use self::v128::*;
+
+mod v256;
+pub use self::v256::*;
+
+mod v512;
+pub use self::v512::*;
+
+mod vSize;
+pub use self::vSize::*;
+
+mod vPtr;
+pub use self::vPtr::*;
+
+pub use self::api::cast::*;
+
+#[cfg(feature = "into_bits")]
+pub use self::api::into_bits::*;
+
+// Re-export the shuffle intrinsics required by the `shuffle!` macro.
+#[doc(hidden)]
+pub use self::codegen::llvm::{
+ __shuffle_vector16, __shuffle_vector2, __shuffle_vector32, __shuffle_vector4, __shuffle_vector64,
+ __shuffle_vector8,
+};
+
+pub(crate) mod llvm {
+ pub(crate) use crate::codegen::llvm::*;
+}