diff options
Diffstat (limited to 'third_party/rust/packed_simd/src/lib.rs')
-rw-r--r-- | third_party/rust/packed_simd/src/lib.rs | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/third_party/rust/packed_simd/src/lib.rs b/third_party/rust/packed_simd/src/lib.rs new file mode 100644 index 0000000000..867cc10e9e --- /dev/null +++ b/third_party/rust/packed_simd/src/lib.rs @@ -0,0 +1,348 @@ +//! # Portable packed SIMD vectors +//! +//! This crate is proposed for stabilization as `std::packed_simd` in [RFC2366: +//! `std::simd`](https://github.com/rust-lang/rfcs/pull/2366) . +//! +//! The examples available in the +//! [`examples/`](https://github.com/rust-lang-nursery/packed_simd/tree/master/examples) +//! sub-directory of the crate showcase how to use the library in practice. +//! +//! ## Table of contents +//! +//! - [Introduction](#introduction) +//! - [Vector types](#vector-types) +//! - [Conditional operations](#conditional-operations) +//! - [Conversions](#conversions) +//! - [Hardware Features](#hardware-features) +//! - [Performance guide](https://rust-lang-nursery.github.io/packed_simd/perf-guide/) +//! +//! ## Introduction +//! +//! This crate exports [`Simd<[T; N]>`][`Simd`]: a packed vector of `N` +//! elements of type `T` as well as many type aliases for this type: for +//! example, [`f32x4`], which is just an alias for `Simd<[f32; 4]>`. +//! +//! The operations on packed vectors are, by default, "vertical", that is, they +//! are applied to each vector lane in isolation of the others: +//! +//! ``` +//! # use packed_simd::*; +//! let a = i32x4::new(1, 2, 3, 4); +//! let b = i32x4::new(5, 6, 7, 8); +//! assert_eq!(a + b, i32x4::new(6, 8, 10, 12)); +//! ``` +//! +//! Many "horizontal" operations are also provided: +//! +//! ``` +//! # use packed_simd::*; +//! # let a = i32x4::new(1, 2, 3, 4); +//! assert_eq!(a.wrapping_sum(), 10); +//! ``` +//! +//! In virtually all architectures vertical operations are fast, while +//! horizontal operations are, by comparison, much slower. That is, the +//! most portably-efficient way of performing a reduction over a slice +//! is to collect the results into a vector using vertical operations, +//! and performing a single horizontal operation at the end: +//! +//! ``` +//! # use packed_simd::*; +//! fn reduce(x: &[i32]) -> i32 { +//! assert_eq!(x.len() % 4, 0); +//! let mut sum = i32x4::splat(0); // [0, 0, 0, 0] +//! for i in (0..x.len()).step_by(4) { +//! sum += i32x4::from_slice_unaligned(&x[i..]); +//! } +//! sum.wrapping_sum() +//! } +//! +//! let x = [0, 1, 2, 3, 4, 5, 6, 7]; +//! assert_eq!(reduce(&x), 28); +//! ``` +//! +//! ## Vector types +//! +//! The vector type aliases are named according to the following scheme: +//! +//! > `{element_type}x{number_of_lanes} == Simd<[element_type; +//! number_of_lanes]>` +//! +//! where the following element types are supported: +//! +//! * `i{element_width}`: signed integer +//! * `u{element_width}`: unsigned integer +//! * `f{element_width}`: float +//! * `m{element_width}`: mask (see below) +//! * `*{const,mut} T`: `const` and `mut` pointers +//! +//! ## Basic operations +//! +//! ``` +//! # use packed_simd::*; +//! // Sets all elements to `0`: +//! let a = i32x4::splat(0); +//! +//! // Reads a vector from a slice: +//! let mut arr = [0, 0, 0, 1, 2, 3, 4, 5]; +//! let b = i32x4::from_slice_unaligned(&arr); +//! +//! // Reads the 4-th element of a vector: +//! assert_eq!(b.extract(3), 1); +//! +//! // Returns a new vector where the 4-th element is replaced with `1`: +//! let a = a.replace(3, 1); +//! assert_eq!(a, b); +//! +//! // Writes a vector to a slice: +//! let a = a.replace(2, 1); +//! a.write_to_slice_unaligned(&mut arr[4..]); +//! assert_eq!(arr, [0, 0, 0, 1, 0, 0, 1, 1]); +//! ``` +//! +//! ## Conditional operations +//! +//! One often needs to perform an operation on some lanes of the vector. Vector +//! masks, like `m32x4`, allow selecting on which vector lanes an operation is +//! to be performed: +//! +//! ``` +//! # use packed_simd::*; +//! let a = i32x4::new(1, 1, 2, 2); +//! +//! // Add `1` to the first two lanes of the vector. +//! let m = m16x4::new(true, true, false, false); +//! let a = m.select(a + 1, a); +//! assert_eq!(a, i32x4::splat(2)); +//! ``` +//! +//! The elements of a vector mask are either `true` or `false`. Here `true` +//! means that a lane is "selected", while `false` means that a lane is not +//! selected. +//! +//! All vector masks implement a `mask.select(a: T, b: T) -> T` method that +//! works on all vectors that have the same number of lanes as the mask. The +//! resulting vector contains the elements of `a` for those lanes for which the +//! mask is `true`, and the elements of `b` otherwise. +//! +//! The example constructs a mask with the first two lanes set to `true` and +//! the last two lanes set to `false`. This selects the first two lanes of `a + +//! 1` and the last two lanes of `a`, producing a vector where the first two +//! lanes have been incremented by `1`. +//! +//! > note: mask `select` can be used on vector types that have the same number +//! > of lanes as the mask. The example shows this by using [`m16x4`] instead +//! > of [`m32x4`]. It is _typically_ more performant to use a mask element +//! > width equal to the element width of the vectors being operated upon. +//! > This is, however, not true for 512-bit wide vectors when targeting +//! > AVX-512, where the most efficient masks use only 1-bit per element. +//! +//! All vertical comparison operations returns masks: +//! +//! ``` +//! # use packed_simd::*; +//! let a = i32x4::new(1, 1, 3, 3); +//! let b = i32x4::new(2, 2, 0, 0); +//! +//! // ge: >= (Greater Eequal; see also lt, le, gt, eq, ne). +//! let m = a.ge(i32x4::splat(2)); +//! +//! if m.any() { +//! // all / any / none allow coherent control flow +//! let d = m.select(a, b); +//! assert_eq!(d, i32x4::new(2, 2, 3, 3)); +//! } +//! ``` +//! +//! ## Conversions +//! +//! * **lossless widening conversions**: [`From`]/[`Into`] are implemented for +//! vectors with the same number of lanes when the conversion is value +//! preserving (same as in `std`). +//! +//! * **safe bitwise conversions**: The cargo feature `into_bits` provides the +//! `IntoBits/FromBits` traits (`x.into_bits()`). These perform safe bitwise +//! `transmute`s when all bit patterns of the source type are valid bit +//! patterns of the target type and are also implemented for the +//! architecture-specific vector types of `std::arch`. For example, `let x: +//! u8x8 = m8x8::splat(true).into_bits();` is provided because all `m8x8` bit +//! patterns are valid `u8x8` bit patterns. However, the opposite is not +//! true, not all `u8x8` bit patterns are valid `m8x8` bit-patterns, so this +//! operation cannot be performed safely using `x.into_bits()`; one needs to +//! use `unsafe { crate::mem::transmute(x) }` for that, making sure that the +//! value in the `u8x8` is a valid bit-pattern of `m8x8`. +//! +//! * **numeric casts** (`as`): are performed using [`FromCast`]/[`Cast`] +//! (`x.cast()`), just like `as`: +//! +//! * casting integer vectors whose lane types have the same size (e.g. +//! `i32xN` -> `u32xN`) is a **no-op**, +//! +//! * casting from a larger integer to a smaller integer (e.g. `u32xN` -> +//! `u8xN`) will **truncate**, +//! +//! * casting from a smaller integer to a larger integer (e.g. `u8xN` -> +//! `u32xN`) will: +//! * **zero-extend** if the source is unsigned, or +//! * **sign-extend** if the source is signed, +//! +//! * casting from a float to an integer will **round the float towards +//! zero**, +//! +//! * casting from an integer to float will produce the floating point +//! representation of the integer, **rounding to nearest, ties to even**, +//! +//! * casting from an `f32` to an `f64` is perfect and lossless, +//! +//! * casting from an `f64` to an `f32` **rounds to nearest, ties to even**. +//! +//! Numeric casts are not very "precise": sometimes lossy, sometimes value +//! preserving, etc. +//! +//! ## Hardware Features +//! +//! This crate can use different hardware features based on your configured +//! `RUSTFLAGS`. For example, with no configured `RUSTFLAGS`, `u64x8` on +//! x86_64 will use SSE2 operations like `PCMPEQD`. If you configure +//! `RUSTFLAGS='-C target-feature=+avx2,+avx'` on supported x86_64 hardware +//! the same `u64x8` may use wider AVX2 operations like `VPCMPEQQ`. It is +//! important for performance and for hardware support requirements that +//! you choose an appropriate set of `target-feature` and `target-cpu` +//! options during builds. For more information, see the [Performance +//! guide](https://rust-lang-nursery.github.io/packed_simd/perf-guide/) + +#![feature( + adt_const_params, + repr_simd, + rustc_attrs, + platform_intrinsics, + stdsimd, + arm_target_feature, + link_llvm_intrinsics, + core_intrinsics, + stmt_expr_attributes, + custom_inner_attributes, +)] +#![allow(non_camel_case_types, non_snake_case, + // FIXME: these types are unsound in C FFI already + // See https://github.com/rust-lang/rust/issues/53346 + improper_ctypes_definitions, + incomplete_features, + clippy::cast_possible_truncation, + clippy::cast_lossless, + clippy::cast_possible_wrap, + clippy::cast_precision_loss, + // TODO: manually add the `#[must_use]` attribute where appropriate + clippy::must_use_candidate, + // This lint is currently broken for generic code + // See https://github.com/rust-lang/rust-clippy/issues/3410 + clippy::use_self, + clippy::wrong_self_convention, + clippy::from_over_into, +)] +#![cfg_attr(test, feature(hashmap_internals))] +#![cfg_attr(doc_cfg, feature(doc_cfg))] +#![deny(rust_2018_idioms, clippy::missing_inline_in_public_items)] +#![no_std] + +use cfg_if::cfg_if; + +cfg_if! { + if #[cfg(feature = "core_arch")] { + #[allow(unused_imports)] + use core_arch as arch; + } else { + #[allow(unused_imports)] + use core::arch; + } +} + +#[cfg(all(target_arch = "wasm32", test))] +use wasm_bindgen_test::*; + +#[allow(unused_imports)] +use core::{ + /* arch (handled above), */ cmp, f32, f64, fmt, hash, hint, i128, i16, i32, i64, i8, intrinsics, + isize, iter, marker, mem, ops, ptr, slice, u128, u16, u32, u64, u8, usize, +}; + +#[macro_use] +mod testing; +#[macro_use] +mod api; +mod codegen; +mod sealed; + +pub use crate::sealed::{Mask, Shuffle, Simd as SimdVector, SimdArray}; + +/// Packed SIMD vector type. +/// +/// # Examples +/// +/// ``` +/// # use packed_simd::Simd; +/// let v = Simd::<[i32; 4]>::new(0, 1, 2, 3); +/// assert_eq!(v.extract(2), 2); +/// ``` +#[repr(transparent)] +#[derive(Copy, Clone)] +pub struct Simd<A: sealed::SimdArray>( + // FIXME: this type should be private, + // but it currently must be public for the + // `shuffle!` macro to work: it needs to + // access the internal `repr(simd)` type + // to call the shuffle intrinsics. + #[doc(hidden)] pub <A as sealed::SimdArray>::Tuple, +); + +impl<A: sealed::SimdArray> sealed::Seal for Simd<A> {} + +/// Wrapper over `T` implementing a lexicoraphical order via the `PartialOrd` +/// and/or `Ord` traits. +#[repr(transparent)] +#[derive(Copy, Clone, Debug)] +#[allow(clippy::missing_inline_in_public_items)] +pub struct LexicographicallyOrdered<T>(T); + +mod masks; +pub use self::masks::*; + +mod v16; +pub use self::v16::*; + +mod v32; +pub use self::v32::*; + +mod v64; +pub use self::v64::*; + +mod v128; +pub use self::v128::*; + +mod v256; +pub use self::v256::*; + +mod v512; +pub use self::v512::*; + +mod vSize; +pub use self::vSize::*; + +mod vPtr; +pub use self::vPtr::*; + +pub use self::api::cast::*; + +#[cfg(feature = "into_bits")] +pub use self::api::into_bits::*; + +// Re-export the shuffle intrinsics required by the `shuffle!` macro. +#[doc(hidden)] +pub use self::codegen::llvm::{ + __shuffle_vector16, __shuffle_vector2, __shuffle_vector32, __shuffle_vector4, __shuffle_vector64, + __shuffle_vector8, +}; + +pub(crate) mod llvm { + pub(crate) use crate::codegen::llvm::*; +} |