diff options
Diffstat (limited to 'third_party/rust/regex-syntax/src/ast')
-rw-r--r-- | third_party/rust/regex-syntax/src/ast/mod.rs | 1502 | ||||
-rw-r--r-- | third_party/rust/regex-syntax/src/ast/parse.rs | 5930 | ||||
-rw-r--r-- | third_party/rust/regex-syntax/src/ast/print.rs | 568 | ||||
-rw-r--r-- | third_party/rust/regex-syntax/src/ast/visitor.rs | 517 |
4 files changed, 8517 insertions, 0 deletions
diff --git a/third_party/rust/regex-syntax/src/ast/mod.rs b/third_party/rust/regex-syntax/src/ast/mod.rs new file mode 100644 index 0000000000..387ea3a698 --- /dev/null +++ b/third_party/rust/regex-syntax/src/ast/mod.rs @@ -0,0 +1,1502 @@ +/*! +Defines an abstract syntax for regular expressions. +*/ + +use std::cmp::Ordering; +use std::error; +use std::fmt; + +pub use crate::ast::visitor::{visit, Visitor}; + +pub mod parse; +pub mod print; +mod visitor; + +/// An error that occurred while parsing a regular expression into an abstract +/// syntax tree. +/// +/// Note that not all ASTs represents a valid regular expression. For example, +/// an AST is constructed without error for `\p{Quux}`, but `Quux` is not a +/// valid Unicode property name. That particular error is reported when +/// translating an AST to the high-level intermediate representation (`HIR`). +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Error { + /// The kind of error. + kind: ErrorKind, + /// The original pattern that the parser generated the error from. Every + /// span in an error is a valid range into this string. + pattern: String, + /// The span of this error. + span: Span, +} + +impl Error { + /// Return the type of this error. + pub fn kind(&self) -> &ErrorKind { + &self.kind + } + + /// The original pattern string in which this error occurred. + /// + /// Every span reported by this error is reported in terms of this string. + pub fn pattern(&self) -> &str { + &self.pattern + } + + /// Return the span at which this error occurred. + pub fn span(&self) -> &Span { + &self.span + } + + /// Return an auxiliary span. This span exists only for some errors that + /// benefit from being able to point to two locations in the original + /// regular expression. For example, "duplicate" errors will have the + /// main error position set to the duplicate occurrence while its + /// auxiliary span will be set to the initial occurrence. + pub fn auxiliary_span(&self) -> Option<&Span> { + use self::ErrorKind::*; + match self.kind { + FlagDuplicate { ref original } => Some(original), + FlagRepeatedNegation { ref original, .. } => Some(original), + GroupNameDuplicate { ref original, .. } => Some(original), + _ => None, + } + } +} + +/// The type of an error that occurred while building an AST. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ErrorKind { + /// The capturing group limit was exceeded. + /// + /// Note that this represents a limit on the total number of capturing + /// groups in a regex and not necessarily the number of nested capturing + /// groups. That is, the nest limit can be low and it is still possible for + /// this error to occur. + CaptureLimitExceeded, + /// An invalid escape sequence was found in a character class set. + ClassEscapeInvalid, + /// An invalid character class range was found. An invalid range is any + /// range where the start is greater than the end. + ClassRangeInvalid, + /// An invalid range boundary was found in a character class. Range + /// boundaries must be a single literal codepoint, but this error indicates + /// that something else was found, such as a nested class. + ClassRangeLiteral, + /// An opening `[` was found with no corresponding closing `]`. + ClassUnclosed, + /// Note that this error variant is no longer used. Namely, a decimal + /// number can only appear as a repetition quantifier. When the number + /// in a repetition quantifier is empty, then it gets its own specialized + /// error, `RepetitionCountDecimalEmpty`. + DecimalEmpty, + /// An invalid decimal number was given where one was expected. + DecimalInvalid, + /// A bracketed hex literal was empty. + EscapeHexEmpty, + /// A bracketed hex literal did not correspond to a Unicode scalar value. + EscapeHexInvalid, + /// An invalid hexadecimal digit was found. + EscapeHexInvalidDigit, + /// EOF was found before an escape sequence was completed. + EscapeUnexpectedEof, + /// An unrecognized escape sequence. + EscapeUnrecognized, + /// A dangling negation was used when setting flags, e.g., `i-`. + FlagDanglingNegation, + /// A flag was used twice, e.g., `i-i`. + FlagDuplicate { + /// The position of the original flag. The error position + /// points to the duplicate flag. + original: Span, + }, + /// The negation operator was used twice, e.g., `-i-s`. + FlagRepeatedNegation { + /// The position of the original negation operator. The error position + /// points to the duplicate negation operator. + original: Span, + }, + /// Expected a flag but got EOF, e.g., `(?`. + FlagUnexpectedEof, + /// Unrecognized flag, e.g., `a`. + FlagUnrecognized, + /// A duplicate capture name was found. + GroupNameDuplicate { + /// The position of the initial occurrence of the capture name. The + /// error position itself points to the duplicate occurrence. + original: Span, + }, + /// A capture group name is empty, e.g., `(?P<>abc)`. + GroupNameEmpty, + /// An invalid character was seen for a capture group name. This includes + /// errors where the first character is a digit (even though subsequent + /// characters are allowed to be digits). + GroupNameInvalid, + /// A closing `>` could not be found for a capture group name. + GroupNameUnexpectedEof, + /// An unclosed group, e.g., `(ab`. + /// + /// The span of this error corresponds to the unclosed parenthesis. + GroupUnclosed, + /// An unopened group, e.g., `ab)`. + GroupUnopened, + /// The nest limit was exceeded. The limit stored here is the limit + /// configured in the parser. + NestLimitExceeded(u32), + /// The range provided in a counted repetition operator is invalid. The + /// range is invalid if the start is greater than the end. + RepetitionCountInvalid, + /// An opening `{` was not followed by a valid decimal value. + /// For example, `x{}` or `x{]}` would fail. + RepetitionCountDecimalEmpty, + /// An opening `{` was found with no corresponding closing `}`. + RepetitionCountUnclosed, + /// A repetition operator was applied to a missing sub-expression. This + /// occurs, for example, in the regex consisting of just a `*` or even + /// `(?i)*`. It is, however, possible to create a repetition operating on + /// an empty sub-expression. For example, `()*` is still considered valid. + RepetitionMissing, + /// The Unicode class is not valid. This typically occurs when a `\p` is + /// followed by something other than a `{`. + UnicodeClassInvalid, + /// When octal support is disabled, this error is produced when an octal + /// escape is used. The octal escape is assumed to be an invocation of + /// a backreference, which is the common case. + UnsupportedBackreference, + /// When syntax similar to PCRE's look-around is used, this error is + /// returned. Some example syntaxes that are rejected include, but are + /// not necessarily limited to, `(?=re)`, `(?!re)`, `(?<=re)` and + /// `(?<!re)`. Note that all of these syntaxes are otherwise invalid; this + /// error is used to improve the user experience. + UnsupportedLookAround, + /// Hints that destructuring should not be exhaustive. + /// + /// This enum may grow additional variants, so this makes sure clients + /// don't count on exhaustive matching. (Otherwise, adding a new variant + /// could break existing code.) + #[doc(hidden)] + __Nonexhaustive, +} + +impl error::Error for Error { + // TODO: Remove this method entirely on the next breaking semver release. + #[allow(deprecated)] + fn description(&self) -> &str { + use self::ErrorKind::*; + match self.kind { + CaptureLimitExceeded => "capture group limit exceeded", + ClassEscapeInvalid => "invalid escape sequence in character class", + ClassRangeInvalid => "invalid character class range", + ClassRangeLiteral => "invalid range boundary, must be a literal", + ClassUnclosed => "unclosed character class", + DecimalEmpty => "empty decimal literal", + DecimalInvalid => "invalid decimal literal", + EscapeHexEmpty => "empty hexadecimal literal", + EscapeHexInvalid => "invalid hexadecimal literal", + EscapeHexInvalidDigit => "invalid hexadecimal digit", + EscapeUnexpectedEof => "unexpected eof (escape sequence)", + EscapeUnrecognized => "unrecognized escape sequence", + FlagDanglingNegation => "dangling flag negation operator", + FlagDuplicate { .. } => "duplicate flag", + FlagRepeatedNegation { .. } => "repeated negation", + FlagUnexpectedEof => "unexpected eof (flag)", + FlagUnrecognized => "unrecognized flag", + GroupNameDuplicate { .. } => "duplicate capture group name", + GroupNameEmpty => "empty capture group name", + GroupNameInvalid => "invalid capture group name", + GroupNameUnexpectedEof => "unclosed capture group name", + GroupUnclosed => "unclosed group", + GroupUnopened => "unopened group", + NestLimitExceeded(_) => "nest limit exceeded", + RepetitionCountInvalid => "invalid repetition count range", + RepetitionCountUnclosed => "unclosed counted repetition", + RepetitionMissing => "repetition operator missing expression", + UnicodeClassInvalid => "invalid Unicode character class", + UnsupportedBackreference => "backreferences are not supported", + UnsupportedLookAround => "look-around is not supported", + _ => unreachable!(), + } + } +} + +impl fmt::Display for Error { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + crate::error::Formatter::from(self).fmt(f) + } +} + +impl fmt::Display for ErrorKind { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + use self::ErrorKind::*; + match *self { + CaptureLimitExceeded => write!( + f, + "exceeded the maximum number of \ + capturing groups ({})", + ::std::u32::MAX + ), + ClassEscapeInvalid => { + write!(f, "invalid escape sequence found in character class") + } + ClassRangeInvalid => write!( + f, + "invalid character class range, \ + the start must be <= the end" + ), + ClassRangeLiteral => { + write!(f, "invalid range boundary, must be a literal") + } + ClassUnclosed => write!(f, "unclosed character class"), + DecimalEmpty => write!(f, "decimal literal empty"), + DecimalInvalid => write!(f, "decimal literal invalid"), + EscapeHexEmpty => write!(f, "hexadecimal literal empty"), + EscapeHexInvalid => { + write!(f, "hexadecimal literal is not a Unicode scalar value") + } + EscapeHexInvalidDigit => write!(f, "invalid hexadecimal digit"), + EscapeUnexpectedEof => write!( + f, + "incomplete escape sequence, \ + reached end of pattern prematurely" + ), + EscapeUnrecognized => write!(f, "unrecognized escape sequence"), + FlagDanglingNegation => { + write!(f, "dangling flag negation operator") + } + FlagDuplicate { .. } => write!(f, "duplicate flag"), + FlagRepeatedNegation { .. } => { + write!(f, "flag negation operator repeated") + } + FlagUnexpectedEof => { + write!(f, "expected flag but got end of regex") + } + FlagUnrecognized => write!(f, "unrecognized flag"), + GroupNameDuplicate { .. } => { + write!(f, "duplicate capture group name") + } + GroupNameEmpty => write!(f, "empty capture group name"), + GroupNameInvalid => write!(f, "invalid capture group character"), + GroupNameUnexpectedEof => write!(f, "unclosed capture group name"), + GroupUnclosed => write!(f, "unclosed group"), + GroupUnopened => write!(f, "unopened group"), + NestLimitExceeded(limit) => write!( + f, + "exceed the maximum number of \ + nested parentheses/brackets ({})", + limit + ), + RepetitionCountInvalid => write!( + f, + "invalid repetition count range, \ + the start must be <= the end" + ), + RepetitionCountDecimalEmpty => { + write!(f, "repetition quantifier expects a valid decimal") + } + RepetitionCountUnclosed => { + write!(f, "unclosed counted repetition") + } + RepetitionMissing => { + write!(f, "repetition operator missing expression") + } + UnicodeClassInvalid => { + write!(f, "invalid Unicode character class") + } + UnsupportedBackreference => { + write!(f, "backreferences are not supported") + } + UnsupportedLookAround => write!( + f, + "look-around, including look-ahead and look-behind, \ + is not supported" + ), + _ => unreachable!(), + } + } +} + +/// Span represents the position information of a single AST item. +/// +/// All span positions are absolute byte offsets that can be used on the +/// original regular expression that was parsed. +#[derive(Clone, Copy, Eq, PartialEq)] +pub struct Span { + /// The start byte offset. + pub start: Position, + /// The end byte offset. + pub end: Position, +} + +impl fmt::Debug for Span { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + write!(f, "Span({:?}, {:?})", self.start, self.end) + } +} + +impl Ord for Span { + fn cmp(&self, other: &Span) -> Ordering { + (&self.start, &self.end).cmp(&(&other.start, &other.end)) + } +} + +impl PartialOrd for Span { + fn partial_cmp(&self, other: &Span) -> Option<Ordering> { + Some(self.cmp(other)) + } +} + +/// A single position in a regular expression. +/// +/// A position encodes one half of a span, and include the byte offset, line +/// number and column number. +#[derive(Clone, Copy, Eq, PartialEq)] +pub struct Position { + /// The absolute offset of this position, starting at `0` from the + /// beginning of the regular expression pattern string. + pub offset: usize, + /// The line number, starting at `1`. + pub line: usize, + /// The approximate column number, starting at `1`. + pub column: usize, +} + +impl fmt::Debug for Position { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + write!( + f, + "Position(o: {:?}, l: {:?}, c: {:?})", + self.offset, self.line, self.column + ) + } +} + +impl Ord for Position { + fn cmp(&self, other: &Position) -> Ordering { + self.offset.cmp(&other.offset) + } +} + +impl PartialOrd for Position { + fn partial_cmp(&self, other: &Position) -> Option<Ordering> { + Some(self.cmp(other)) + } +} + +impl Span { + /// Create a new span with the given positions. + pub fn new(start: Position, end: Position) -> Span { + Span { start, end } + } + + /// Create a new span using the given position as the start and end. + pub fn splat(pos: Position) -> Span { + Span::new(pos, pos) + } + + /// Create a new span by replacing the starting the position with the one + /// given. + pub fn with_start(self, pos: Position) -> Span { + Span { start: pos, ..self } + } + + /// Create a new span by replacing the ending the position with the one + /// given. + pub fn with_end(self, pos: Position) -> Span { + Span { end: pos, ..self } + } + + /// Returns true if and only if this span occurs on a single line. + pub fn is_one_line(&self) -> bool { + self.start.line == self.end.line + } + + /// Returns true if and only if this span is empty. That is, it points to + /// a single position in the concrete syntax of a regular expression. + pub fn is_empty(&self) -> bool { + self.start.offset == self.end.offset + } +} + +impl Position { + /// Create a new position with the given information. + /// + /// `offset` is the absolute offset of the position, starting at `0` from + /// the beginning of the regular expression pattern string. + /// + /// `line` is the line number, starting at `1`. + /// + /// `column` is the approximate column number, starting at `1`. + pub fn new(offset: usize, line: usize, column: usize) -> Position { + Position { offset, line, column } + } +} + +/// An abstract syntax tree for a singular expression along with comments +/// found. +/// +/// Comments are not stored in the tree itself to avoid complexity. Each +/// comment contains a span of precisely where it occurred in the original +/// regular expression. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct WithComments { + /// The actual ast. + pub ast: Ast, + /// All comments found in the original regular expression. + pub comments: Vec<Comment>, +} + +/// A comment from a regular expression with an associated span. +/// +/// A regular expression can only contain comments when the `x` flag is +/// enabled. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Comment { + /// The span of this comment, including the beginning `#` and ending `\n`. + pub span: Span, + /// The comment text, starting with the first character following the `#` + /// and ending with the last character preceding the `\n`. + pub comment: String, +} + +/// An abstract syntax tree for a single regular expression. +/// +/// An `Ast`'s `fmt::Display` implementation uses constant stack space and heap +/// space proportional to the size of the `Ast`. +/// +/// This type defines its own destructor that uses constant stack space and +/// heap space proportional to the size of the `Ast`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum Ast { + /// An empty regex that matches everything. + Empty(Span), + /// A set of flags, e.g., `(?is)`. + Flags(SetFlags), + /// A single character literal, which includes escape sequences. + Literal(Literal), + /// The "any character" class. + Dot(Span), + /// A single zero-width assertion. + Assertion(Assertion), + /// A single character class. This includes all forms of character classes + /// except for `.`. e.g., `\d`, `\pN`, `[a-z]` and `[[:alpha:]]`. + Class(Class), + /// A repetition operator applied to an arbitrary regular expression. + Repetition(Repetition), + /// A grouped regular expression. + Group(Group), + /// An alternation of regular expressions. + Alternation(Alternation), + /// A concatenation of regular expressions. + Concat(Concat), +} + +impl Ast { + /// Return the span of this abstract syntax tree. + pub fn span(&self) -> &Span { + match *self { + Ast::Empty(ref span) => span, + Ast::Flags(ref x) => &x.span, + Ast::Literal(ref x) => &x.span, + Ast::Dot(ref span) => span, + Ast::Assertion(ref x) => &x.span, + Ast::Class(ref x) => x.span(), + Ast::Repetition(ref x) => &x.span, + Ast::Group(ref x) => &x.span, + Ast::Alternation(ref x) => &x.span, + Ast::Concat(ref x) => &x.span, + } + } + + /// Return true if and only if this Ast is empty. + pub fn is_empty(&self) -> bool { + match *self { + Ast::Empty(_) => true, + _ => false, + } + } + + /// Returns true if and only if this AST has any (including possibly empty) + /// subexpressions. + fn has_subexprs(&self) -> bool { + match *self { + Ast::Empty(_) + | Ast::Flags(_) + | Ast::Literal(_) + | Ast::Dot(_) + | Ast::Assertion(_) => false, + Ast::Class(_) + | Ast::Repetition(_) + | Ast::Group(_) + | Ast::Alternation(_) + | Ast::Concat(_) => true, + } + } +} + +/// Print a display representation of this Ast. +/// +/// This does not preserve any of the original whitespace formatting that may +/// have originally been present in the concrete syntax from which this Ast +/// was generated. +/// +/// This implementation uses constant stack space and heap space proportional +/// to the size of the `Ast`. +impl fmt::Display for Ast { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + use crate::ast::print::Printer; + Printer::new().print(self, f) + } +} + +/// An alternation of regular expressions. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Alternation { + /// The span of this alternation. + pub span: Span, + /// The alternate regular expressions. + pub asts: Vec<Ast>, +} + +impl Alternation { + /// Return this alternation as an AST. + /// + /// If this alternation contains zero ASTs, then Ast::Empty is + /// returned. If this alternation contains exactly 1 AST, then the + /// corresponding AST is returned. Otherwise, Ast::Alternation is returned. + pub fn into_ast(mut self) -> Ast { + match self.asts.len() { + 0 => Ast::Empty(self.span), + 1 => self.asts.pop().unwrap(), + _ => Ast::Alternation(self), + } + } +} + +/// A concatenation of regular expressions. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Concat { + /// The span of this concatenation. + pub span: Span, + /// The concatenation regular expressions. + pub asts: Vec<Ast>, +} + +impl Concat { + /// Return this concatenation as an AST. + /// + /// If this concatenation contains zero ASTs, then Ast::Empty is + /// returned. If this concatenation contains exactly 1 AST, then the + /// corresponding AST is returned. Otherwise, Ast::Concat is returned. + pub fn into_ast(mut self) -> Ast { + match self.asts.len() { + 0 => Ast::Empty(self.span), + 1 => self.asts.pop().unwrap(), + _ => Ast::Concat(self), + } + } +} + +/// A single literal expression. +/// +/// A literal corresponds to a single Unicode scalar value. Literals may be +/// represented in their literal form, e.g., `a` or in their escaped form, +/// e.g., `\x61`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Literal { + /// The span of this literal. + pub span: Span, + /// The kind of this literal. + pub kind: LiteralKind, + /// The Unicode scalar value corresponding to this literal. + pub c: char, +} + +impl Literal { + /// If this literal was written as a `\x` hex escape, then this returns + /// the corresponding byte value. Otherwise, this returns `None`. + pub fn byte(&self) -> Option<u8> { + let short_hex = LiteralKind::HexFixed(HexLiteralKind::X); + if self.c as u32 <= 255 && self.kind == short_hex { + Some(self.c as u8) + } else { + None + } + } +} + +/// The kind of a single literal expression. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum LiteralKind { + /// The literal is written verbatim, e.g., `a` or `☃`. + Verbatim, + /// The literal is written as an escape because it is punctuation, e.g., + /// `\*` or `\[`. + Punctuation, + /// The literal is written as an octal escape, e.g., `\141`. + Octal, + /// The literal is written as a hex code with a fixed number of digits + /// depending on the type of the escape, e.g., `\x61` or or `\u0061` or + /// `\U00000061`. + HexFixed(HexLiteralKind), + /// The literal is written as a hex code with a bracketed number of + /// digits. The only restriction is that the bracketed hex code must refer + /// to a valid Unicode scalar value. + HexBrace(HexLiteralKind), + /// The literal is written as a specially recognized escape, e.g., `\f` + /// or `\n`. + Special(SpecialLiteralKind), +} + +/// The type of a special literal. +/// +/// A special literal is a special escape sequence recognized by the regex +/// parser, e.g., `\f` or `\n`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum SpecialLiteralKind { + /// Bell, spelled `\a` (`\x07`). + Bell, + /// Form feed, spelled `\f` (`\x0C`). + FormFeed, + /// Tab, spelled `\t` (`\x09`). + Tab, + /// Line feed, spelled `\n` (`\x0A`). + LineFeed, + /// Carriage return, spelled `\r` (`\x0D`). + CarriageReturn, + /// Vertical tab, spelled `\v` (`\x0B`). + VerticalTab, + /// Space, spelled `\ ` (`\x20`). Note that this can only appear when + /// parsing in verbose mode. + Space, +} + +/// The type of a Unicode hex literal. +/// +/// Note that all variants behave the same when used with brackets. They only +/// differ when used without brackets in the number of hex digits that must +/// follow. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum HexLiteralKind { + /// A `\x` prefix. When used without brackets, this form is limited to + /// two digits. + X, + /// A `\u` prefix. When used without brackets, this form is limited to + /// four digits. + UnicodeShort, + /// A `\U` prefix. When used without brackets, this form is limited to + /// eight digits. + UnicodeLong, +} + +impl HexLiteralKind { + /// The number of digits that must be used with this literal form when + /// used without brackets. When used with brackets, there is no + /// restriction on the number of digits. + pub fn digits(&self) -> u32 { + match *self { + HexLiteralKind::X => 2, + HexLiteralKind::UnicodeShort => 4, + HexLiteralKind::UnicodeLong => 8, + } + } +} + +/// A single character class expression. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum Class { + /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. + Unicode(ClassUnicode), + /// A perl character class, e.g., `\d` or `\W`. + Perl(ClassPerl), + /// A bracketed character class set, which may contain zero or more + /// character ranges and/or zero or more nested classes. e.g., + /// `[a-zA-Z\pL]`. + Bracketed(ClassBracketed), +} + +impl Class { + /// Return the span of this character class. + pub fn span(&self) -> &Span { + match *self { + Class::Perl(ref x) => &x.span, + Class::Unicode(ref x) => &x.span, + Class::Bracketed(ref x) => &x.span, + } + } +} + +/// A Perl character class. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassPerl { + /// The span of this class. + pub span: Span, + /// The kind of Perl class. + pub kind: ClassPerlKind, + /// Whether the class is negated or not. e.g., `\d` is not negated but + /// `\D` is. + pub negated: bool, +} + +/// The available Perl character classes. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ClassPerlKind { + /// Decimal numbers. + Digit, + /// Whitespace. + Space, + /// Word characters. + Word, +} + +/// An ASCII character class. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassAscii { + /// The span of this class. + pub span: Span, + /// The kind of ASCII class. + pub kind: ClassAsciiKind, + /// Whether the class is negated or not. e.g., `[[:alpha:]]` is not negated + /// but `[[:^alpha:]]` is. + pub negated: bool, +} + +/// The available ASCII character classes. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ClassAsciiKind { + /// `[0-9A-Za-z]` + Alnum, + /// `[A-Za-z]` + Alpha, + /// `[\x00-\x7F]` + Ascii, + /// `[ \t]` + Blank, + /// `[\x00-\x1F\x7F]` + Cntrl, + /// `[0-9]` + Digit, + /// `[!-~]` + Graph, + /// `[a-z]` + Lower, + /// `[ -~]` + Print, + /// `[!-/:-@\[-`{-~]` + Punct, + /// `[\t\n\v\f\r ]` + Space, + /// `[A-Z]` + Upper, + /// `[0-9A-Za-z_]` + Word, + /// `[0-9A-Fa-f]` + Xdigit, +} + +impl ClassAsciiKind { + /// Return the corresponding ClassAsciiKind variant for the given name. + /// + /// The name given should correspond to the lowercase version of the + /// variant name. e.g., `cntrl` is the name for `ClassAsciiKind::Cntrl`. + /// + /// If no variant with the corresponding name exists, then `None` is + /// returned. + pub fn from_name(name: &str) -> Option<ClassAsciiKind> { + use self::ClassAsciiKind::*; + match name { + "alnum" => Some(Alnum), + "alpha" => Some(Alpha), + "ascii" => Some(Ascii), + "blank" => Some(Blank), + "cntrl" => Some(Cntrl), + "digit" => Some(Digit), + "graph" => Some(Graph), + "lower" => Some(Lower), + "print" => Some(Print), + "punct" => Some(Punct), + "space" => Some(Space), + "upper" => Some(Upper), + "word" => Some(Word), + "xdigit" => Some(Xdigit), + _ => None, + } + } +} + +/// A Unicode character class. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassUnicode { + /// The span of this class. + pub span: Span, + /// Whether this class is negated or not. + /// + /// Note: be careful when using this attribute. This specifically refers + /// to whether the class is written as `\p` or `\P`, where the latter + /// is `negated = true`. However, it also possible to write something like + /// `\P{scx!=Katakana}` which is actually equivalent to + /// `\p{scx=Katakana}` and is therefore not actually negated even though + /// `negated = true` here. To test whether this class is truly negated + /// or not, use the `is_negated` method. + pub negated: bool, + /// The kind of Unicode class. + pub kind: ClassUnicodeKind, +} + +impl ClassUnicode { + /// Returns true if this class has been negated. + /// + /// Note that this takes the Unicode op into account, if it's present. + /// e.g., `is_negated` for `\P{scx!=Katakana}` will return `false`. + pub fn is_negated(&self) -> bool { + match self.kind { + ClassUnicodeKind::NamedValue { + op: ClassUnicodeOpKind::NotEqual, + .. + } => !self.negated, + _ => self.negated, + } + } +} + +/// The available forms of Unicode character classes. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ClassUnicodeKind { + /// A one letter abbreviated class, e.g., `\pN`. + OneLetter(char), + /// A binary property, general category or script. The string may be + /// empty. + Named(String), + /// A property name and an associated value. + NamedValue { + /// The type of Unicode op used to associate `name` with `value`. + op: ClassUnicodeOpKind, + /// The property name (which may be empty). + name: String, + /// The property value (which may be empty). + value: String, + }, +} + +/// The type of op used in a Unicode character class. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ClassUnicodeOpKind { + /// A property set to a specific value, e.g., `\p{scx=Katakana}`. + Equal, + /// A property set to a specific value using a colon, e.g., + /// `\p{scx:Katakana}`. + Colon, + /// A property that isn't a particular value, e.g., `\p{scx!=Katakana}`. + NotEqual, +} + +impl ClassUnicodeOpKind { + /// Whether the op is an equality op or not. + pub fn is_equal(&self) -> bool { + match *self { + ClassUnicodeOpKind::Equal | ClassUnicodeOpKind::Colon => true, + _ => false, + } + } +} + +/// A bracketed character class, e.g., `[a-z0-9]`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassBracketed { + /// The span of this class. + pub span: Span, + /// Whether this class is negated or not. e.g., `[a]` is not negated but + /// `[^a]` is. + pub negated: bool, + /// The type of this set. A set is either a normal union of things, e.g., + /// `[abc]` or a result of applying set operations, e.g., `[\pL--c]`. + pub kind: ClassSet, +} + +/// A character class set. +/// +/// This type corresponds to the internal structure of a bracketed character +/// class. That is, every bracketed character is one of two types: a union of +/// items (literals, ranges, other bracketed classes) or a tree of binary set +/// operations. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ClassSet { + /// An item, which can be a single literal, range, nested character class + /// or a union of items. + Item(ClassSetItem), + /// A single binary operation (i.e., &&, -- or ~~). + BinaryOp(ClassSetBinaryOp), +} + +impl ClassSet { + /// Build a set from a union. + pub fn union(ast: ClassSetUnion) -> ClassSet { + ClassSet::Item(ClassSetItem::Union(ast)) + } + + /// Return the span of this character class set. + pub fn span(&self) -> &Span { + match *self { + ClassSet::Item(ref x) => x.span(), + ClassSet::BinaryOp(ref x) => &x.span, + } + } + + /// Return true if and only if this class set is empty. + fn is_empty(&self) -> bool { + match *self { + ClassSet::Item(ClassSetItem::Empty(_)) => true, + _ => false, + } + } +} + +/// A single component of a character class set. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum ClassSetItem { + /// An empty item. + /// + /// Note that a bracketed character class cannot contain a single empty + /// item. Empty items can appear when using one of the binary operators. + /// For example, `[&&]` is the intersection of two empty classes. + Empty(Span), + /// A single literal. + Literal(Literal), + /// A range between two literals. + Range(ClassSetRange), + /// An ASCII character class, e.g., `[:alnum:]` or `[:punct:]`. + Ascii(ClassAscii), + /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. + Unicode(ClassUnicode), + /// A perl character class, e.g., `\d` or `\W`. + Perl(ClassPerl), + /// A bracketed character class set, which may contain zero or more + /// character ranges and/or zero or more nested classes. e.g., + /// `[a-zA-Z\pL]`. + Bracketed(Box<ClassBracketed>), + /// A union of items. + Union(ClassSetUnion), +} + +impl ClassSetItem { + /// Return the span of this character class set item. + pub fn span(&self) -> &Span { + match *self { + ClassSetItem::Empty(ref span) => span, + ClassSetItem::Literal(ref x) => &x.span, + ClassSetItem::Range(ref x) => &x.span, + ClassSetItem::Ascii(ref x) => &x.span, + ClassSetItem::Perl(ref x) => &x.span, + ClassSetItem::Unicode(ref x) => &x.span, + ClassSetItem::Bracketed(ref x) => &x.span, + ClassSetItem::Union(ref x) => &x.span, + } + } +} + +/// A single character class range in a set. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassSetRange { + /// The span of this range. + pub span: Span, + /// The start of this range. + pub start: Literal, + /// The end of this range. + pub end: Literal, +} + +impl ClassSetRange { + /// Returns true if and only if this character class range is valid. + /// + /// The only case where a range is invalid is if its start is greater than + /// its end. + pub fn is_valid(&self) -> bool { + self.start.c <= self.end.c + } +} + +/// A union of items inside a character class set. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassSetUnion { + /// The span of the items in this operation. e.g., the `a-z0-9` in + /// `[^a-z0-9]` + pub span: Span, + /// The sequence of items that make up this union. + pub items: Vec<ClassSetItem>, +} + +impl ClassSetUnion { + /// Push a new item in this union. + /// + /// The ending position of this union's span is updated to the ending + /// position of the span of the item given. If the union is empty, then + /// the starting position of this union is set to the starting position + /// of this item. + /// + /// In other words, if you only use this method to add items to a union + /// and you set the spans on each item correctly, then you should never + /// need to adjust the span of the union directly. + pub fn push(&mut self, item: ClassSetItem) { + if self.items.is_empty() { + self.span.start = item.span().start; + } + self.span.end = item.span().end; + self.items.push(item); + } + + /// Return this union as a character class set item. + /// + /// If this union contains zero items, then an empty union is + /// returned. If this concatenation contains exactly 1 item, then the + /// corresponding item is returned. Otherwise, ClassSetItem::Union is + /// returned. + pub fn into_item(mut self) -> ClassSetItem { + match self.items.len() { + 0 => ClassSetItem::Empty(self.span), + 1 => self.items.pop().unwrap(), + _ => ClassSetItem::Union(self), + } + } +} + +/// A Unicode character class set operation. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ClassSetBinaryOp { + /// The span of this operation. e.g., the `a-z--[h-p]` in `[a-z--h-p]`. + pub span: Span, + /// The type of this set operation. + pub kind: ClassSetBinaryOpKind, + /// The left hand side of the operation. + pub lhs: Box<ClassSet>, + /// The right hand side of the operation. + pub rhs: Box<ClassSet>, +} + +/// The type of a Unicode character class set operation. +/// +/// Note that this doesn't explicitly represent union since there is no +/// explicit union operator. Concatenation inside a character class corresponds +/// to the union operation. +#[derive(Clone, Copy, Debug, Eq, PartialEq)] +pub enum ClassSetBinaryOpKind { + /// The intersection of two sets, e.g., `\pN&&[a-z]`. + Intersection, + /// The difference of two sets, e.g., `\pN--[0-9]`. + Difference, + /// The symmetric difference of two sets. The symmetric difference is the + /// set of elements belonging to one but not both sets. + /// e.g., `[\pL~~[:ascii:]]`. + SymmetricDifference, +} + +/// A single zero-width assertion. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Assertion { + /// The span of this assertion. + pub span: Span, + /// The assertion kind, e.g., `\b` or `^`. + pub kind: AssertionKind, +} + +/// An assertion kind. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum AssertionKind { + /// `^` + StartLine, + /// `$` + EndLine, + /// `\A` + StartText, + /// `\z` + EndText, + /// `\b` + WordBoundary, + /// `\B` + NotWordBoundary, +} + +/// A repetition operation applied to a regular expression. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Repetition { + /// The span of this operation. + pub span: Span, + /// The actual operation. + pub op: RepetitionOp, + /// Whether this operation was applied greedily or not. + pub greedy: bool, + /// The regular expression under repetition. + pub ast: Box<Ast>, +} + +/// The repetition operator itself. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct RepetitionOp { + /// The span of this operator. This includes things like `+`, `*?` and + /// `{m,n}`. + pub span: Span, + /// The type of operation. + pub kind: RepetitionKind, +} + +/// The kind of a repetition operator. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum RepetitionKind { + /// `?` + ZeroOrOne, + /// `*` + ZeroOrMore, + /// `+` + OneOrMore, + /// `{m,n}` + Range(RepetitionRange), +} + +/// A range repetition operator. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum RepetitionRange { + /// `{m}` + Exactly(u32), + /// `{m,}` + AtLeast(u32), + /// `{m,n}` + Bounded(u32, u32), +} + +impl RepetitionRange { + /// Returns true if and only if this repetition range is valid. + /// + /// The only case where a repetition range is invalid is if it is bounded + /// and its start is greater than its end. + pub fn is_valid(&self) -> bool { + match *self { + RepetitionRange::Bounded(s, e) if s > e => false, + _ => true, + } + } +} + +/// A grouped regular expression. +/// +/// This includes both capturing and non-capturing groups. This does **not** +/// include flag-only groups like `(?is)`, but does contain any group that +/// contains a sub-expression, e.g., `(a)`, `(?P<name>a)`, `(?:a)` and +/// `(?is:a)`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Group { + /// The span of this group. + pub span: Span, + /// The kind of this group. + pub kind: GroupKind, + /// The regular expression in this group. + pub ast: Box<Ast>, +} + +impl Group { + /// If this group is non-capturing, then this returns the (possibly empty) + /// set of flags. Otherwise, `None` is returned. + pub fn flags(&self) -> Option<&Flags> { + match self.kind { + GroupKind::NonCapturing(ref flags) => Some(flags), + _ => None, + } + } + + /// Returns true if and only if this group is capturing. + pub fn is_capturing(&self) -> bool { + match self.kind { + GroupKind::CaptureIndex(_) | GroupKind::CaptureName(_) => true, + GroupKind::NonCapturing(_) => false, + } + } + + /// Returns the capture index of this group, if this is a capturing group. + /// + /// This returns a capture index precisely when `is_capturing` is `true`. + pub fn capture_index(&self) -> Option<u32> { + match self.kind { + GroupKind::CaptureIndex(i) => Some(i), + GroupKind::CaptureName(ref x) => Some(x.index), + GroupKind::NonCapturing(_) => None, + } + } +} + +/// The kind of a group. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum GroupKind { + /// `(a)` + CaptureIndex(u32), + /// `(?P<name>a)` + CaptureName(CaptureName), + /// `(?:a)` and `(?i:a)` + NonCapturing(Flags), +} + +/// A capture name. +/// +/// This corresponds to the name itself between the angle brackets in, e.g., +/// `(?P<foo>expr)`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct CaptureName { + /// The span of this capture name. + pub span: Span, + /// The capture name. + pub name: String, + /// The capture index. + pub index: u32, +} + +/// A group of flags that is not applied to a particular regular expression. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct SetFlags { + /// The span of these flags, including the grouping parentheses. + pub span: Span, + /// The actual sequence of flags. + pub flags: Flags, +} + +/// A group of flags. +/// +/// This corresponds only to the sequence of flags themselves, e.g., `is-u`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Flags { + /// The span of this group of flags. + pub span: Span, + /// A sequence of flag items. Each item is either a flag or a negation + /// operator. + pub items: Vec<FlagsItem>, +} + +impl Flags { + /// Add the given item to this sequence of flags. + /// + /// If the item was added successfully, then `None` is returned. If the + /// given item is a duplicate, then `Some(i)` is returned, where + /// `items[i].kind == item.kind`. + pub fn add_item(&mut self, item: FlagsItem) -> Option<usize> { + for (i, x) in self.items.iter().enumerate() { + if x.kind == item.kind { + return Some(i); + } + } + self.items.push(item); + None + } + + /// Returns the state of the given flag in this set. + /// + /// If the given flag is in the set but is negated, then `Some(false)` is + /// returned. + /// + /// If the given flag is in the set and is not negated, then `Some(true)` + /// is returned. + /// + /// Otherwise, `None` is returned. + pub fn flag_state(&self, flag: Flag) -> Option<bool> { + let mut negated = false; + for x in &self.items { + match x.kind { + FlagsItemKind::Negation => { + negated = true; + } + FlagsItemKind::Flag(ref xflag) if xflag == &flag => { + return Some(!negated); + } + _ => {} + } + } + None + } +} + +/// A single item in a group of flags. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct FlagsItem { + /// The span of this item. + pub span: Span, + /// The kind of this item. + pub kind: FlagsItemKind, +} + +/// The kind of an item in a group of flags. +#[derive(Clone, Debug, Eq, PartialEq)] +pub enum FlagsItemKind { + /// A negation operator applied to all subsequent flags in the enclosing + /// group. + Negation, + /// A single flag in a group. + Flag(Flag), +} + +impl FlagsItemKind { + /// Returns true if and only if this item is a negation operator. + pub fn is_negation(&self) -> bool { + match *self { + FlagsItemKind::Negation => true, + _ => false, + } + } +} + +/// A single flag. +#[derive(Clone, Copy, Debug, Eq, PartialEq)] +pub enum Flag { + /// `i` + CaseInsensitive, + /// `m` + MultiLine, + /// `s` + DotMatchesNewLine, + /// `U` + SwapGreed, + /// `u` + Unicode, + /// `x` + IgnoreWhitespace, +} + +/// A custom `Drop` impl is used for `Ast` such that it uses constant stack +/// space but heap space proportional to the depth of the `Ast`. +impl Drop for Ast { + fn drop(&mut self) { + use std::mem; + + match *self { + Ast::Empty(_) + | Ast::Flags(_) + | Ast::Literal(_) + | Ast::Dot(_) + | Ast::Assertion(_) + // Classes are recursive, so they get their own Drop impl. + | Ast::Class(_) => return, + Ast::Repetition(ref x) if !x.ast.has_subexprs() => return, + Ast::Group(ref x) if !x.ast.has_subexprs() => return, + Ast::Alternation(ref x) if x.asts.is_empty() => return, + Ast::Concat(ref x) if x.asts.is_empty() => return, + _ => {} + } + + let empty_span = || Span::splat(Position::new(0, 0, 0)); + let empty_ast = || Ast::Empty(empty_span()); + let mut stack = vec![mem::replace(self, empty_ast())]; + while let Some(mut ast) = stack.pop() { + match ast { + Ast::Empty(_) + | Ast::Flags(_) + | Ast::Literal(_) + | Ast::Dot(_) + | Ast::Assertion(_) + // Classes are recursive, so they get their own Drop impl. + | Ast::Class(_) => {} + Ast::Repetition(ref mut x) => { + stack.push(mem::replace(&mut x.ast, empty_ast())); + } + Ast::Group(ref mut x) => { + stack.push(mem::replace(&mut x.ast, empty_ast())); + } + Ast::Alternation(ref mut x) => { + stack.extend(x.asts.drain(..)); + } + Ast::Concat(ref mut x) => { + stack.extend(x.asts.drain(..)); + } + } + } + } +} + +/// A custom `Drop` impl is used for `ClassSet` such that it uses constant +/// stack space but heap space proportional to the depth of the `ClassSet`. +impl Drop for ClassSet { + fn drop(&mut self) { + use std::mem; + + match *self { + ClassSet::Item(ref item) => match *item { + ClassSetItem::Empty(_) + | ClassSetItem::Literal(_) + | ClassSetItem::Range(_) + | ClassSetItem::Ascii(_) + | ClassSetItem::Unicode(_) + | ClassSetItem::Perl(_) => return, + ClassSetItem::Bracketed(ref x) => { + if x.kind.is_empty() { + return; + } + } + ClassSetItem::Union(ref x) => { + if x.items.is_empty() { + return; + } + } + }, + ClassSet::BinaryOp(ref op) => { + if op.lhs.is_empty() && op.rhs.is_empty() { + return; + } + } + } + + let empty_span = || Span::splat(Position::new(0, 0, 0)); + let empty_set = || ClassSet::Item(ClassSetItem::Empty(empty_span())); + let mut stack = vec![mem::replace(self, empty_set())]; + while let Some(mut set) = stack.pop() { + match set { + ClassSet::Item(ref mut item) => match *item { + ClassSetItem::Empty(_) + | ClassSetItem::Literal(_) + | ClassSetItem::Range(_) + | ClassSetItem::Ascii(_) + | ClassSetItem::Unicode(_) + | ClassSetItem::Perl(_) => {} + ClassSetItem::Bracketed(ref mut x) => { + stack.push(mem::replace(&mut x.kind, empty_set())); + } + ClassSetItem::Union(ref mut x) => { + stack.extend(x.items.drain(..).map(ClassSet::Item)); + } + }, + ClassSet::BinaryOp(ref mut op) => { + stack.push(mem::replace(&mut op.lhs, empty_set())); + stack.push(mem::replace(&mut op.rhs, empty_set())); + } + } + } + } +} + +#[cfg(test)] +mod tests { + use super::*; + + // We use a thread with an explicit stack size to test that our destructor + // for Ast can handle arbitrarily sized expressions in constant stack + // space. In case we run on a platform without threads (WASM?), we limit + // this test to Windows/Unix. + #[test] + #[cfg(any(unix, windows))] + fn no_stack_overflow_on_drop() { + use std::thread; + + let run = || { + let span = || Span::splat(Position::new(0, 0, 0)); + let mut ast = Ast::Empty(span()); + for i in 0..200 { + ast = Ast::Group(Group { + span: span(), + kind: GroupKind::CaptureIndex(i), + ast: Box::new(ast), + }); + } + assert!(!ast.is_empty()); + }; + + // We run our test on a thread with a small stack size so we can + // force the issue more easily. + thread::Builder::new() + .stack_size(1 << 10) + .spawn(run) + .unwrap() + .join() + .unwrap(); + } +} diff --git a/third_party/rust/regex-syntax/src/ast/parse.rs b/third_party/rust/regex-syntax/src/ast/parse.rs new file mode 100644 index 0000000000..6e9c9aca06 --- /dev/null +++ b/third_party/rust/regex-syntax/src/ast/parse.rs @@ -0,0 +1,5930 @@ +/*! +This module provides a regular expression parser. +*/ + +use std::borrow::Borrow; +use std::cell::{Cell, RefCell}; +use std::mem; +use std::result; + +use crate::ast::{self, Ast, Position, Span}; +use crate::either::Either; + +use crate::is_meta_character; + +type Result<T> = result::Result<T, ast::Error>; + +/// A primitive is an expression with no sub-expressions. This includes +/// literals, assertions and non-set character classes. This representation +/// is used as intermediate state in the parser. +/// +/// This does not include ASCII character classes, since they can only appear +/// within a set character class. +#[derive(Clone, Debug, Eq, PartialEq)] +enum Primitive { + Literal(ast::Literal), + Assertion(ast::Assertion), + Dot(Span), + Perl(ast::ClassPerl), + Unicode(ast::ClassUnicode), +} + +impl Primitive { + /// Return the span of this primitive. + fn span(&self) -> &Span { + match *self { + Primitive::Literal(ref x) => &x.span, + Primitive::Assertion(ref x) => &x.span, + Primitive::Dot(ref span) => span, + Primitive::Perl(ref x) => &x.span, + Primitive::Unicode(ref x) => &x.span, + } + } + + /// Convert this primitive into a proper AST. + fn into_ast(self) -> Ast { + match self { + Primitive::Literal(lit) => Ast::Literal(lit), + Primitive::Assertion(assert) => Ast::Assertion(assert), + Primitive::Dot(span) => Ast::Dot(span), + Primitive::Perl(cls) => Ast::Class(ast::Class::Perl(cls)), + Primitive::Unicode(cls) => Ast::Class(ast::Class::Unicode(cls)), + } + } + + /// Convert this primitive into an item in a character class. + /// + /// If this primitive is not a legal item (i.e., an assertion or a dot), + /// then return an error. + fn into_class_set_item<P: Borrow<Parser>>( + self, + p: &ParserI<'_, P>, + ) -> Result<ast::ClassSetItem> { + use self::Primitive::*; + use crate::ast::ClassSetItem; + + match self { + Literal(lit) => Ok(ClassSetItem::Literal(lit)), + Perl(cls) => Ok(ClassSetItem::Perl(cls)), + Unicode(cls) => Ok(ClassSetItem::Unicode(cls)), + x => Err(p.error(*x.span(), ast::ErrorKind::ClassEscapeInvalid)), + } + } + + /// Convert this primitive into a literal in a character class. In + /// particular, literals are the only valid items that can appear in + /// ranges. + /// + /// If this primitive is not a legal item (i.e., a class, assertion or a + /// dot), then return an error. + fn into_class_literal<P: Borrow<Parser>>( + self, + p: &ParserI<'_, P>, + ) -> Result<ast::Literal> { + use self::Primitive::*; + + match self { + Literal(lit) => Ok(lit), + x => Err(p.error(*x.span(), ast::ErrorKind::ClassRangeLiteral)), + } + } +} + +/// Returns true if the given character is a hexadecimal digit. +fn is_hex(c: char) -> bool { + ('0' <= c && c <= '9') || ('a' <= c && c <= 'f') || ('A' <= c && c <= 'F') +} + +/// Returns true if the given character is a valid in a capture group name. +/// +/// If `first` is true, then `c` is treated as the first character in the +/// group name (which must be alphabetic or underscore). +fn is_capture_char(c: char, first: bool) -> bool { + c == '_' + || (!first + && (('0' <= c && c <= '9') || c == '.' || c == '[' || c == ']')) + || ('A' <= c && c <= 'Z') + || ('a' <= c && c <= 'z') +} + +/// A builder for a regular expression parser. +/// +/// This builder permits modifying configuration options for the parser. +#[derive(Clone, Debug)] +pub struct ParserBuilder { + ignore_whitespace: bool, + nest_limit: u32, + octal: bool, +} + +impl Default for ParserBuilder { + fn default() -> ParserBuilder { + ParserBuilder::new() + } +} + +impl ParserBuilder { + /// Create a new parser builder with a default configuration. + pub fn new() -> ParserBuilder { + ParserBuilder { + ignore_whitespace: false, + nest_limit: 250, + octal: false, + } + } + + /// Build a parser from this configuration with the given pattern. + pub fn build(&self) -> Parser { + Parser { + pos: Cell::new(Position { offset: 0, line: 1, column: 1 }), + capture_index: Cell::new(0), + nest_limit: self.nest_limit, + octal: self.octal, + initial_ignore_whitespace: self.ignore_whitespace, + ignore_whitespace: Cell::new(self.ignore_whitespace), + comments: RefCell::new(vec![]), + stack_group: RefCell::new(vec![]), + stack_class: RefCell::new(vec![]), + capture_names: RefCell::new(vec![]), + scratch: RefCell::new(String::new()), + } + } + + /// Set the nesting limit for this parser. + /// + /// The nesting limit controls how deep the abstract syntax tree is allowed + /// to be. If the AST exceeds the given limit (e.g., with too many nested + /// groups), then an error is returned by the parser. + /// + /// The purpose of this limit is to act as a heuristic to prevent stack + /// overflow for consumers that do structural induction on an `Ast` using + /// explicit recursion. While this crate never does this (instead using + /// constant stack space and moving the call stack to the heap), other + /// crates may. + /// + /// This limit is not checked until the entire Ast is parsed. Therefore, + /// if callers want to put a limit on the amount of heap space used, then + /// they should impose a limit on the length, in bytes, of the concrete + /// pattern string. In particular, this is viable since this parser + /// implementation will limit itself to heap space proportional to the + /// length of the pattern string. + /// + /// Note that a nest limit of `0` will return a nest limit error for most + /// patterns but not all. For example, a nest limit of `0` permits `a` but + /// not `ab`, since `ab` requires a concatenation, which results in a nest + /// depth of `1`. In general, a nest limit is not something that manifests + /// in an obvious way in the concrete syntax, therefore, it should not be + /// used in a granular way. + pub fn nest_limit(&mut self, limit: u32) -> &mut ParserBuilder { + self.nest_limit = limit; + self + } + + /// Whether to support octal syntax or not. + /// + /// Octal syntax is a little-known way of uttering Unicode codepoints in + /// a regular expression. For example, `a`, `\x61`, `\u0061` and + /// `\141` are all equivalent regular expressions, where the last example + /// shows octal syntax. + /// + /// While supporting octal syntax isn't in and of itself a problem, it does + /// make good error messages harder. That is, in PCRE based regex engines, + /// syntax like `\0` invokes a backreference, which is explicitly + /// unsupported in Rust's regex engine. However, many users expect it to + /// be supported. Therefore, when octal support is disabled, the error + /// message will explicitly mention that backreferences aren't supported. + /// + /// Octal syntax is disabled by default. + pub fn octal(&mut self, yes: bool) -> &mut ParserBuilder { + self.octal = yes; + self + } + + /// Enable verbose mode in the regular expression. + /// + /// When enabled, verbose mode permits insignificant whitespace in many + /// places in the regular expression, as well as comments. Comments are + /// started using `#` and continue until the end of the line. + /// + /// By default, this is disabled. It may be selectively enabled in the + /// regular expression by using the `x` flag regardless of this setting. + pub fn ignore_whitespace(&mut self, yes: bool) -> &mut ParserBuilder { + self.ignore_whitespace = yes; + self + } +} + +/// A regular expression parser. +/// +/// This parses a string representation of a regular expression into an +/// abstract syntax tree. The size of the tree is proportional to the length +/// of the regular expression pattern. +/// +/// A `Parser` can be configured in more detail via a +/// [`ParserBuilder`](struct.ParserBuilder.html). +#[derive(Clone, Debug)] +pub struct Parser { + /// The current position of the parser. + pos: Cell<Position>, + /// The current capture index. + capture_index: Cell<u32>, + /// The maximum number of open parens/brackets allowed. If the parser + /// exceeds this number, then an error is returned. + nest_limit: u32, + /// Whether to support octal syntax or not. When `false`, the parser will + /// return an error helpfully pointing out that backreferences are not + /// supported. + octal: bool, + /// The initial setting for `ignore_whitespace` as provided by + /// `ParserBuilder`. It is used when resetting the parser's state. + initial_ignore_whitespace: bool, + /// Whether whitespace should be ignored. When enabled, comments are + /// also permitted. + ignore_whitespace: Cell<bool>, + /// A list of comments, in order of appearance. + comments: RefCell<Vec<ast::Comment>>, + /// A stack of grouped sub-expressions, including alternations. + stack_group: RefCell<Vec<GroupState>>, + /// A stack of nested character classes. This is only non-empty when + /// parsing a class. + stack_class: RefCell<Vec<ClassState>>, + /// A sorted sequence of capture names. This is used to detect duplicate + /// capture names and report an error if one is detected. + capture_names: RefCell<Vec<ast::CaptureName>>, + /// A scratch buffer used in various places. Mostly this is used to + /// accumulate relevant characters from parts of a pattern. + scratch: RefCell<String>, +} + +/// ParserI is the internal parser implementation. +/// +/// We use this separate type so that we can carry the provided pattern string +/// along with us. In particular, a `Parser` internal state is not tied to any +/// one pattern, but `ParserI` is. +/// +/// This type also lets us use `ParserI<&Parser>` in production code while +/// retaining the convenience of `ParserI<Parser>` for tests, which sometimes +/// work against the internal interface of the parser. +#[derive(Clone, Debug)] +struct ParserI<'s, P> { + /// The parser state/configuration. + parser: P, + /// The full regular expression provided by the user. + pattern: &'s str, +} + +/// GroupState represents a single stack frame while parsing nested groups +/// and alternations. Each frame records the state up to an opening parenthesis +/// or a alternating bracket `|`. +#[derive(Clone, Debug)] +enum GroupState { + /// This state is pushed whenever an opening group is found. + Group { + /// The concatenation immediately preceding the opening group. + concat: ast::Concat, + /// The group that has been opened. Its sub-AST is always empty. + group: ast::Group, + /// Whether this group has the `x` flag enabled or not. + ignore_whitespace: bool, + }, + /// This state is pushed whenever a new alternation branch is found. If + /// an alternation branch is found and this state is at the top of the + /// stack, then this state should be modified to include the new + /// alternation. + Alternation(ast::Alternation), +} + +/// ClassState represents a single stack frame while parsing character classes. +/// Each frame records the state up to an intersection, difference, symmetric +/// difference or nested class. +/// +/// Note that a parser's character class stack is only non-empty when parsing +/// a character class. In all other cases, it is empty. +#[derive(Clone, Debug)] +enum ClassState { + /// This state is pushed whenever an opening bracket is found. + Open { + /// The union of class items immediately preceding this class. + union: ast::ClassSetUnion, + /// The class that has been opened. Typically this just corresponds + /// to the `[`, but it can also include `[^` since `^` indicates + /// negation of the class. + set: ast::ClassBracketed, + }, + /// This state is pushed when a operator is seen. When popped, the stored + /// set becomes the left hand side of the operator. + Op { + /// The type of the operation, i.e., &&, -- or ~~. + kind: ast::ClassSetBinaryOpKind, + /// The left-hand side of the operator. + lhs: ast::ClassSet, + }, +} + +impl Parser { + /// Create a new parser with a default configuration. + /// + /// The parser can be run with either the `parse` or `parse_with_comments` + /// methods. The parse methods return an abstract syntax tree. + /// + /// To set configuration options on the parser, use + /// [`ParserBuilder`](struct.ParserBuilder.html). + pub fn new() -> Parser { + ParserBuilder::new().build() + } + + /// Parse the regular expression into an abstract syntax tree. + pub fn parse(&mut self, pattern: &str) -> Result<Ast> { + ParserI::new(self, pattern).parse() + } + + /// Parse the regular expression and return an abstract syntax tree with + /// all of the comments found in the pattern. + pub fn parse_with_comments( + &mut self, + pattern: &str, + ) -> Result<ast::WithComments> { + ParserI::new(self, pattern).parse_with_comments() + } + + /// Reset the internal state of a parser. + /// + /// This is called at the beginning of every parse. This prevents the + /// parser from running with inconsistent state (say, if a previous + /// invocation returned an error and the parser is reused). + fn reset(&self) { + // These settings should be in line with the construction + // in `ParserBuilder::build`. + self.pos.set(Position { offset: 0, line: 1, column: 1 }); + self.ignore_whitespace.set(self.initial_ignore_whitespace); + self.comments.borrow_mut().clear(); + self.stack_group.borrow_mut().clear(); + self.stack_class.borrow_mut().clear(); + } +} + +impl<'s, P: Borrow<Parser>> ParserI<'s, P> { + /// Build an internal parser from a parser configuration and a pattern. + fn new(parser: P, pattern: &'s str) -> ParserI<'s, P> { + ParserI { parser, pattern } + } + + /// Return a reference to the parser state. + fn parser(&self) -> &Parser { + self.parser.borrow() + } + + /// Return a reference to the pattern being parsed. + fn pattern(&self) -> &str { + self.pattern.borrow() + } + + /// Create a new error with the given span and error type. + fn error(&self, span: Span, kind: ast::ErrorKind) -> ast::Error { + ast::Error { kind, pattern: self.pattern().to_string(), span } + } + + /// Return the current offset of the parser. + /// + /// The offset starts at `0` from the beginning of the regular expression + /// pattern string. + fn offset(&self) -> usize { + self.parser().pos.get().offset + } + + /// Return the current line number of the parser. + /// + /// The line number starts at `1`. + fn line(&self) -> usize { + self.parser().pos.get().line + } + + /// Return the current column of the parser. + /// + /// The column number starts at `1` and is reset whenever a `\n` is seen. + fn column(&self) -> usize { + self.parser().pos.get().column + } + + /// Return the next capturing index. Each subsequent call increments the + /// internal index. + /// + /// The span given should correspond to the location of the opening + /// parenthesis. + /// + /// If the capture limit is exceeded, then an error is returned. + fn next_capture_index(&self, span: Span) -> Result<u32> { + let current = self.parser().capture_index.get(); + let i = current.checked_add(1).ok_or_else(|| { + self.error(span, ast::ErrorKind::CaptureLimitExceeded) + })?; + self.parser().capture_index.set(i); + Ok(i) + } + + /// Adds the given capture name to this parser. If this capture name has + /// already been used, then an error is returned. + fn add_capture_name(&self, cap: &ast::CaptureName) -> Result<()> { + let mut names = self.parser().capture_names.borrow_mut(); + match names + .binary_search_by_key(&cap.name.as_str(), |c| c.name.as_str()) + { + Err(i) => { + names.insert(i, cap.clone()); + Ok(()) + } + Ok(i) => Err(self.error( + cap.span, + ast::ErrorKind::GroupNameDuplicate { original: names[i].span }, + )), + } + } + + /// Return whether the parser should ignore whitespace or not. + fn ignore_whitespace(&self) -> bool { + self.parser().ignore_whitespace.get() + } + + /// Return the character at the current position of the parser. + /// + /// This panics if the current position does not point to a valid char. + fn char(&self) -> char { + self.char_at(self.offset()) + } + + /// Return the character at the given position. + /// + /// This panics if the given position does not point to a valid char. + fn char_at(&self, i: usize) -> char { + self.pattern()[i..] + .chars() + .next() + .unwrap_or_else(|| panic!("expected char at offset {}", i)) + } + + /// Bump the parser to the next Unicode scalar value. + /// + /// If the end of the input has been reached, then `false` is returned. + fn bump(&self) -> bool { + if self.is_eof() { + return false; + } + let Position { mut offset, mut line, mut column } = self.pos(); + if self.char() == '\n' { + line = line.checked_add(1).unwrap(); + column = 1; + } else { + column = column.checked_add(1).unwrap(); + } + offset += self.char().len_utf8(); + self.parser().pos.set(Position { offset, line, column }); + self.pattern()[self.offset()..].chars().next().is_some() + } + + /// If the substring starting at the current position of the parser has + /// the given prefix, then bump the parser to the character immediately + /// following the prefix and return true. Otherwise, don't bump the parser + /// and return false. + fn bump_if(&self, prefix: &str) -> bool { + if self.pattern()[self.offset()..].starts_with(prefix) { + for _ in 0..prefix.chars().count() { + self.bump(); + } + true + } else { + false + } + } + + /// Returns true if and only if the parser is positioned at a look-around + /// prefix. The conditions under which this returns true must always + /// correspond to a regular expression that would otherwise be consider + /// invalid. + /// + /// This should only be called immediately after parsing the opening of + /// a group or a set of flags. + fn is_lookaround_prefix(&self) -> bool { + self.bump_if("?=") + || self.bump_if("?!") + || self.bump_if("?<=") + || self.bump_if("?<!") + } + + /// Bump the parser, and if the `x` flag is enabled, bump through any + /// subsequent spaces. Return true if and only if the parser is not at + /// EOF. + fn bump_and_bump_space(&self) -> bool { + if !self.bump() { + return false; + } + self.bump_space(); + !self.is_eof() + } + + /// If the `x` flag is enabled (i.e., whitespace insensitivity with + /// comments), then this will advance the parser through all whitespace + /// and comments to the next non-whitespace non-comment byte. + /// + /// If the `x` flag is disabled, then this is a no-op. + /// + /// This should be used selectively throughout the parser where + /// arbitrary whitespace is permitted when the `x` flag is enabled. For + /// example, `{ 5 , 6}` is equivalent to `{5,6}`. + fn bump_space(&self) { + if !self.ignore_whitespace() { + return; + } + while !self.is_eof() { + if self.char().is_whitespace() { + self.bump(); + } else if self.char() == '#' { + let start = self.pos(); + let mut comment_text = String::new(); + self.bump(); + while !self.is_eof() { + let c = self.char(); + self.bump(); + if c == '\n' { + break; + } + comment_text.push(c); + } + let comment = ast::Comment { + span: Span::new(start, self.pos()), + comment: comment_text, + }; + self.parser().comments.borrow_mut().push(comment); + } else { + break; + } + } + } + + /// Peek at the next character in the input without advancing the parser. + /// + /// If the input has been exhausted, then this returns `None`. + fn peek(&self) -> Option<char> { + if self.is_eof() { + return None; + } + self.pattern()[self.offset() + self.char().len_utf8()..].chars().next() + } + + /// Like peek, but will ignore spaces when the parser is in whitespace + /// insensitive mode. + fn peek_space(&self) -> Option<char> { + if !self.ignore_whitespace() { + return self.peek(); + } + if self.is_eof() { + return None; + } + let mut start = self.offset() + self.char().len_utf8(); + let mut in_comment = false; + for (i, c) in self.pattern()[start..].char_indices() { + if c.is_whitespace() { + continue; + } else if !in_comment && c == '#' { + in_comment = true; + } else if in_comment && c == '\n' { + in_comment = false; + } else { + start += i; + break; + } + } + self.pattern()[start..].chars().next() + } + + /// Returns true if the next call to `bump` would return false. + fn is_eof(&self) -> bool { + self.offset() == self.pattern().len() + } + + /// Return the current position of the parser, which includes the offset, + /// line and column. + fn pos(&self) -> Position { + self.parser().pos.get() + } + + /// Create a span at the current position of the parser. Both the start + /// and end of the span are set. + fn span(&self) -> Span { + Span::splat(self.pos()) + } + + /// Create a span that covers the current character. + fn span_char(&self) -> Span { + let mut next = Position { + offset: self.offset().checked_add(self.char().len_utf8()).unwrap(), + line: self.line(), + column: self.column().checked_add(1).unwrap(), + }; + if self.char() == '\n' { + next.line += 1; + next.column = 1; + } + Span::new(self.pos(), next) + } + + /// Parse and push a single alternation on to the parser's internal stack. + /// If the top of the stack already has an alternation, then add to that + /// instead of pushing a new one. + /// + /// The concatenation given corresponds to a single alternation branch. + /// The concatenation returned starts the next branch and is empty. + /// + /// This assumes the parser is currently positioned at `|` and will advance + /// the parser to the character following `|`. + #[inline(never)] + fn push_alternate(&self, mut concat: ast::Concat) -> Result<ast::Concat> { + assert_eq!(self.char(), '|'); + concat.span.end = self.pos(); + self.push_or_add_alternation(concat); + self.bump(); + Ok(ast::Concat { span: self.span(), asts: vec![] }) + } + + /// Pushes or adds the given branch of an alternation to the parser's + /// internal stack of state. + fn push_or_add_alternation(&self, concat: ast::Concat) { + use self::GroupState::*; + + let mut stack = self.parser().stack_group.borrow_mut(); + if let Some(&mut Alternation(ref mut alts)) = stack.last_mut() { + alts.asts.push(concat.into_ast()); + return; + } + stack.push(Alternation(ast::Alternation { + span: Span::new(concat.span.start, self.pos()), + asts: vec![concat.into_ast()], + })); + } + + /// Parse and push a group AST (and its parent concatenation) on to the + /// parser's internal stack. Return a fresh concatenation corresponding + /// to the group's sub-AST. + /// + /// If a set of flags was found (with no group), then the concatenation + /// is returned with that set of flags added. + /// + /// This assumes that the parser is currently positioned on the opening + /// parenthesis. It advances the parser to the character at the start + /// of the sub-expression (or adjoining expression). + /// + /// If there was a problem parsing the start of the group, then an error + /// is returned. + #[inline(never)] + fn push_group(&self, mut concat: ast::Concat) -> Result<ast::Concat> { + assert_eq!(self.char(), '('); + match self.parse_group()? { + Either::Left(set) => { + let ignore = set.flags.flag_state(ast::Flag::IgnoreWhitespace); + if let Some(v) = ignore { + self.parser().ignore_whitespace.set(v); + } + + concat.asts.push(Ast::Flags(set)); + Ok(concat) + } + Either::Right(group) => { + let old_ignore_whitespace = self.ignore_whitespace(); + let new_ignore_whitespace = group + .flags() + .and_then(|f| f.flag_state(ast::Flag::IgnoreWhitespace)) + .unwrap_or(old_ignore_whitespace); + self.parser().stack_group.borrow_mut().push( + GroupState::Group { + concat, + group, + ignore_whitespace: old_ignore_whitespace, + }, + ); + self.parser().ignore_whitespace.set(new_ignore_whitespace); + Ok(ast::Concat { span: self.span(), asts: vec![] }) + } + } + } + + /// Pop a group AST from the parser's internal stack and set the group's + /// AST to the given concatenation. Return the concatenation containing + /// the group. + /// + /// This assumes that the parser is currently positioned on the closing + /// parenthesis and advances the parser to the character following the `)`. + /// + /// If no such group could be popped, then an unopened group error is + /// returned. + #[inline(never)] + fn pop_group(&self, mut group_concat: ast::Concat) -> Result<ast::Concat> { + use self::GroupState::*; + + assert_eq!(self.char(), ')'); + let mut stack = self.parser().stack_group.borrow_mut(); + let (mut prior_concat, mut group, ignore_whitespace, alt) = match stack + .pop() + { + Some(Group { concat, group, ignore_whitespace }) => { + (concat, group, ignore_whitespace, None) + } + Some(Alternation(alt)) => match stack.pop() { + Some(Group { concat, group, ignore_whitespace }) => { + (concat, group, ignore_whitespace, Some(alt)) + } + None | Some(Alternation(_)) => { + return Err(self.error( + self.span_char(), + ast::ErrorKind::GroupUnopened, + )); + } + }, + None => { + return Err(self + .error(self.span_char(), ast::ErrorKind::GroupUnopened)); + } + }; + self.parser().ignore_whitespace.set(ignore_whitespace); + group_concat.span.end = self.pos(); + self.bump(); + group.span.end = self.pos(); + match alt { + Some(mut alt) => { + alt.span.end = group_concat.span.end; + alt.asts.push(group_concat.into_ast()); + group.ast = Box::new(alt.into_ast()); + } + None => { + group.ast = Box::new(group_concat.into_ast()); + } + } + prior_concat.asts.push(Ast::Group(group)); + Ok(prior_concat) + } + + /// Pop the last state from the parser's internal stack, if it exists, and + /// add the given concatenation to it. There either must be no state or a + /// single alternation item on the stack. Any other scenario produces an + /// error. + /// + /// This assumes that the parser has advanced to the end. + #[inline(never)] + fn pop_group_end(&self, mut concat: ast::Concat) -> Result<Ast> { + concat.span.end = self.pos(); + let mut stack = self.parser().stack_group.borrow_mut(); + let ast = match stack.pop() { + None => Ok(concat.into_ast()), + Some(GroupState::Alternation(mut alt)) => { + alt.span.end = self.pos(); + alt.asts.push(concat.into_ast()); + Ok(Ast::Alternation(alt)) + } + Some(GroupState::Group { group, .. }) => { + return Err( + self.error(group.span, ast::ErrorKind::GroupUnclosed) + ); + } + }; + // If we try to pop again, there should be nothing. + match stack.pop() { + None => ast, + Some(GroupState::Alternation(_)) => { + // This unreachable is unfortunate. This case can't happen + // because the only way we can be here is if there were two + // `GroupState::Alternation`s adjacent in the parser's stack, + // which we guarantee to never happen because we never push a + // `GroupState::Alternation` if one is already at the top of + // the stack. + unreachable!() + } + Some(GroupState::Group { group, .. }) => { + Err(self.error(group.span, ast::ErrorKind::GroupUnclosed)) + } + } + } + + /// Parse the opening of a character class and push the current class + /// parsing context onto the parser's stack. This assumes that the parser + /// is positioned at an opening `[`. The given union should correspond to + /// the union of set items built up before seeing the `[`. + /// + /// If there was a problem parsing the opening of the class, then an error + /// is returned. Otherwise, a new union of set items for the class is + /// returned (which may be populated with either a `]` or a `-`). + #[inline(never)] + fn push_class_open( + &self, + parent_union: ast::ClassSetUnion, + ) -> Result<ast::ClassSetUnion> { + assert_eq!(self.char(), '['); + + let (nested_set, nested_union) = self.parse_set_class_open()?; + self.parser() + .stack_class + .borrow_mut() + .push(ClassState::Open { union: parent_union, set: nested_set }); + Ok(nested_union) + } + + /// Parse the end of a character class set and pop the character class + /// parser stack. The union given corresponds to the last union built + /// before seeing the closing `]`. The union returned corresponds to the + /// parent character class set with the nested class added to it. + /// + /// This assumes that the parser is positioned at a `]` and will advance + /// the parser to the byte immediately following the `]`. + /// + /// If the stack is empty after popping, then this returns the final + /// "top-level" character class AST (where a "top-level" character class + /// is one that is not nested inside any other character class). + /// + /// If there is no corresponding opening bracket on the parser's stack, + /// then an error is returned. + #[inline(never)] + fn pop_class( + &self, + nested_union: ast::ClassSetUnion, + ) -> Result<Either<ast::ClassSetUnion, ast::Class>> { + assert_eq!(self.char(), ']'); + + let item = ast::ClassSet::Item(nested_union.into_item()); + let prevset = self.pop_class_op(item); + let mut stack = self.parser().stack_class.borrow_mut(); + match stack.pop() { + None => { + // We can never observe an empty stack: + // + // 1) We are guaranteed to start with a non-empty stack since + // the character class parser is only initiated when it sees + // a `[`. + // 2) If we ever observe an empty stack while popping after + // seeing a `]`, then we signal the character class parser + // to terminate. + panic!("unexpected empty character class stack") + } + Some(ClassState::Op { .. }) => { + // This panic is unfortunate, but this case is impossible + // since we already popped the Op state if one exists above. + // Namely, every push to the class parser stack is guarded by + // whether an existing Op is already on the top of the stack. + // If it is, the existing Op is modified. That is, the stack + // can never have consecutive Op states. + panic!("unexpected ClassState::Op") + } + Some(ClassState::Open { mut union, mut set }) => { + self.bump(); + set.span.end = self.pos(); + set.kind = prevset; + if stack.is_empty() { + Ok(Either::Right(ast::Class::Bracketed(set))) + } else { + union.push(ast::ClassSetItem::Bracketed(Box::new(set))); + Ok(Either::Left(union)) + } + } + } + } + + /// Return an "unclosed class" error whose span points to the most + /// recently opened class. + /// + /// This should only be called while parsing a character class. + #[inline(never)] + fn unclosed_class_error(&self) -> ast::Error { + for state in self.parser().stack_class.borrow().iter().rev() { + if let ClassState::Open { ref set, .. } = *state { + return self.error(set.span, ast::ErrorKind::ClassUnclosed); + } + } + // We are guaranteed to have a non-empty stack with at least + // one open bracket, so we should never get here. + panic!("no open character class found") + } + + /// Push the current set of class items on to the class parser's stack as + /// the left hand side of the given operator. + /// + /// A fresh set union is returned, which should be used to build the right + /// hand side of this operator. + #[inline(never)] + fn push_class_op( + &self, + next_kind: ast::ClassSetBinaryOpKind, + next_union: ast::ClassSetUnion, + ) -> ast::ClassSetUnion { + let item = ast::ClassSet::Item(next_union.into_item()); + let new_lhs = self.pop_class_op(item); + self.parser() + .stack_class + .borrow_mut() + .push(ClassState::Op { kind: next_kind, lhs: new_lhs }); + ast::ClassSetUnion { span: self.span(), items: vec![] } + } + + /// Pop a character class set from the character class parser stack. If the + /// top of the stack is just an item (not an operation), then return the + /// given set unchanged. If the top of the stack is an operation, then the + /// given set will be used as the rhs of the operation on the top of the + /// stack. In that case, the binary operation is returned as a set. + #[inline(never)] + fn pop_class_op(&self, rhs: ast::ClassSet) -> ast::ClassSet { + let mut stack = self.parser().stack_class.borrow_mut(); + let (kind, lhs) = match stack.pop() { + Some(ClassState::Op { kind, lhs }) => (kind, lhs), + Some(state @ ClassState::Open { .. }) => { + stack.push(state); + return rhs; + } + None => unreachable!(), + }; + let span = Span::new(lhs.span().start, rhs.span().end); + ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { + span, + kind, + lhs: Box::new(lhs), + rhs: Box::new(rhs), + }) + } +} + +impl<'s, P: Borrow<Parser>> ParserI<'s, P> { + /// Parse the regular expression into an abstract syntax tree. + fn parse(&self) -> Result<Ast> { + self.parse_with_comments().map(|astc| astc.ast) + } + + /// Parse the regular expression and return an abstract syntax tree with + /// all of the comments found in the pattern. + fn parse_with_comments(&self) -> Result<ast::WithComments> { + assert_eq!(self.offset(), 0, "parser can only be used once"); + self.parser().reset(); + let mut concat = ast::Concat { span: self.span(), asts: vec![] }; + loop { + self.bump_space(); + if self.is_eof() { + break; + } + match self.char() { + '(' => concat = self.push_group(concat)?, + ')' => concat = self.pop_group(concat)?, + '|' => concat = self.push_alternate(concat)?, + '[' => { + let class = self.parse_set_class()?; + concat.asts.push(Ast::Class(class)); + } + '?' => { + concat = self.parse_uncounted_repetition( + concat, + ast::RepetitionKind::ZeroOrOne, + )?; + } + '*' => { + concat = self.parse_uncounted_repetition( + concat, + ast::RepetitionKind::ZeroOrMore, + )?; + } + '+' => { + concat = self.parse_uncounted_repetition( + concat, + ast::RepetitionKind::OneOrMore, + )?; + } + '{' => { + concat = self.parse_counted_repetition(concat)?; + } + _ => concat.asts.push(self.parse_primitive()?.into_ast()), + } + } + let ast = self.pop_group_end(concat)?; + NestLimiter::new(self).check(&ast)?; + Ok(ast::WithComments { + ast, + comments: mem::replace( + &mut *self.parser().comments.borrow_mut(), + vec![], + ), + }) + } + + /// Parses an uncounted repetition operation. An uncounted repetition + /// operator includes ?, * and +, but does not include the {m,n} syntax. + /// The given `kind` should correspond to the operator observed by the + /// caller. + /// + /// This assumes that the parser is currently positioned at the repetition + /// operator and advances the parser to the first character after the + /// operator. (Note that the operator may include a single additional `?`, + /// which makes the operator ungreedy.) + /// + /// The caller should include the concatenation that is being built. The + /// concatenation returned includes the repetition operator applied to the + /// last expression in the given concatenation. + #[inline(never)] + fn parse_uncounted_repetition( + &self, + mut concat: ast::Concat, + kind: ast::RepetitionKind, + ) -> Result<ast::Concat> { + assert!( + self.char() == '?' || self.char() == '*' || self.char() == '+' + ); + let op_start = self.pos(); + let ast = match concat.asts.pop() { + Some(ast) => ast, + None => { + return Err( + self.error(self.span(), ast::ErrorKind::RepetitionMissing) + ) + } + }; + match ast { + Ast::Empty(_) | Ast::Flags(_) => { + return Err( + self.error(self.span(), ast::ErrorKind::RepetitionMissing) + ) + } + _ => {} + } + let mut greedy = true; + if self.bump() && self.char() == '?' { + greedy = false; + self.bump(); + } + concat.asts.push(Ast::Repetition(ast::Repetition { + span: ast.span().with_end(self.pos()), + op: ast::RepetitionOp { + span: Span::new(op_start, self.pos()), + kind, + }, + greedy, + ast: Box::new(ast), + })); + Ok(concat) + } + + /// Parses a counted repetition operation. A counted repetition operator + /// corresponds to the {m,n} syntax, and does not include the ?, * or + + /// operators. + /// + /// This assumes that the parser is currently positioned at the opening `{` + /// and advances the parser to the first character after the operator. + /// (Note that the operator may include a single additional `?`, which + /// makes the operator ungreedy.) + /// + /// The caller should include the concatenation that is being built. The + /// concatenation returned includes the repetition operator applied to the + /// last expression in the given concatenation. + #[inline(never)] + fn parse_counted_repetition( + &self, + mut concat: ast::Concat, + ) -> Result<ast::Concat> { + assert!(self.char() == '{'); + let start = self.pos(); + let ast = match concat.asts.pop() { + Some(ast) => ast, + None => { + return Err( + self.error(self.span(), ast::ErrorKind::RepetitionMissing) + ) + } + }; + match ast { + Ast::Empty(_) | Ast::Flags(_) => { + return Err( + self.error(self.span(), ast::ErrorKind::RepetitionMissing) + ) + } + _ => {} + } + if !self.bump_and_bump_space() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::RepetitionCountUnclosed, + )); + } + let count_start = specialize_err( + self.parse_decimal(), + ast::ErrorKind::DecimalEmpty, + ast::ErrorKind::RepetitionCountDecimalEmpty, + )?; + let mut range = ast::RepetitionRange::Exactly(count_start); + if self.is_eof() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::RepetitionCountUnclosed, + )); + } + if self.char() == ',' { + if !self.bump_and_bump_space() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::RepetitionCountUnclosed, + )); + } + if self.char() != '}' { + let count_end = specialize_err( + self.parse_decimal(), + ast::ErrorKind::DecimalEmpty, + ast::ErrorKind::RepetitionCountDecimalEmpty, + )?; + range = ast::RepetitionRange::Bounded(count_start, count_end); + } else { + range = ast::RepetitionRange::AtLeast(count_start); + } + } + if self.is_eof() || self.char() != '}' { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::RepetitionCountUnclosed, + )); + } + + let mut greedy = true; + if self.bump_and_bump_space() && self.char() == '?' { + greedy = false; + self.bump(); + } + + let op_span = Span::new(start, self.pos()); + if !range.is_valid() { + return Err( + self.error(op_span, ast::ErrorKind::RepetitionCountInvalid) + ); + } + concat.asts.push(Ast::Repetition(ast::Repetition { + span: ast.span().with_end(self.pos()), + op: ast::RepetitionOp { + span: op_span, + kind: ast::RepetitionKind::Range(range), + }, + greedy, + ast: Box::new(ast), + })); + Ok(concat) + } + + /// Parse a group (which contains a sub-expression) or a set of flags. + /// + /// If a group was found, then it is returned with an empty AST. If a set + /// of flags is found, then that set is returned. + /// + /// The parser should be positioned at the opening parenthesis. + /// + /// This advances the parser to the character before the start of the + /// sub-expression (in the case of a group) or to the closing parenthesis + /// immediately following the set of flags. + /// + /// # Errors + /// + /// If flags are given and incorrectly specified, then a corresponding + /// error is returned. + /// + /// If a capture name is given and it is incorrectly specified, then a + /// corresponding error is returned. + #[inline(never)] + fn parse_group(&self) -> Result<Either<ast::SetFlags, ast::Group>> { + assert_eq!(self.char(), '('); + let open_span = self.span_char(); + self.bump(); + self.bump_space(); + if self.is_lookaround_prefix() { + return Err(self.error( + Span::new(open_span.start, self.span().end), + ast::ErrorKind::UnsupportedLookAround, + )); + } + let inner_span = self.span(); + if self.bump_if("?P<") { + let capture_index = self.next_capture_index(open_span)?; + let cap = self.parse_capture_name(capture_index)?; + Ok(Either::Right(ast::Group { + span: open_span, + kind: ast::GroupKind::CaptureName(cap), + ast: Box::new(Ast::Empty(self.span())), + })) + } else if self.bump_if("?") { + if self.is_eof() { + return Err( + self.error(open_span, ast::ErrorKind::GroupUnclosed) + ); + } + let flags = self.parse_flags()?; + let char_end = self.char(); + self.bump(); + if char_end == ')' { + // We don't allow empty flags, e.g., `(?)`. We instead + // interpret it as a repetition operator missing its argument. + if flags.items.is_empty() { + return Err(self.error( + inner_span, + ast::ErrorKind::RepetitionMissing, + )); + } + Ok(Either::Left(ast::SetFlags { + span: Span { end: self.pos(), ..open_span }, + flags, + })) + } else { + assert_eq!(char_end, ':'); + Ok(Either::Right(ast::Group { + span: open_span, + kind: ast::GroupKind::NonCapturing(flags), + ast: Box::new(Ast::Empty(self.span())), + })) + } + } else { + let capture_index = self.next_capture_index(open_span)?; + Ok(Either::Right(ast::Group { + span: open_span, + kind: ast::GroupKind::CaptureIndex(capture_index), + ast: Box::new(Ast::Empty(self.span())), + })) + } + } + + /// Parses a capture group name. Assumes that the parser is positioned at + /// the first character in the name following the opening `<` (and may + /// possibly be EOF). This advances the parser to the first character + /// following the closing `>`. + /// + /// The caller must provide the capture index of the group for this name. + #[inline(never)] + fn parse_capture_name( + &self, + capture_index: u32, + ) -> Result<ast::CaptureName> { + if self.is_eof() { + return Err(self + .error(self.span(), ast::ErrorKind::GroupNameUnexpectedEof)); + } + let start = self.pos(); + loop { + if self.char() == '>' { + break; + } + if !is_capture_char(self.char(), self.pos() == start) { + return Err(self.error( + self.span_char(), + ast::ErrorKind::GroupNameInvalid, + )); + } + if !self.bump() { + break; + } + } + let end = self.pos(); + if self.is_eof() { + return Err(self + .error(self.span(), ast::ErrorKind::GroupNameUnexpectedEof)); + } + assert_eq!(self.char(), '>'); + self.bump(); + let name = &self.pattern()[start.offset..end.offset]; + if name.is_empty() { + return Err(self.error( + Span::new(start, start), + ast::ErrorKind::GroupNameEmpty, + )); + } + let capname = ast::CaptureName { + span: Span::new(start, end), + name: name.to_string(), + index: capture_index, + }; + self.add_capture_name(&capname)?; + Ok(capname) + } + + /// Parse a sequence of flags starting at the current character. + /// + /// This advances the parser to the character immediately following the + /// flags, which is guaranteed to be either `:` or `)`. + /// + /// # Errors + /// + /// If any flags are duplicated, then an error is returned. + /// + /// If the negation operator is used more than once, then an error is + /// returned. + /// + /// If no flags could be found or if the negation operation is not followed + /// by any flags, then an error is returned. + #[inline(never)] + fn parse_flags(&self) -> Result<ast::Flags> { + let mut flags = ast::Flags { span: self.span(), items: vec![] }; + let mut last_was_negation = None; + while self.char() != ':' && self.char() != ')' { + if self.char() == '-' { + last_was_negation = Some(self.span_char()); + let item = ast::FlagsItem { + span: self.span_char(), + kind: ast::FlagsItemKind::Negation, + }; + if let Some(i) = flags.add_item(item) { + return Err(self.error( + self.span_char(), + ast::ErrorKind::FlagRepeatedNegation { + original: flags.items[i].span, + }, + )); + } + } else { + last_was_negation = None; + let item = ast::FlagsItem { + span: self.span_char(), + kind: ast::FlagsItemKind::Flag(self.parse_flag()?), + }; + if let Some(i) = flags.add_item(item) { + return Err(self.error( + self.span_char(), + ast::ErrorKind::FlagDuplicate { + original: flags.items[i].span, + }, + )); + } + } + if !self.bump() { + return Err( + self.error(self.span(), ast::ErrorKind::FlagUnexpectedEof) + ); + } + } + if let Some(span) = last_was_negation { + return Err(self.error(span, ast::ErrorKind::FlagDanglingNegation)); + } + flags.span.end = self.pos(); + Ok(flags) + } + + /// Parse the current character as a flag. Do not advance the parser. + /// + /// # Errors + /// + /// If the flag is not recognized, then an error is returned. + #[inline(never)] + fn parse_flag(&self) -> Result<ast::Flag> { + match self.char() { + 'i' => Ok(ast::Flag::CaseInsensitive), + 'm' => Ok(ast::Flag::MultiLine), + 's' => Ok(ast::Flag::DotMatchesNewLine), + 'U' => Ok(ast::Flag::SwapGreed), + 'u' => Ok(ast::Flag::Unicode), + 'x' => Ok(ast::Flag::IgnoreWhitespace), + _ => { + Err(self + .error(self.span_char(), ast::ErrorKind::FlagUnrecognized)) + } + } + } + + /// Parse a primitive AST. e.g., A literal, non-set character class or + /// assertion. + /// + /// This assumes that the parser expects a primitive at the current + /// location. i.e., All other non-primitive cases have been handled. + /// For example, if the parser's position is at `|`, then `|` will be + /// treated as a literal (e.g., inside a character class). + /// + /// This advances the parser to the first character immediately following + /// the primitive. + fn parse_primitive(&self) -> Result<Primitive> { + match self.char() { + '\\' => self.parse_escape(), + '.' => { + let ast = Primitive::Dot(self.span_char()); + self.bump(); + Ok(ast) + } + '^' => { + let ast = Primitive::Assertion(ast::Assertion { + span: self.span_char(), + kind: ast::AssertionKind::StartLine, + }); + self.bump(); + Ok(ast) + } + '$' => { + let ast = Primitive::Assertion(ast::Assertion { + span: self.span_char(), + kind: ast::AssertionKind::EndLine, + }); + self.bump(); + Ok(ast) + } + c => { + let ast = Primitive::Literal(ast::Literal { + span: self.span_char(), + kind: ast::LiteralKind::Verbatim, + c, + }); + self.bump(); + Ok(ast) + } + } + } + + /// Parse an escape sequence as a primitive AST. + /// + /// This assumes the parser is positioned at the start of the escape + /// sequence, i.e., `\`. It advances the parser to the first position + /// immediately following the escape sequence. + #[inline(never)] + fn parse_escape(&self) -> Result<Primitive> { + assert_eq!(self.char(), '\\'); + let start = self.pos(); + if !self.bump() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::EscapeUnexpectedEof, + )); + } + let c = self.char(); + // Put some of the more complicated routines into helpers. + match c { + '0'..='7' => { + if !self.parser().octal { + return Err(self.error( + Span::new(start, self.span_char().end), + ast::ErrorKind::UnsupportedBackreference, + )); + } + let mut lit = self.parse_octal(); + lit.span.start = start; + return Ok(Primitive::Literal(lit)); + } + '8'..='9' if !self.parser().octal => { + return Err(self.error( + Span::new(start, self.span_char().end), + ast::ErrorKind::UnsupportedBackreference, + )); + } + 'x' | 'u' | 'U' => { + let mut lit = self.parse_hex()?; + lit.span.start = start; + return Ok(Primitive::Literal(lit)); + } + 'p' | 'P' => { + let mut cls = self.parse_unicode_class()?; + cls.span.start = start; + return Ok(Primitive::Unicode(cls)); + } + 'd' | 's' | 'w' | 'D' | 'S' | 'W' => { + let mut cls = self.parse_perl_class(); + cls.span.start = start; + return Ok(Primitive::Perl(cls)); + } + _ => {} + } + + // Handle all of the one letter sequences inline. + self.bump(); + let span = Span::new(start, self.pos()); + if is_meta_character(c) { + return Ok(Primitive::Literal(ast::Literal { + span, + kind: ast::LiteralKind::Punctuation, + c, + })); + } + let special = |kind, c| { + Ok(Primitive::Literal(ast::Literal { + span, + kind: ast::LiteralKind::Special(kind), + c, + })) + }; + match c { + 'a' => special(ast::SpecialLiteralKind::Bell, '\x07'), + 'f' => special(ast::SpecialLiteralKind::FormFeed, '\x0C'), + 't' => special(ast::SpecialLiteralKind::Tab, '\t'), + 'n' => special(ast::SpecialLiteralKind::LineFeed, '\n'), + 'r' => special(ast::SpecialLiteralKind::CarriageReturn, '\r'), + 'v' => special(ast::SpecialLiteralKind::VerticalTab, '\x0B'), + ' ' if self.ignore_whitespace() => { + special(ast::SpecialLiteralKind::Space, ' ') + } + 'A' => Ok(Primitive::Assertion(ast::Assertion { + span, + kind: ast::AssertionKind::StartText, + })), + 'z' => Ok(Primitive::Assertion(ast::Assertion { + span, + kind: ast::AssertionKind::EndText, + })), + 'b' => Ok(Primitive::Assertion(ast::Assertion { + span, + kind: ast::AssertionKind::WordBoundary, + })), + 'B' => Ok(Primitive::Assertion(ast::Assertion { + span, + kind: ast::AssertionKind::NotWordBoundary, + })), + _ => Err(self.error(span, ast::ErrorKind::EscapeUnrecognized)), + } + } + + /// Parse an octal representation of a Unicode codepoint up to 3 digits + /// long. This expects the parser to be positioned at the first octal + /// digit and advances the parser to the first character immediately + /// following the octal number. This also assumes that parsing octal + /// escapes is enabled. + /// + /// Assuming the preconditions are met, this routine can never fail. + #[inline(never)] + fn parse_octal(&self) -> ast::Literal { + use std::char; + use std::u32; + + assert!(self.parser().octal); + assert!('0' <= self.char() && self.char() <= '7'); + let start = self.pos(); + // Parse up to two more digits. + while self.bump() + && '0' <= self.char() + && self.char() <= '7' + && self.pos().offset - start.offset <= 2 + {} + let end = self.pos(); + let octal = &self.pattern()[start.offset..end.offset]; + // Parsing the octal should never fail since the above guarantees a + // valid number. + let codepoint = + u32::from_str_radix(octal, 8).expect("valid octal number"); + // The max value for 3 digit octal is 0777 = 511 and [0, 511] has no + // invalid Unicode scalar values. + let c = char::from_u32(codepoint).expect("Unicode scalar value"); + ast::Literal { + span: Span::new(start, end), + kind: ast::LiteralKind::Octal, + c, + } + } + + /// Parse a hex representation of a Unicode codepoint. This handles both + /// hex notations, i.e., `\xFF` and `\x{FFFF}`. This expects the parser to + /// be positioned at the `x`, `u` or `U` prefix. The parser is advanced to + /// the first character immediately following the hexadecimal literal. + #[inline(never)] + fn parse_hex(&self) -> Result<ast::Literal> { + assert!( + self.char() == 'x' || self.char() == 'u' || self.char() == 'U' + ); + + let hex_kind = match self.char() { + 'x' => ast::HexLiteralKind::X, + 'u' => ast::HexLiteralKind::UnicodeShort, + _ => ast::HexLiteralKind::UnicodeLong, + }; + if !self.bump_and_bump_space() { + return Err( + self.error(self.span(), ast::ErrorKind::EscapeUnexpectedEof) + ); + } + if self.char() == '{' { + self.parse_hex_brace(hex_kind) + } else { + self.parse_hex_digits(hex_kind) + } + } + + /// Parse an N-digit hex representation of a Unicode codepoint. This + /// expects the parser to be positioned at the first digit and will advance + /// the parser to the first character immediately following the escape + /// sequence. + /// + /// The number of digits given must be 2 (for `\xNN`), 4 (for `\uNNNN`) + /// or 8 (for `\UNNNNNNNN`). + #[inline(never)] + fn parse_hex_digits( + &self, + kind: ast::HexLiteralKind, + ) -> Result<ast::Literal> { + use std::char; + use std::u32; + + let mut scratch = self.parser().scratch.borrow_mut(); + scratch.clear(); + + let start = self.pos(); + for i in 0..kind.digits() { + if i > 0 && !self.bump_and_bump_space() { + return Err(self + .error(self.span(), ast::ErrorKind::EscapeUnexpectedEof)); + } + if !is_hex(self.char()) { + return Err(self.error( + self.span_char(), + ast::ErrorKind::EscapeHexInvalidDigit, + )); + } + scratch.push(self.char()); + } + // The final bump just moves the parser past the literal, which may + // be EOF. + self.bump_and_bump_space(); + let end = self.pos(); + let hex = scratch.as_str(); + match u32::from_str_radix(hex, 16).ok().and_then(char::from_u32) { + None => Err(self.error( + Span::new(start, end), + ast::ErrorKind::EscapeHexInvalid, + )), + Some(c) => Ok(ast::Literal { + span: Span::new(start, end), + kind: ast::LiteralKind::HexFixed(kind), + c, + }), + } + } + + /// Parse a hex representation of any Unicode scalar value. This expects + /// the parser to be positioned at the opening brace `{` and will advance + /// the parser to the first character following the closing brace `}`. + #[inline(never)] + fn parse_hex_brace( + &self, + kind: ast::HexLiteralKind, + ) -> Result<ast::Literal> { + use std::char; + use std::u32; + + let mut scratch = self.parser().scratch.borrow_mut(); + scratch.clear(); + + let brace_pos = self.pos(); + let start = self.span_char().end; + while self.bump_and_bump_space() && self.char() != '}' { + if !is_hex(self.char()) { + return Err(self.error( + self.span_char(), + ast::ErrorKind::EscapeHexInvalidDigit, + )); + } + scratch.push(self.char()); + } + if self.is_eof() { + return Err(self.error( + Span::new(brace_pos, self.pos()), + ast::ErrorKind::EscapeUnexpectedEof, + )); + } + let end = self.pos(); + let hex = scratch.as_str(); + assert_eq!(self.char(), '}'); + self.bump_and_bump_space(); + + if hex.is_empty() { + return Err(self.error( + Span::new(brace_pos, self.pos()), + ast::ErrorKind::EscapeHexEmpty, + )); + } + match u32::from_str_radix(hex, 16).ok().and_then(char::from_u32) { + None => Err(self.error( + Span::new(start, end), + ast::ErrorKind::EscapeHexInvalid, + )), + Some(c) => Ok(ast::Literal { + span: Span::new(start, self.pos()), + kind: ast::LiteralKind::HexBrace(kind), + c, + }), + } + } + + /// Parse a decimal number into a u32 while trimming leading and trailing + /// whitespace. + /// + /// This expects the parser to be positioned at the first position where + /// a decimal digit could occur. This will advance the parser to the byte + /// immediately following the last contiguous decimal digit. + /// + /// If no decimal digit could be found or if there was a problem parsing + /// the complete set of digits into a u32, then an error is returned. + fn parse_decimal(&self) -> Result<u32> { + let mut scratch = self.parser().scratch.borrow_mut(); + scratch.clear(); + + while !self.is_eof() && self.char().is_whitespace() { + self.bump(); + } + let start = self.pos(); + while !self.is_eof() && '0' <= self.char() && self.char() <= '9' { + scratch.push(self.char()); + self.bump_and_bump_space(); + } + let span = Span::new(start, self.pos()); + while !self.is_eof() && self.char().is_whitespace() { + self.bump_and_bump_space(); + } + let digits = scratch.as_str(); + if digits.is_empty() { + return Err(self.error(span, ast::ErrorKind::DecimalEmpty)); + } + match u32::from_str_radix(digits, 10).ok() { + Some(n) => Ok(n), + None => Err(self.error(span, ast::ErrorKind::DecimalInvalid)), + } + } + + /// Parse a standard character class consisting primarily of characters or + /// character ranges, but can also contain nested character classes of + /// any type (sans `.`). + /// + /// This assumes the parser is positioned at the opening `[`. If parsing + /// is successful, then the parser is advanced to the position immediately + /// following the closing `]`. + #[inline(never)] + fn parse_set_class(&self) -> Result<ast::Class> { + assert_eq!(self.char(), '['); + + let mut union = + ast::ClassSetUnion { span: self.span(), items: vec![] }; + loop { + self.bump_space(); + if self.is_eof() { + return Err(self.unclosed_class_error()); + } + match self.char() { + '[' => { + // If we've already parsed the opening bracket, then + // attempt to treat this as the beginning of an ASCII + // class. If ASCII class parsing fails, then the parser + // backs up to `[`. + if !self.parser().stack_class.borrow().is_empty() { + if let Some(cls) = self.maybe_parse_ascii_class() { + union.push(ast::ClassSetItem::Ascii(cls)); + continue; + } + } + union = self.push_class_open(union)?; + } + ']' => match self.pop_class(union)? { + Either::Left(nested_union) => { + union = nested_union; + } + Either::Right(class) => return Ok(class), + }, + '&' if self.peek() == Some('&') => { + assert!(self.bump_if("&&")); + union = self.push_class_op( + ast::ClassSetBinaryOpKind::Intersection, + union, + ); + } + '-' if self.peek() == Some('-') => { + assert!(self.bump_if("--")); + union = self.push_class_op( + ast::ClassSetBinaryOpKind::Difference, + union, + ); + } + '~' if self.peek() == Some('~') => { + assert!(self.bump_if("~~")); + union = self.push_class_op( + ast::ClassSetBinaryOpKind::SymmetricDifference, + union, + ); + } + _ => { + union.push(self.parse_set_class_range()?); + } + } + } + } + + /// Parse a single primitive item in a character class set. The item to + /// be parsed can either be one of a simple literal character, a range + /// between two simple literal characters or a "primitive" character + /// class like \w or \p{Greek}. + /// + /// If an invalid escape is found, or if a character class is found where + /// a simple literal is expected (e.g., in a range), then an error is + /// returned. + #[inline(never)] + fn parse_set_class_range(&self) -> Result<ast::ClassSetItem> { + let prim1 = self.parse_set_class_item()?; + self.bump_space(); + if self.is_eof() { + return Err(self.unclosed_class_error()); + } + // If the next char isn't a `-`, then we don't have a range. + // There are two exceptions. If the char after a `-` is a `]`, then + // `-` is interpreted as a literal `-`. Alternatively, if the char + // after a `-` is a `-`, then `--` corresponds to a "difference" + // operation. + if self.char() != '-' + || self.peek_space() == Some(']') + || self.peek_space() == Some('-') + { + return prim1.into_class_set_item(self); + } + // OK, now we're parsing a range, so bump past the `-` and parse the + // second half of the range. + if !self.bump_and_bump_space() { + return Err(self.unclosed_class_error()); + } + let prim2 = self.parse_set_class_item()?; + let range = ast::ClassSetRange { + span: Span::new(prim1.span().start, prim2.span().end), + start: prim1.into_class_literal(self)?, + end: prim2.into_class_literal(self)?, + }; + if !range.is_valid() { + return Err( + self.error(range.span, ast::ErrorKind::ClassRangeInvalid) + ); + } + Ok(ast::ClassSetItem::Range(range)) + } + + /// Parse a single item in a character class as a primitive, where the + /// primitive either consists of a verbatim literal or a single escape + /// sequence. + /// + /// This assumes the parser is positioned at the beginning of a primitive, + /// and advances the parser to the first position after the primitive if + /// successful. + /// + /// Note that it is the caller's responsibility to report an error if an + /// illegal primitive was parsed. + #[inline(never)] + fn parse_set_class_item(&self) -> Result<Primitive> { + if self.char() == '\\' { + self.parse_escape() + } else { + let x = Primitive::Literal(ast::Literal { + span: self.span_char(), + kind: ast::LiteralKind::Verbatim, + c: self.char(), + }); + self.bump(); + Ok(x) + } + } + + /// Parses the opening of a character class set. This includes the opening + /// bracket along with `^` if present to indicate negation. This also + /// starts parsing the opening set of unioned items if applicable, since + /// there are special rules applied to certain characters in the opening + /// of a character class. For example, `[^]]` is the class of all + /// characters not equal to `]`. (`]` would need to be escaped in any other + /// position.) Similarly for `-`. + /// + /// In all cases, the op inside the returned `ast::ClassBracketed` is an + /// empty union. This empty union should be replaced with the actual item + /// when it is popped from the parser's stack. + /// + /// This assumes the parser is positioned at the opening `[` and advances + /// the parser to the first non-special byte of the character class. + /// + /// An error is returned if EOF is found. + #[inline(never)] + fn parse_set_class_open( + &self, + ) -> Result<(ast::ClassBracketed, ast::ClassSetUnion)> { + assert_eq!(self.char(), '['); + let start = self.pos(); + if !self.bump_and_bump_space() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::ClassUnclosed, + )); + } + + let negated = if self.char() != '^' { + false + } else { + if !self.bump_and_bump_space() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::ClassUnclosed, + )); + } + true + }; + // Accept any number of `-` as literal `-`. + let mut union = + ast::ClassSetUnion { span: self.span(), items: vec![] }; + while self.char() == '-' { + union.push(ast::ClassSetItem::Literal(ast::Literal { + span: self.span_char(), + kind: ast::LiteralKind::Verbatim, + c: '-', + })); + if !self.bump_and_bump_space() { + return Err(self.error( + Span::new(start, start), + ast::ErrorKind::ClassUnclosed, + )); + } + } + // If `]` is the *first* char in a set, then interpret it as a literal + // `]`. That is, an empty class is impossible to write. + if union.items.is_empty() && self.char() == ']' { + union.push(ast::ClassSetItem::Literal(ast::Literal { + span: self.span_char(), + kind: ast::LiteralKind::Verbatim, + c: ']', + })); + if !self.bump_and_bump_space() { + return Err(self.error( + Span::new(start, self.pos()), + ast::ErrorKind::ClassUnclosed, + )); + } + } + let set = ast::ClassBracketed { + span: Span::new(start, self.pos()), + negated, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: Span::new(union.span.start, union.span.start), + items: vec![], + }), + }; + Ok((set, union)) + } + + /// Attempt to parse an ASCII character class, e.g., `[:alnum:]`. + /// + /// This assumes the parser is positioned at the opening `[`. + /// + /// If no valid ASCII character class could be found, then this does not + /// advance the parser and `None` is returned. Otherwise, the parser is + /// advanced to the first byte following the closing `]` and the + /// corresponding ASCII class is returned. + #[inline(never)] + fn maybe_parse_ascii_class(&self) -> Option<ast::ClassAscii> { + // ASCII character classes are interesting from a parsing perspective + // because parsing cannot fail with any interesting error. For example, + // in order to use an ASCII character class, it must be enclosed in + // double brackets, e.g., `[[:alnum:]]`. Alternatively, you might think + // of it as "ASCII character characters have the syntax `[:NAME:]` + // which can only appear within character brackets." This means that + // things like `[[:lower:]A]` are legal constructs. + // + // However, if one types an incorrect ASCII character class, e.g., + // `[[:loower:]]`, then we treat that as a normal nested character + // class containing the characters `:elorw`. One might argue that we + // should return an error instead since the repeated colons give away + // the intent to write an ASCII class. But what if the user typed + // `[[:lower]]` instead? How can we tell that was intended to be an + // ASCII class and not just a normal nested class? + // + // Reasonable people can probably disagree over this, but for better + // or worse, we implement semantics that never fails at the expense + // of better failure modes. + assert_eq!(self.char(), '['); + // If parsing fails, then we back up the parser to this starting point. + let start = self.pos(); + let mut negated = false; + if !self.bump() || self.char() != ':' { + self.parser().pos.set(start); + return None; + } + if !self.bump() { + self.parser().pos.set(start); + return None; + } + if self.char() == '^' { + negated = true; + if !self.bump() { + self.parser().pos.set(start); + return None; + } + } + let name_start = self.offset(); + while self.char() != ':' && self.bump() {} + if self.is_eof() { + self.parser().pos.set(start); + return None; + } + let name = &self.pattern()[name_start..self.offset()]; + if !self.bump_if(":]") { + self.parser().pos.set(start); + return None; + } + let kind = match ast::ClassAsciiKind::from_name(name) { + Some(kind) => kind, + None => { + self.parser().pos.set(start); + return None; + } + }; + Some(ast::ClassAscii { + span: Span::new(start, self.pos()), + kind, + negated, + }) + } + + /// Parse a Unicode class in either the single character notation, `\pN` + /// or the multi-character bracketed notation, `\p{Greek}`. This assumes + /// the parser is positioned at the `p` (or `P` for negation) and will + /// advance the parser to the character immediately following the class. + /// + /// Note that this does not check whether the class name is valid or not. + #[inline(never)] + fn parse_unicode_class(&self) -> Result<ast::ClassUnicode> { + assert!(self.char() == 'p' || self.char() == 'P'); + + let mut scratch = self.parser().scratch.borrow_mut(); + scratch.clear(); + + let negated = self.char() == 'P'; + if !self.bump_and_bump_space() { + return Err( + self.error(self.span(), ast::ErrorKind::EscapeUnexpectedEof) + ); + } + let (start, kind) = if self.char() == '{' { + let start = self.span_char().end; + while self.bump_and_bump_space() && self.char() != '}' { + scratch.push(self.char()); + } + if self.is_eof() { + return Err(self + .error(self.span(), ast::ErrorKind::EscapeUnexpectedEof)); + } + assert_eq!(self.char(), '}'); + self.bump(); + + let name = scratch.as_str(); + if let Some(i) = name.find("!=") { + ( + start, + ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::NotEqual, + name: name[..i].to_string(), + value: name[i + 2..].to_string(), + }, + ) + } else if let Some(i) = name.find(':') { + ( + start, + ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::Colon, + name: name[..i].to_string(), + value: name[i + 1..].to_string(), + }, + ) + } else if let Some(i) = name.find('=') { + ( + start, + ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::Equal, + name: name[..i].to_string(), + value: name[i + 1..].to_string(), + }, + ) + } else { + (start, ast::ClassUnicodeKind::Named(name.to_string())) + } + } else { + let start = self.pos(); + let c = self.char(); + if c == '\\' { + return Err(self.error( + self.span_char(), + ast::ErrorKind::UnicodeClassInvalid, + )); + } + self.bump_and_bump_space(); + let kind = ast::ClassUnicodeKind::OneLetter(c); + (start, kind) + }; + Ok(ast::ClassUnicode { + span: Span::new(start, self.pos()), + negated, + kind, + }) + } + + /// Parse a Perl character class, e.g., `\d` or `\W`. This assumes the + /// parser is currently at a valid character class name and will be + /// advanced to the character immediately following the class. + #[inline(never)] + fn parse_perl_class(&self) -> ast::ClassPerl { + let c = self.char(); + let span = self.span_char(); + self.bump(); + let (negated, kind) = match c { + 'd' => (false, ast::ClassPerlKind::Digit), + 'D' => (true, ast::ClassPerlKind::Digit), + 's' => (false, ast::ClassPerlKind::Space), + 'S' => (true, ast::ClassPerlKind::Space), + 'w' => (false, ast::ClassPerlKind::Word), + 'W' => (true, ast::ClassPerlKind::Word), + c => panic!("expected valid Perl class but got '{}'", c), + }; + ast::ClassPerl { span, kind, negated } + } +} + +/// A type that traverses a fully parsed Ast and checks whether its depth +/// exceeds the specified nesting limit. If it does, then an error is returned. +#[derive(Debug)] +struct NestLimiter<'p, 's, P> { + /// The parser that is checking the nest limit. + p: &'p ParserI<'s, P>, + /// The current depth while walking an Ast. + depth: u32, +} + +impl<'p, 's, P: Borrow<Parser>> NestLimiter<'p, 's, P> { + fn new(p: &'p ParserI<'s, P>) -> NestLimiter<'p, 's, P> { + NestLimiter { p, depth: 0 } + } + + #[inline(never)] + fn check(self, ast: &Ast) -> Result<()> { + ast::visit(ast, self) + } + + fn increment_depth(&mut self, span: &Span) -> Result<()> { + let new = self.depth.checked_add(1).ok_or_else(|| { + self.p.error( + span.clone(), + ast::ErrorKind::NestLimitExceeded(::std::u32::MAX), + ) + })?; + let limit = self.p.parser().nest_limit; + if new > limit { + return Err(self.p.error( + span.clone(), + ast::ErrorKind::NestLimitExceeded(limit), + )); + } + self.depth = new; + Ok(()) + } + + fn decrement_depth(&mut self) { + // Assuming the correctness of the visitor, this should never drop + // below 0. + self.depth = self.depth.checked_sub(1).unwrap(); + } +} + +impl<'p, 's, P: Borrow<Parser>> ast::Visitor for NestLimiter<'p, 's, P> { + type Output = (); + type Err = ast::Error; + + fn finish(self) -> Result<()> { + Ok(()) + } + + fn visit_pre(&mut self, ast: &Ast) -> Result<()> { + let span = match *ast { + Ast::Empty(_) + | Ast::Flags(_) + | Ast::Literal(_) + | Ast::Dot(_) + | Ast::Assertion(_) + | Ast::Class(ast::Class::Unicode(_)) + | Ast::Class(ast::Class::Perl(_)) => { + // These are all base cases, so we don't increment depth. + return Ok(()); + } + Ast::Class(ast::Class::Bracketed(ref x)) => &x.span, + Ast::Repetition(ref x) => &x.span, + Ast::Group(ref x) => &x.span, + Ast::Alternation(ref x) => &x.span, + Ast::Concat(ref x) => &x.span, + }; + self.increment_depth(span) + } + + fn visit_post(&mut self, ast: &Ast) -> Result<()> { + match *ast { + Ast::Empty(_) + | Ast::Flags(_) + | Ast::Literal(_) + | Ast::Dot(_) + | Ast::Assertion(_) + | Ast::Class(ast::Class::Unicode(_)) + | Ast::Class(ast::Class::Perl(_)) => { + // These are all base cases, so we don't decrement depth. + Ok(()) + } + Ast::Class(ast::Class::Bracketed(_)) + | Ast::Repetition(_) + | Ast::Group(_) + | Ast::Alternation(_) + | Ast::Concat(_) => { + self.decrement_depth(); + Ok(()) + } + } + } + + fn visit_class_set_item_pre( + &mut self, + ast: &ast::ClassSetItem, + ) -> Result<()> { + let span = match *ast { + ast::ClassSetItem::Empty(_) + | ast::ClassSetItem::Literal(_) + | ast::ClassSetItem::Range(_) + | ast::ClassSetItem::Ascii(_) + | ast::ClassSetItem::Unicode(_) + | ast::ClassSetItem::Perl(_) => { + // These are all base cases, so we don't increment depth. + return Ok(()); + } + ast::ClassSetItem::Bracketed(ref x) => &x.span, + ast::ClassSetItem::Union(ref x) => &x.span, + }; + self.increment_depth(span) + } + + fn visit_class_set_item_post( + &mut self, + ast: &ast::ClassSetItem, + ) -> Result<()> { + match *ast { + ast::ClassSetItem::Empty(_) + | ast::ClassSetItem::Literal(_) + | ast::ClassSetItem::Range(_) + | ast::ClassSetItem::Ascii(_) + | ast::ClassSetItem::Unicode(_) + | ast::ClassSetItem::Perl(_) => { + // These are all base cases, so we don't decrement depth. + Ok(()) + } + ast::ClassSetItem::Bracketed(_) | ast::ClassSetItem::Union(_) => { + self.decrement_depth(); + Ok(()) + } + } + } + + fn visit_class_set_binary_op_pre( + &mut self, + ast: &ast::ClassSetBinaryOp, + ) -> Result<()> { + self.increment_depth(&ast.span) + } + + fn visit_class_set_binary_op_post( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<()> { + self.decrement_depth(); + Ok(()) + } +} + +/// When the result is an error, transforms the ast::ErrorKind from the source +/// Result into another one. This function is used to return clearer error +/// messages when possible. +fn specialize_err<T>( + result: Result<T>, + from: ast::ErrorKind, + to: ast::ErrorKind, +) -> Result<T> { + if let Err(e) = result { + if e.kind == from { + Err(ast::Error { kind: to, pattern: e.pattern, span: e.span }) + } else { + Err(e) + } + } else { + result + } +} + +#[cfg(test)] +mod tests { + use std::ops::Range; + + use super::{Parser, ParserBuilder, ParserI, Primitive}; + use crate::ast::{self, Ast, Position, Span}; + + // Our own assert_eq, which has slightly better formatting (but honestly + // still kind of crappy). + macro_rules! assert_eq { + ($left:expr, $right:expr) => {{ + match (&$left, &$right) { + (left_val, right_val) => { + if !(*left_val == *right_val) { + panic!( + "assertion failed: `(left == right)`\n\n\ + left: `{:?}`\nright: `{:?}`\n\n", + left_val, right_val + ) + } + } + } + }}; + } + + // We create these errors to compare with real ast::Errors in the tests. + // We define equality between TestError and ast::Error to disregard the + // pattern string in ast::Error, which is annoying to provide in tests. + #[derive(Clone, Debug)] + struct TestError { + span: Span, + kind: ast::ErrorKind, + } + + impl PartialEq<ast::Error> for TestError { + fn eq(&self, other: &ast::Error) -> bool { + self.span == other.span && self.kind == other.kind + } + } + + impl PartialEq<TestError> for ast::Error { + fn eq(&self, other: &TestError) -> bool { + self.span == other.span && self.kind == other.kind + } + } + + fn s(str: &str) -> String { + str.to_string() + } + + fn parser(pattern: &str) -> ParserI<'_, Parser> { + ParserI::new(Parser::new(), pattern) + } + + fn parser_octal(pattern: &str) -> ParserI<'_, Parser> { + let parser = ParserBuilder::new().octal(true).build(); + ParserI::new(parser, pattern) + } + + fn parser_nest_limit( + pattern: &str, + nest_limit: u32, + ) -> ParserI<'_, Parser> { + let p = ParserBuilder::new().nest_limit(nest_limit).build(); + ParserI::new(p, pattern) + } + + fn parser_ignore_whitespace(pattern: &str) -> ParserI<'_, Parser> { + let p = ParserBuilder::new().ignore_whitespace(true).build(); + ParserI::new(p, pattern) + } + + /// Short alias for creating a new span. + fn nspan(start: Position, end: Position) -> Span { + Span::new(start, end) + } + + /// Short alias for creating a new position. + fn npos(offset: usize, line: usize, column: usize) -> Position { + Position::new(offset, line, column) + } + + /// Create a new span from the given offset range. This assumes a single + /// line and sets the columns based on the offsets. i.e., This only works + /// out of the box for ASCII, which is fine for most tests. + fn span(range: Range<usize>) -> Span { + let start = Position::new(range.start, 1, range.start + 1); + let end = Position::new(range.end, 1, range.end + 1); + Span::new(start, end) + } + + /// Create a new span for the corresponding byte range in the given string. + fn span_range(subject: &str, range: Range<usize>) -> Span { + let start = Position { + offset: range.start, + line: 1 + subject[..range.start].matches('\n').count(), + column: 1 + subject[..range.start] + .chars() + .rev() + .position(|c| c == '\n') + .unwrap_or(subject[..range.start].chars().count()), + }; + let end = Position { + offset: range.end, + line: 1 + subject[..range.end].matches('\n').count(), + column: 1 + subject[..range.end] + .chars() + .rev() + .position(|c| c == '\n') + .unwrap_or(subject[..range.end].chars().count()), + }; + Span::new(start, end) + } + + /// Create a verbatim literal starting at the given position. + fn lit(c: char, start: usize) -> Ast { + lit_with(c, span(start..start + c.len_utf8())) + } + + /// Create a punctuation literal starting at the given position. + fn punct_lit(c: char, span: Span) -> Ast { + Ast::Literal(ast::Literal { + span, + kind: ast::LiteralKind::Punctuation, + c, + }) + } + + /// Create a verbatim literal with the given span. + fn lit_with(c: char, span: Span) -> Ast { + Ast::Literal(ast::Literal { + span, + kind: ast::LiteralKind::Verbatim, + c, + }) + } + + /// Create a concatenation with the given range. + fn concat(range: Range<usize>, asts: Vec<Ast>) -> Ast { + concat_with(span(range), asts) + } + + /// Create a concatenation with the given span. + fn concat_with(span: Span, asts: Vec<Ast>) -> Ast { + Ast::Concat(ast::Concat { span, asts }) + } + + /// Create an alternation with the given span. + fn alt(range: Range<usize>, asts: Vec<Ast>) -> Ast { + Ast::Alternation(ast::Alternation { span: span(range), asts }) + } + + /// Create a capturing group with the given span. + fn group(range: Range<usize>, index: u32, ast: Ast) -> Ast { + Ast::Group(ast::Group { + span: span(range), + kind: ast::GroupKind::CaptureIndex(index), + ast: Box::new(ast), + }) + } + + /// Create an ast::SetFlags. + /// + /// The given pattern should be the full pattern string. The range given + /// should correspond to the byte offsets where the flag set occurs. + /// + /// If negated is true, then the set is interpreted as beginning with a + /// negation. + fn flag_set( + pat: &str, + range: Range<usize>, + flag: ast::Flag, + negated: bool, + ) -> Ast { + let mut items = vec![ast::FlagsItem { + span: span_range(pat, (range.end - 2)..(range.end - 1)), + kind: ast::FlagsItemKind::Flag(flag), + }]; + if negated { + items.insert( + 0, + ast::FlagsItem { + span: span_range(pat, (range.start + 2)..(range.end - 2)), + kind: ast::FlagsItemKind::Negation, + }, + ); + } + Ast::Flags(ast::SetFlags { + span: span_range(pat, range.clone()), + flags: ast::Flags { + span: span_range(pat, (range.start + 2)..(range.end - 1)), + items, + }, + }) + } + + #[test] + fn parse_nest_limit() { + // A nest limit of 0 still allows some types of regexes. + assert_eq!( + parser_nest_limit("", 0).parse(), + Ok(Ast::Empty(span(0..0))) + ); + assert_eq!(parser_nest_limit("a", 0).parse(), Ok(lit('a', 0))); + + // Test repetition operations, which require one level of nesting. + assert_eq!( + parser_nest_limit("a+", 0).parse().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::NestLimitExceeded(0), + } + ); + assert_eq!( + parser_nest_limit("a+", 1).parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::OneOrMore, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser_nest_limit("(a)+", 1).parse().unwrap_err(), + TestError { + span: span(0..3), + kind: ast::ErrorKind::NestLimitExceeded(1), + } + ); + assert_eq!( + parser_nest_limit("a+*", 1).parse().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::NestLimitExceeded(1), + } + ); + assert_eq!( + parser_nest_limit("a+*", 2).parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..3), + op: ast::RepetitionOp { + span: span(2..3), + kind: ast::RepetitionKind::ZeroOrMore, + }, + greedy: true, + ast: Box::new(Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::OneOrMore, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })), + })) + ); + + // Test concatenations. A concatenation requires one level of nesting. + assert_eq!( + parser_nest_limit("ab", 0).parse().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::NestLimitExceeded(0), + } + ); + assert_eq!( + parser_nest_limit("ab", 1).parse(), + Ok(concat(0..2, vec![lit('a', 0), lit('b', 1)])) + ); + assert_eq!( + parser_nest_limit("abc", 1).parse(), + Ok(concat(0..3, vec![lit('a', 0), lit('b', 1), lit('c', 2)])) + ); + + // Test alternations. An alternation requires one level of nesting. + assert_eq!( + parser_nest_limit("a|b", 0).parse().unwrap_err(), + TestError { + span: span(0..3), + kind: ast::ErrorKind::NestLimitExceeded(0), + } + ); + assert_eq!( + parser_nest_limit("a|b", 1).parse(), + Ok(alt(0..3, vec![lit('a', 0), lit('b', 2)])) + ); + assert_eq!( + parser_nest_limit("a|b|c", 1).parse(), + Ok(alt(0..5, vec![lit('a', 0), lit('b', 2), lit('c', 4)])) + ); + + // Test character classes. Classes form their own mini-recursive + // syntax! + assert_eq!( + parser_nest_limit("[a]", 0).parse().unwrap_err(), + TestError { + span: span(0..3), + kind: ast::ErrorKind::NestLimitExceeded(0), + } + ); + assert_eq!( + parser_nest_limit("[a]", 1).parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..3), + negated: false, + kind: ast::ClassSet::Item(ast::ClassSetItem::Literal( + ast::Literal { + span: span(1..2), + kind: ast::LiteralKind::Verbatim, + c: 'a', + } + )), + }))) + ); + assert_eq!( + parser_nest_limit("[ab]", 1).parse().unwrap_err(), + TestError { + span: span(1..3), + kind: ast::ErrorKind::NestLimitExceeded(1), + } + ); + assert_eq!( + parser_nest_limit("[ab[cd]]", 2).parse().unwrap_err(), + TestError { + span: span(3..7), + kind: ast::ErrorKind::NestLimitExceeded(2), + } + ); + assert_eq!( + parser_nest_limit("[ab[cd]]", 3).parse().unwrap_err(), + TestError { + span: span(4..6), + kind: ast::ErrorKind::NestLimitExceeded(3), + } + ); + assert_eq!( + parser_nest_limit("[a--b]", 1).parse().unwrap_err(), + TestError { + span: span(1..5), + kind: ast::ErrorKind::NestLimitExceeded(1), + } + ); + assert_eq!( + parser_nest_limit("[a--bc]", 2).parse().unwrap_err(), + TestError { + span: span(4..6), + kind: ast::ErrorKind::NestLimitExceeded(2), + } + ); + } + + #[test] + fn parse_comments() { + let pat = "(?x) +# This is comment 1. +foo # This is comment 2. + # This is comment 3. +bar +# This is comment 4."; + let astc = parser(pat).parse_with_comments().unwrap(); + assert_eq!( + astc.ast, + concat_with( + span_range(pat, 0..pat.len()), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + lit_with('f', span_range(pat, 26..27)), + lit_with('o', span_range(pat, 27..28)), + lit_with('o', span_range(pat, 28..29)), + lit_with('b', span_range(pat, 74..75)), + lit_with('a', span_range(pat, 75..76)), + lit_with('r', span_range(pat, 76..77)), + ] + ) + ); + assert_eq!( + astc.comments, + vec![ + ast::Comment { + span: span_range(pat, 5..26), + comment: s(" This is comment 1."), + }, + ast::Comment { + span: span_range(pat, 30..51), + comment: s(" This is comment 2."), + }, + ast::Comment { + span: span_range(pat, 53..74), + comment: s(" This is comment 3."), + }, + ast::Comment { + span: span_range(pat, 78..98), + comment: s(" This is comment 4."), + }, + ] + ); + } + + #[test] + fn parse_holistic() { + assert_eq!(parser("]").parse(), Ok(lit(']', 0))); + assert_eq!( + parser(r"\\\.\+\*\?\(\)\|\[\]\{\}\^\$\#\&\-\~").parse(), + Ok(concat( + 0..36, + vec![ + punct_lit('\\', span(0..2)), + punct_lit('.', span(2..4)), + punct_lit('+', span(4..6)), + punct_lit('*', span(6..8)), + punct_lit('?', span(8..10)), + punct_lit('(', span(10..12)), + punct_lit(')', span(12..14)), + punct_lit('|', span(14..16)), + punct_lit('[', span(16..18)), + punct_lit(']', span(18..20)), + punct_lit('{', span(20..22)), + punct_lit('}', span(22..24)), + punct_lit('^', span(24..26)), + punct_lit('$', span(26..28)), + punct_lit('#', span(28..30)), + punct_lit('&', span(30..32)), + punct_lit('-', span(32..34)), + punct_lit('~', span(34..36)), + ] + )) + ); + } + + #[test] + fn parse_ignore_whitespace() { + // Test that basic whitespace insensitivity works. + let pat = "(?x)a b"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + nspan(npos(0, 1, 1), npos(7, 1, 8)), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + lit_with('a', nspan(npos(4, 1, 5), npos(5, 1, 6))), + lit_with('b', nspan(npos(6, 1, 7), npos(7, 1, 8))), + ] + )) + ); + + // Test that we can toggle whitespace insensitivity. + let pat = "(?x)a b(?-x)a b"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + nspan(npos(0, 1, 1), npos(15, 1, 16)), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + lit_with('a', nspan(npos(4, 1, 5), npos(5, 1, 6))), + lit_with('b', nspan(npos(6, 1, 7), npos(7, 1, 8))), + flag_set(pat, 7..12, ast::Flag::IgnoreWhitespace, true), + lit_with('a', nspan(npos(12, 1, 13), npos(13, 1, 14))), + lit_with(' ', nspan(npos(13, 1, 14), npos(14, 1, 15))), + lit_with('b', nspan(npos(14, 1, 15), npos(15, 1, 16))), + ] + )) + ); + + // Test that nesting whitespace insensitive flags works. + let pat = "a (?x:a )a "; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..11), + vec![ + lit_with('a', span_range(pat, 0..1)), + lit_with(' ', span_range(pat, 1..2)), + Ast::Group(ast::Group { + span: span_range(pat, 2..9), + kind: ast::GroupKind::NonCapturing(ast::Flags { + span: span_range(pat, 4..5), + items: vec![ast::FlagsItem { + span: span_range(pat, 4..5), + kind: ast::FlagsItemKind::Flag( + ast::Flag::IgnoreWhitespace + ), + },], + }), + ast: Box::new(lit_with('a', span_range(pat, 6..7))), + }), + lit_with('a', span_range(pat, 9..10)), + lit_with(' ', span_range(pat, 10..11)), + ] + )) + ); + + // Test that whitespace after an opening paren is insignificant. + let pat = "(?x)( ?P<foo> a )"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..pat.len()), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + Ast::Group(ast::Group { + span: span_range(pat, 4..pat.len()), + kind: ast::GroupKind::CaptureName(ast::CaptureName { + span: span_range(pat, 9..12), + name: s("foo"), + index: 1, + }), + ast: Box::new(lit_with('a', span_range(pat, 14..15))), + }), + ] + )) + ); + let pat = "(?x)( a )"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..pat.len()), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + Ast::Group(ast::Group { + span: span_range(pat, 4..pat.len()), + kind: ast::GroupKind::CaptureIndex(1), + ast: Box::new(lit_with('a', span_range(pat, 7..8))), + }), + ] + )) + ); + let pat = "(?x)( ?: a )"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..pat.len()), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + Ast::Group(ast::Group { + span: span_range(pat, 4..pat.len()), + kind: ast::GroupKind::NonCapturing(ast::Flags { + span: span_range(pat, 8..8), + items: vec![], + }), + ast: Box::new(lit_with('a', span_range(pat, 11..12))), + }), + ] + )) + ); + let pat = r"(?x)\x { 53 }"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..pat.len()), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + Ast::Literal(ast::Literal { + span: span(4..13), + kind: ast::LiteralKind::HexBrace( + ast::HexLiteralKind::X + ), + c: 'S', + }), + ] + )) + ); + + // Test that whitespace after an escape is OK. + let pat = r"(?x)\ "; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..pat.len()), + vec![ + flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), + Ast::Literal(ast::Literal { + span: span_range(pat, 4..6), + kind: ast::LiteralKind::Special( + ast::SpecialLiteralKind::Space + ), + c: ' ', + }), + ] + )) + ); + // ... but only when `x` mode is enabled. + let pat = r"\ "; + assert_eq!( + parser(pat).parse().unwrap_err(), + TestError { + span: span_range(pat, 0..2), + kind: ast::ErrorKind::EscapeUnrecognized, + } + ); + } + + #[test] + fn parse_newlines() { + let pat = ".\n."; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..3), + vec![ + Ast::Dot(span_range(pat, 0..1)), + lit_with('\n', span_range(pat, 1..2)), + Ast::Dot(span_range(pat, 2..3)), + ] + )) + ); + + let pat = "foobar\nbaz\nquux\n"; + assert_eq!( + parser(pat).parse(), + Ok(concat_with( + span_range(pat, 0..pat.len()), + vec![ + lit_with('f', nspan(npos(0, 1, 1), npos(1, 1, 2))), + lit_with('o', nspan(npos(1, 1, 2), npos(2, 1, 3))), + lit_with('o', nspan(npos(2, 1, 3), npos(3, 1, 4))), + lit_with('b', nspan(npos(3, 1, 4), npos(4, 1, 5))), + lit_with('a', nspan(npos(4, 1, 5), npos(5, 1, 6))), + lit_with('r', nspan(npos(5, 1, 6), npos(6, 1, 7))), + lit_with('\n', nspan(npos(6, 1, 7), npos(7, 2, 1))), + lit_with('b', nspan(npos(7, 2, 1), npos(8, 2, 2))), + lit_with('a', nspan(npos(8, 2, 2), npos(9, 2, 3))), + lit_with('z', nspan(npos(9, 2, 3), npos(10, 2, 4))), + lit_with('\n', nspan(npos(10, 2, 4), npos(11, 3, 1))), + lit_with('q', nspan(npos(11, 3, 1), npos(12, 3, 2))), + lit_with('u', nspan(npos(12, 3, 2), npos(13, 3, 3))), + lit_with('u', nspan(npos(13, 3, 3), npos(14, 3, 4))), + lit_with('x', nspan(npos(14, 3, 4), npos(15, 3, 5))), + lit_with('\n', nspan(npos(15, 3, 5), npos(16, 4, 1))), + ] + )) + ); + } + + #[test] + fn parse_uncounted_repetition() { + assert_eq!( + parser(r"a*").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::ZeroOrMore, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a+").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::OneOrMore, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + + assert_eq!( + parser(r"a?").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a??").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..3), + op: ast::RepetitionOp { + span: span(1..3), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: false, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a?").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a?b").parse(), + Ok(concat( + 0..3, + vec![ + Ast::Repetition(ast::Repetition { + span: span(0..2), + op: ast::RepetitionOp { + span: span(1..2), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: true, + ast: Box::new(lit('a', 0)), + }), + lit('b', 2), + ] + )) + ); + assert_eq!( + parser(r"a??b").parse(), + Ok(concat( + 0..4, + vec![ + Ast::Repetition(ast::Repetition { + span: span(0..3), + op: ast::RepetitionOp { + span: span(1..3), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: false, + ast: Box::new(lit('a', 0)), + }), + lit('b', 3), + ] + )) + ); + assert_eq!( + parser(r"ab?").parse(), + Ok(concat( + 0..3, + vec![ + lit('a', 0), + Ast::Repetition(ast::Repetition { + span: span(1..3), + op: ast::RepetitionOp { + span: span(2..3), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: true, + ast: Box::new(lit('b', 1)), + }), + ] + )) + ); + assert_eq!( + parser(r"(ab)?").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..5), + op: ast::RepetitionOp { + span: span(4..5), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: true, + ast: Box::new(group( + 0..4, + 1, + concat(1..3, vec![lit('a', 1), lit('b', 2),]) + )), + })) + ); + assert_eq!( + parser(r"|a?").parse(), + Ok(alt( + 0..3, + vec![ + Ast::Empty(span(0..0)), + Ast::Repetition(ast::Repetition { + span: span(1..3), + op: ast::RepetitionOp { + span: span(2..3), + kind: ast::RepetitionKind::ZeroOrOne, + }, + greedy: true, + ast: Box::new(lit('a', 1)), + }), + ] + )) + ); + + assert_eq!( + parser(r"*").parse().unwrap_err(), + TestError { + span: span(0..0), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"(?i)*").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"(*)").parse().unwrap_err(), + TestError { + span: span(1..1), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"(?:?)").parse().unwrap_err(), + TestError { + span: span(3..3), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"+").parse().unwrap_err(), + TestError { + span: span(0..0), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"?").parse().unwrap_err(), + TestError { + span: span(0..0), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"(?)").parse().unwrap_err(), + TestError { + span: span(1..1), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"|*").parse().unwrap_err(), + TestError { + span: span(1..1), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"|+").parse().unwrap_err(), + TestError { + span: span(1..1), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"|?").parse().unwrap_err(), + TestError { + span: span(1..1), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + } + + #[test] + fn parse_counted_repetition() { + assert_eq!( + parser(r"a{5}").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..4), + op: ast::RepetitionOp { + span: span(1..4), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Exactly(5) + ), + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a{5,}").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..5), + op: ast::RepetitionOp { + span: span(1..5), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::AtLeast(5) + ), + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a{5,9}").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..6), + op: ast::RepetitionOp { + span: span(1..6), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Bounded(5, 9) + ), + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a{5}?").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..5), + op: ast::RepetitionOp { + span: span(1..5), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Exactly(5) + ), + }, + greedy: false, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"ab{5}").parse(), + Ok(concat( + 0..5, + vec![ + lit('a', 0), + Ast::Repetition(ast::Repetition { + span: span(1..5), + op: ast::RepetitionOp { + span: span(2..5), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Exactly(5) + ), + }, + greedy: true, + ast: Box::new(lit('b', 1)), + }), + ] + )) + ); + assert_eq!( + parser(r"ab{5}c").parse(), + Ok(concat( + 0..6, + vec![ + lit('a', 0), + Ast::Repetition(ast::Repetition { + span: span(1..5), + op: ast::RepetitionOp { + span: span(2..5), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Exactly(5) + ), + }, + greedy: true, + ast: Box::new(lit('b', 1)), + }), + lit('c', 5), + ] + )) + ); + + assert_eq!( + parser(r"a{ 5 }").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..6), + op: ast::RepetitionOp { + span: span(1..6), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Exactly(5) + ), + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser(r"a{ 5 , 9 }").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..10), + op: ast::RepetitionOp { + span: span(1..10), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Bounded(5, 9) + ), + }, + greedy: true, + ast: Box::new(lit('a', 0)), + })) + ); + assert_eq!( + parser_ignore_whitespace(r"a{5,9} ?").parse(), + Ok(Ast::Repetition(ast::Repetition { + span: span(0..8), + op: ast::RepetitionOp { + span: span(1..8), + kind: ast::RepetitionKind::Range( + ast::RepetitionRange::Bounded(5, 9) + ), + }, + greedy: false, + ast: Box::new(lit('a', 0)), + })) + ); + + assert_eq!( + parser(r"(?i){0}").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"(?m){1,1}").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"a{]}").parse().unwrap_err(), + TestError { + span: span(2..2), + kind: ast::ErrorKind::RepetitionCountDecimalEmpty, + } + ); + assert_eq!( + parser(r"a{1,]}").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::RepetitionCountDecimalEmpty, + } + ); + assert_eq!( + parser(r"a{").parse().unwrap_err(), + TestError { + span: span(1..2), + kind: ast::ErrorKind::RepetitionCountUnclosed, + } + ); + assert_eq!( + parser(r"a{}").parse().unwrap_err(), + TestError { + span: span(2..2), + kind: ast::ErrorKind::RepetitionCountDecimalEmpty, + } + ); + assert_eq!( + parser(r"a{a").parse().unwrap_err(), + TestError { + span: span(2..2), + kind: ast::ErrorKind::RepetitionCountDecimalEmpty, + } + ); + assert_eq!( + parser(r"a{9999999999}").parse().unwrap_err(), + TestError { + span: span(2..12), + kind: ast::ErrorKind::DecimalInvalid, + } + ); + assert_eq!( + parser(r"a{9").parse().unwrap_err(), + TestError { + span: span(1..3), + kind: ast::ErrorKind::RepetitionCountUnclosed, + } + ); + assert_eq!( + parser(r"a{9,a").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::RepetitionCountDecimalEmpty, + } + ); + assert_eq!( + parser(r"a{9,9999999999}").parse().unwrap_err(), + TestError { + span: span(4..14), + kind: ast::ErrorKind::DecimalInvalid, + } + ); + assert_eq!( + parser(r"a{9,").parse().unwrap_err(), + TestError { + span: span(1..4), + kind: ast::ErrorKind::RepetitionCountUnclosed, + } + ); + assert_eq!( + parser(r"a{9,11").parse().unwrap_err(), + TestError { + span: span(1..6), + kind: ast::ErrorKind::RepetitionCountUnclosed, + } + ); + assert_eq!( + parser(r"a{2,1}").parse().unwrap_err(), + TestError { + span: span(1..6), + kind: ast::ErrorKind::RepetitionCountInvalid, + } + ); + assert_eq!( + parser(r"{5}").parse().unwrap_err(), + TestError { + span: span(0..0), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + assert_eq!( + parser(r"|{5}").parse().unwrap_err(), + TestError { + span: span(1..1), + kind: ast::ErrorKind::RepetitionMissing, + } + ); + } + + #[test] + fn parse_alternate() { + assert_eq!( + parser(r"a|b").parse(), + Ok(Ast::Alternation(ast::Alternation { + span: span(0..3), + asts: vec![lit('a', 0), lit('b', 2)], + })) + ); + assert_eq!( + parser(r"(a|b)").parse(), + Ok(group( + 0..5, + 1, + Ast::Alternation(ast::Alternation { + span: span(1..4), + asts: vec![lit('a', 1), lit('b', 3)], + }) + )) + ); + + assert_eq!( + parser(r"a|b|c").parse(), + Ok(Ast::Alternation(ast::Alternation { + span: span(0..5), + asts: vec![lit('a', 0), lit('b', 2), lit('c', 4)], + })) + ); + assert_eq!( + parser(r"ax|by|cz").parse(), + Ok(Ast::Alternation(ast::Alternation { + span: span(0..8), + asts: vec![ + concat(0..2, vec![lit('a', 0), lit('x', 1)]), + concat(3..5, vec![lit('b', 3), lit('y', 4)]), + concat(6..8, vec![lit('c', 6), lit('z', 7)]), + ], + })) + ); + assert_eq!( + parser(r"(ax|by|cz)").parse(), + Ok(group( + 0..10, + 1, + Ast::Alternation(ast::Alternation { + span: span(1..9), + asts: vec![ + concat(1..3, vec![lit('a', 1), lit('x', 2)]), + concat(4..6, vec![lit('b', 4), lit('y', 5)]), + concat(7..9, vec![lit('c', 7), lit('z', 8)]), + ], + }) + )) + ); + assert_eq!( + parser(r"(ax|(by|(cz)))").parse(), + Ok(group( + 0..14, + 1, + alt( + 1..13, + vec![ + concat(1..3, vec![lit('a', 1), lit('x', 2)]), + group( + 4..13, + 2, + alt( + 5..12, + vec![ + concat( + 5..7, + vec![lit('b', 5), lit('y', 6)] + ), + group( + 8..12, + 3, + concat( + 9..11, + vec![lit('c', 9), lit('z', 10),] + ) + ), + ] + ) + ), + ] + ) + )) + ); + + assert_eq!( + parser(r"|").parse(), + Ok(alt( + 0..1, + vec![Ast::Empty(span(0..0)), Ast::Empty(span(1..1)),] + )) + ); + assert_eq!( + parser(r"||").parse(), + Ok(alt( + 0..2, + vec![ + Ast::Empty(span(0..0)), + Ast::Empty(span(1..1)), + Ast::Empty(span(2..2)), + ] + )) + ); + assert_eq!( + parser(r"a|").parse(), + Ok(alt(0..2, vec![lit('a', 0), Ast::Empty(span(2..2)),])) + ); + assert_eq!( + parser(r"|a").parse(), + Ok(alt(0..2, vec![Ast::Empty(span(0..0)), lit('a', 1),])) + ); + + assert_eq!( + parser(r"(|)").parse(), + Ok(group( + 0..3, + 1, + alt( + 1..2, + vec![Ast::Empty(span(1..1)), Ast::Empty(span(2..2)),] + ) + )) + ); + assert_eq!( + parser(r"(a|)").parse(), + Ok(group( + 0..4, + 1, + alt(1..3, vec![lit('a', 1), Ast::Empty(span(3..3)),]) + )) + ); + assert_eq!( + parser(r"(|a)").parse(), + Ok(group( + 0..4, + 1, + alt(1..3, vec![Ast::Empty(span(1..1)), lit('a', 2),]) + )) + ); + + assert_eq!( + parser(r"a|b)").parse().unwrap_err(), + TestError { + span: span(3..4), + kind: ast::ErrorKind::GroupUnopened, + } + ); + assert_eq!( + parser(r"(a|b").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::GroupUnclosed, + } + ); + } + + #[test] + fn parse_unsupported_lookaround() { + assert_eq!( + parser(r"(?=a)").parse().unwrap_err(), + TestError { + span: span(0..3), + kind: ast::ErrorKind::UnsupportedLookAround, + } + ); + assert_eq!( + parser(r"(?!a)").parse().unwrap_err(), + TestError { + span: span(0..3), + kind: ast::ErrorKind::UnsupportedLookAround, + } + ); + assert_eq!( + parser(r"(?<=a)").parse().unwrap_err(), + TestError { + span: span(0..4), + kind: ast::ErrorKind::UnsupportedLookAround, + } + ); + assert_eq!( + parser(r"(?<!a)").parse().unwrap_err(), + TestError { + span: span(0..4), + kind: ast::ErrorKind::UnsupportedLookAround, + } + ); + } + + #[test] + fn parse_group() { + assert_eq!( + parser("(?i)").parse(), + Ok(Ast::Flags(ast::SetFlags { + span: span(0..4), + flags: ast::Flags { + span: span(2..3), + items: vec![ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }], + }, + })) + ); + assert_eq!( + parser("(?iU)").parse(), + Ok(Ast::Flags(ast::SetFlags { + span: span(0..5), + flags: ast::Flags { + span: span(2..4), + items: vec![ + ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }, + ast::FlagsItem { + span: span(3..4), + kind: ast::FlagsItemKind::Flag( + ast::Flag::SwapGreed + ), + }, + ], + }, + })) + ); + assert_eq!( + parser("(?i-U)").parse(), + Ok(Ast::Flags(ast::SetFlags { + span: span(0..6), + flags: ast::Flags { + span: span(2..5), + items: vec![ + ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }, + ast::FlagsItem { + span: span(3..4), + kind: ast::FlagsItemKind::Negation, + }, + ast::FlagsItem { + span: span(4..5), + kind: ast::FlagsItemKind::Flag( + ast::Flag::SwapGreed + ), + }, + ], + }, + })) + ); + + assert_eq!( + parser("()").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..2), + kind: ast::GroupKind::CaptureIndex(1), + ast: Box::new(Ast::Empty(span(1..1))), + })) + ); + assert_eq!( + parser("(a)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..3), + kind: ast::GroupKind::CaptureIndex(1), + ast: Box::new(lit('a', 1)), + })) + ); + assert_eq!( + parser("(())").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..4), + kind: ast::GroupKind::CaptureIndex(1), + ast: Box::new(Ast::Group(ast::Group { + span: span(1..3), + kind: ast::GroupKind::CaptureIndex(2), + ast: Box::new(Ast::Empty(span(2..2))), + })), + })) + ); + + assert_eq!( + parser("(?:a)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..5), + kind: ast::GroupKind::NonCapturing(ast::Flags { + span: span(2..2), + items: vec![], + }), + ast: Box::new(lit('a', 3)), + })) + ); + + assert_eq!( + parser("(?i:a)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..6), + kind: ast::GroupKind::NonCapturing(ast::Flags { + span: span(2..3), + items: vec![ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + },], + }), + ast: Box::new(lit('a', 4)), + })) + ); + assert_eq!( + parser("(?i-U:a)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..8), + kind: ast::GroupKind::NonCapturing(ast::Flags { + span: span(2..5), + items: vec![ + ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }, + ast::FlagsItem { + span: span(3..4), + kind: ast::FlagsItemKind::Negation, + }, + ast::FlagsItem { + span: span(4..5), + kind: ast::FlagsItemKind::Flag( + ast::Flag::SwapGreed + ), + }, + ], + }), + ast: Box::new(lit('a', 6)), + })) + ); + + assert_eq!( + parser("(").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::GroupUnclosed, + } + ); + assert_eq!( + parser("(?").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::GroupUnclosed, + } + ); + assert_eq!( + parser("(?P").parse().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::FlagUnrecognized, + } + ); + assert_eq!( + parser("(?P<").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::GroupNameUnexpectedEof, + } + ); + assert_eq!( + parser("(a").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::GroupUnclosed, + } + ); + assert_eq!( + parser("(()").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::GroupUnclosed, + } + ); + assert_eq!( + parser(")").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::GroupUnopened, + } + ); + assert_eq!( + parser("a)").parse().unwrap_err(), + TestError { + span: span(1..2), + kind: ast::ErrorKind::GroupUnopened, + } + ); + } + + #[test] + fn parse_capture_name() { + assert_eq!( + parser("(?P<a>z)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..8), + kind: ast::GroupKind::CaptureName(ast::CaptureName { + span: span(4..5), + name: s("a"), + index: 1, + }), + ast: Box::new(lit('z', 6)), + })) + ); + assert_eq!( + parser("(?P<abc>z)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..10), + kind: ast::GroupKind::CaptureName(ast::CaptureName { + span: span(4..7), + name: s("abc"), + index: 1, + }), + ast: Box::new(lit('z', 8)), + })) + ); + + assert_eq!( + parser("(?P<a_1>z)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..10), + kind: ast::GroupKind::CaptureName(ast::CaptureName { + span: span(4..7), + name: s("a_1"), + index: 1, + }), + ast: Box::new(lit('z', 8)), + })) + ); + + assert_eq!( + parser("(?P<a.1>z)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..10), + kind: ast::GroupKind::CaptureName(ast::CaptureName { + span: span(4..7), + name: s("a.1"), + index: 1, + }), + ast: Box::new(lit('z', 8)), + })) + ); + + assert_eq!( + parser("(?P<a[1]>z)").parse(), + Ok(Ast::Group(ast::Group { + span: span(0..11), + kind: ast::GroupKind::CaptureName(ast::CaptureName { + span: span(4..8), + name: s("a[1]"), + index: 1, + }), + ast: Box::new(lit('z', 9)), + })) + ); + + assert_eq!( + parser("(?P<").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::GroupNameUnexpectedEof, + } + ); + assert_eq!( + parser("(?P<>z)").parse().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::GroupNameEmpty, + } + ); + assert_eq!( + parser("(?P<a").parse().unwrap_err(), + TestError { + span: span(5..5), + kind: ast::ErrorKind::GroupNameUnexpectedEof, + } + ); + assert_eq!( + parser("(?P<ab").parse().unwrap_err(), + TestError { + span: span(6..6), + kind: ast::ErrorKind::GroupNameUnexpectedEof, + } + ); + assert_eq!( + parser("(?P<0a").parse().unwrap_err(), + TestError { + span: span(4..5), + kind: ast::ErrorKind::GroupNameInvalid, + } + ); + assert_eq!( + parser("(?P<~").parse().unwrap_err(), + TestError { + span: span(4..5), + kind: ast::ErrorKind::GroupNameInvalid, + } + ); + assert_eq!( + parser("(?P<abc~").parse().unwrap_err(), + TestError { + span: span(7..8), + kind: ast::ErrorKind::GroupNameInvalid, + } + ); + assert_eq!( + parser("(?P<a>y)(?P<a>z)").parse().unwrap_err(), + TestError { + span: span(12..13), + kind: ast::ErrorKind::GroupNameDuplicate { + original: span(4..5), + }, + } + ); + } + + #[test] + fn parse_flags() { + assert_eq!( + parser("i:").parse_flags(), + Ok(ast::Flags { + span: span(0..1), + items: vec![ast::FlagsItem { + span: span(0..1), + kind: ast::FlagsItemKind::Flag(ast::Flag::CaseInsensitive), + }], + }) + ); + assert_eq!( + parser("i)").parse_flags(), + Ok(ast::Flags { + span: span(0..1), + items: vec![ast::FlagsItem { + span: span(0..1), + kind: ast::FlagsItemKind::Flag(ast::Flag::CaseInsensitive), + }], + }) + ); + + assert_eq!( + parser("isU:").parse_flags(), + Ok(ast::Flags { + span: span(0..3), + items: vec![ + ast::FlagsItem { + span: span(0..1), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }, + ast::FlagsItem { + span: span(1..2), + kind: ast::FlagsItemKind::Flag( + ast::Flag::DotMatchesNewLine + ), + }, + ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag(ast::Flag::SwapGreed), + }, + ], + }) + ); + + assert_eq!( + parser("-isU:").parse_flags(), + Ok(ast::Flags { + span: span(0..4), + items: vec![ + ast::FlagsItem { + span: span(0..1), + kind: ast::FlagsItemKind::Negation, + }, + ast::FlagsItem { + span: span(1..2), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }, + ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::DotMatchesNewLine + ), + }, + ast::FlagsItem { + span: span(3..4), + kind: ast::FlagsItemKind::Flag(ast::Flag::SwapGreed), + }, + ], + }) + ); + assert_eq!( + parser("i-sU:").parse_flags(), + Ok(ast::Flags { + span: span(0..4), + items: vec![ + ast::FlagsItem { + span: span(0..1), + kind: ast::FlagsItemKind::Flag( + ast::Flag::CaseInsensitive + ), + }, + ast::FlagsItem { + span: span(1..2), + kind: ast::FlagsItemKind::Negation, + }, + ast::FlagsItem { + span: span(2..3), + kind: ast::FlagsItemKind::Flag( + ast::Flag::DotMatchesNewLine + ), + }, + ast::FlagsItem { + span: span(3..4), + kind: ast::FlagsItemKind::Flag(ast::Flag::SwapGreed), + }, + ], + }) + ); + + assert_eq!( + parser("isU").parse_flags().unwrap_err(), + TestError { + span: span(3..3), + kind: ast::ErrorKind::FlagUnexpectedEof, + } + ); + assert_eq!( + parser("isUa:").parse_flags().unwrap_err(), + TestError { + span: span(3..4), + kind: ast::ErrorKind::FlagUnrecognized, + } + ); + assert_eq!( + parser("isUi:").parse_flags().unwrap_err(), + TestError { + span: span(3..4), + kind: ast::ErrorKind::FlagDuplicate { original: span(0..1) }, + } + ); + assert_eq!( + parser("i-sU-i:").parse_flags().unwrap_err(), + TestError { + span: span(4..5), + kind: ast::ErrorKind::FlagRepeatedNegation { + original: span(1..2), + }, + } + ); + assert_eq!( + parser("-)").parse_flags().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::FlagDanglingNegation, + } + ); + assert_eq!( + parser("i-)").parse_flags().unwrap_err(), + TestError { + span: span(1..2), + kind: ast::ErrorKind::FlagDanglingNegation, + } + ); + assert_eq!( + parser("iU-)").parse_flags().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::FlagDanglingNegation, + } + ); + } + + #[test] + fn parse_flag() { + assert_eq!(parser("i").parse_flag(), Ok(ast::Flag::CaseInsensitive)); + assert_eq!(parser("m").parse_flag(), Ok(ast::Flag::MultiLine)); + assert_eq!(parser("s").parse_flag(), Ok(ast::Flag::DotMatchesNewLine)); + assert_eq!(parser("U").parse_flag(), Ok(ast::Flag::SwapGreed)); + assert_eq!(parser("u").parse_flag(), Ok(ast::Flag::Unicode)); + assert_eq!(parser("x").parse_flag(), Ok(ast::Flag::IgnoreWhitespace)); + + assert_eq!( + parser("a").parse_flag().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::FlagUnrecognized, + } + ); + assert_eq!( + parser("☃").parse_flag().unwrap_err(), + TestError { + span: span_range("☃", 0..3), + kind: ast::ErrorKind::FlagUnrecognized, + } + ); + } + + #[test] + fn parse_primitive_non_escape() { + assert_eq!( + parser(r".").parse_primitive(), + Ok(Primitive::Dot(span(0..1))) + ); + assert_eq!( + parser(r"^").parse_primitive(), + Ok(Primitive::Assertion(ast::Assertion { + span: span(0..1), + kind: ast::AssertionKind::StartLine, + })) + ); + assert_eq!( + parser(r"$").parse_primitive(), + Ok(Primitive::Assertion(ast::Assertion { + span: span(0..1), + kind: ast::AssertionKind::EndLine, + })) + ); + + assert_eq!( + parser(r"a").parse_primitive(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..1), + kind: ast::LiteralKind::Verbatim, + c: 'a', + })) + ); + assert_eq!( + parser(r"|").parse_primitive(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..1), + kind: ast::LiteralKind::Verbatim, + c: '|', + })) + ); + assert_eq!( + parser(r"☃").parse_primitive(), + Ok(Primitive::Literal(ast::Literal { + span: span_range("☃", 0..3), + kind: ast::LiteralKind::Verbatim, + c: '☃', + })) + ); + } + + #[test] + fn parse_escape() { + assert_eq!( + parser(r"\|").parse_primitive(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..2), + kind: ast::LiteralKind::Punctuation, + c: '|', + })) + ); + let specials = &[ + (r"\a", '\x07', ast::SpecialLiteralKind::Bell), + (r"\f", '\x0C', ast::SpecialLiteralKind::FormFeed), + (r"\t", '\t', ast::SpecialLiteralKind::Tab), + (r"\n", '\n', ast::SpecialLiteralKind::LineFeed), + (r"\r", '\r', ast::SpecialLiteralKind::CarriageReturn), + (r"\v", '\x0B', ast::SpecialLiteralKind::VerticalTab), + ]; + for &(pat, c, ref kind) in specials { + assert_eq!( + parser(pat).parse_primitive(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..2), + kind: ast::LiteralKind::Special(kind.clone()), + c, + })) + ); + } + assert_eq!( + parser(r"\A").parse_primitive(), + Ok(Primitive::Assertion(ast::Assertion { + span: span(0..2), + kind: ast::AssertionKind::StartText, + })) + ); + assert_eq!( + parser(r"\z").parse_primitive(), + Ok(Primitive::Assertion(ast::Assertion { + span: span(0..2), + kind: ast::AssertionKind::EndText, + })) + ); + assert_eq!( + parser(r"\b").parse_primitive(), + Ok(Primitive::Assertion(ast::Assertion { + span: span(0..2), + kind: ast::AssertionKind::WordBoundary, + })) + ); + assert_eq!( + parser(r"\B").parse_primitive(), + Ok(Primitive::Assertion(ast::Assertion { + span: span(0..2), + kind: ast::AssertionKind::NotWordBoundary, + })) + ); + + assert_eq!( + parser(r"\").parse_escape().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\y").parse_escape().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::EscapeUnrecognized, + } + ); + } + + #[test] + fn parse_unsupported_backreference() { + assert_eq!( + parser(r"\0").parse_escape().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::UnsupportedBackreference, + } + ); + assert_eq!( + parser(r"\9").parse_escape().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::UnsupportedBackreference, + } + ); + } + + #[test] + fn parse_octal() { + for i in 0..511 { + let pat = format!(r"\{:o}", i); + assert_eq!( + parser_octal(&pat).parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..pat.len()), + kind: ast::LiteralKind::Octal, + c: ::std::char::from_u32(i).unwrap(), + })) + ); + } + assert_eq!( + parser_octal(r"\778").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..3), + kind: ast::LiteralKind::Octal, + c: '?', + })) + ); + assert_eq!( + parser_octal(r"\7777").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..4), + kind: ast::LiteralKind::Octal, + c: '\u{01FF}', + })) + ); + assert_eq!( + parser_octal(r"\778").parse(), + Ok(Ast::Concat(ast::Concat { + span: span(0..4), + asts: vec![ + Ast::Literal(ast::Literal { + span: span(0..3), + kind: ast::LiteralKind::Octal, + c: '?', + }), + Ast::Literal(ast::Literal { + span: span(3..4), + kind: ast::LiteralKind::Verbatim, + c: '8', + }), + ], + })) + ); + assert_eq!( + parser_octal(r"\7777").parse(), + Ok(Ast::Concat(ast::Concat { + span: span(0..5), + asts: vec![ + Ast::Literal(ast::Literal { + span: span(0..4), + kind: ast::LiteralKind::Octal, + c: '\u{01FF}', + }), + Ast::Literal(ast::Literal { + span: span(4..5), + kind: ast::LiteralKind::Verbatim, + c: '7', + }), + ], + })) + ); + + assert_eq!( + parser_octal(r"\8").parse_escape().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::EscapeUnrecognized, + } + ); + } + + #[test] + fn parse_hex_two() { + for i in 0..256 { + let pat = format!(r"\x{:02x}", i); + assert_eq!( + parser(&pat).parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..pat.len()), + kind: ast::LiteralKind::HexFixed(ast::HexLiteralKind::X), + c: ::std::char::from_u32(i).unwrap(), + })) + ); + } + + assert_eq!( + parser(r"\xF").parse_escape().unwrap_err(), + TestError { + span: span(3..3), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\xG").parse_escape().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\xFG").parse_escape().unwrap_err(), + TestError { + span: span(3..4), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + } + + #[test] + fn parse_hex_four() { + for i in 0..65536 { + let c = match ::std::char::from_u32(i) { + None => continue, + Some(c) => c, + }; + let pat = format!(r"\u{:04x}", i); + assert_eq!( + parser(&pat).parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..pat.len()), + kind: ast::LiteralKind::HexFixed( + ast::HexLiteralKind::UnicodeShort + ), + c, + })) + ); + } + + assert_eq!( + parser(r"\uF").parse_escape().unwrap_err(), + TestError { + span: span(3..3), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\uG").parse_escape().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\uFG").parse_escape().unwrap_err(), + TestError { + span: span(3..4), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\uFFG").parse_escape().unwrap_err(), + TestError { + span: span(4..5), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\uFFFG").parse_escape().unwrap_err(), + TestError { + span: span(5..6), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\uD800").parse_escape().unwrap_err(), + TestError { + span: span(2..6), + kind: ast::ErrorKind::EscapeHexInvalid, + } + ); + } + + #[test] + fn parse_hex_eight() { + for i in 0..65536 { + let c = match ::std::char::from_u32(i) { + None => continue, + Some(c) => c, + }; + let pat = format!(r"\U{:08x}", i); + assert_eq!( + parser(&pat).parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..pat.len()), + kind: ast::LiteralKind::HexFixed( + ast::HexLiteralKind::UnicodeLong + ), + c, + })) + ); + } + + assert_eq!( + parser(r"\UF").parse_escape().unwrap_err(), + TestError { + span: span(3..3), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\UG").parse_escape().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFG").parse_escape().unwrap_err(), + TestError { + span: span(3..4), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFFG").parse_escape().unwrap_err(), + TestError { + span: span(4..5), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFFFG").parse_escape().unwrap_err(), + TestError { + span: span(5..6), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFFFFG").parse_escape().unwrap_err(), + TestError { + span: span(6..7), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFFFFFG").parse_escape().unwrap_err(), + TestError { + span: span(7..8), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFFFFFFG").parse_escape().unwrap_err(), + TestError { + span: span(8..9), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\UFFFFFFFG").parse_escape().unwrap_err(), + TestError { + span: span(9..10), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + } + + #[test] + fn parse_hex_brace() { + assert_eq!( + parser(r"\u{26c4}").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..8), + kind: ast::LiteralKind::HexBrace( + ast::HexLiteralKind::UnicodeShort + ), + c: '⛄', + })) + ); + assert_eq!( + parser(r"\U{26c4}").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..8), + kind: ast::LiteralKind::HexBrace( + ast::HexLiteralKind::UnicodeLong + ), + c: '⛄', + })) + ); + assert_eq!( + parser(r"\x{26c4}").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..8), + kind: ast::LiteralKind::HexBrace(ast::HexLiteralKind::X), + c: '⛄', + })) + ); + assert_eq!( + parser(r"\x{26C4}").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..8), + kind: ast::LiteralKind::HexBrace(ast::HexLiteralKind::X), + c: '⛄', + })) + ); + assert_eq!( + parser(r"\x{10fFfF}").parse_escape(), + Ok(Primitive::Literal(ast::Literal { + span: span(0..10), + kind: ast::LiteralKind::HexBrace(ast::HexLiteralKind::X), + c: '\u{10FFFF}', + })) + ); + + assert_eq!( + parser(r"\x").parse_escape().unwrap_err(), + TestError { + span: span(2..2), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\x{").parse_escape().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\x{FF").parse_escape().unwrap_err(), + TestError { + span: span(2..5), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\x{}").parse_escape().unwrap_err(), + TestError { + span: span(2..4), + kind: ast::ErrorKind::EscapeHexEmpty, + } + ); + assert_eq!( + parser(r"\x{FGF}").parse_escape().unwrap_err(), + TestError { + span: span(4..5), + kind: ast::ErrorKind::EscapeHexInvalidDigit, + } + ); + assert_eq!( + parser(r"\x{FFFFFF}").parse_escape().unwrap_err(), + TestError { + span: span(3..9), + kind: ast::ErrorKind::EscapeHexInvalid, + } + ); + assert_eq!( + parser(r"\x{D800}").parse_escape().unwrap_err(), + TestError { + span: span(3..7), + kind: ast::ErrorKind::EscapeHexInvalid, + } + ); + assert_eq!( + parser(r"\x{FFFFFFFFF}").parse_escape().unwrap_err(), + TestError { + span: span(3..12), + kind: ast::ErrorKind::EscapeHexInvalid, + } + ); + } + + #[test] + fn parse_decimal() { + assert_eq!(parser("123").parse_decimal(), Ok(123)); + assert_eq!(parser("0").parse_decimal(), Ok(0)); + assert_eq!(parser("01").parse_decimal(), Ok(1)); + + assert_eq!( + parser("-1").parse_decimal().unwrap_err(), + TestError { span: span(0..0), kind: ast::ErrorKind::DecimalEmpty } + ); + assert_eq!( + parser("").parse_decimal().unwrap_err(), + TestError { span: span(0..0), kind: ast::ErrorKind::DecimalEmpty } + ); + assert_eq!( + parser("9999999999").parse_decimal().unwrap_err(), + TestError { + span: span(0..10), + kind: ast::ErrorKind::DecimalInvalid, + } + ); + } + + #[test] + fn parse_set_class() { + fn union(span: Span, items: Vec<ast::ClassSetItem>) -> ast::ClassSet { + ast::ClassSet::union(ast::ClassSetUnion { span, items }) + } + + fn intersection( + span: Span, + lhs: ast::ClassSet, + rhs: ast::ClassSet, + ) -> ast::ClassSet { + ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { + span, + kind: ast::ClassSetBinaryOpKind::Intersection, + lhs: Box::new(lhs), + rhs: Box::new(rhs), + }) + } + + fn difference( + span: Span, + lhs: ast::ClassSet, + rhs: ast::ClassSet, + ) -> ast::ClassSet { + ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { + span, + kind: ast::ClassSetBinaryOpKind::Difference, + lhs: Box::new(lhs), + rhs: Box::new(rhs), + }) + } + + fn symdifference( + span: Span, + lhs: ast::ClassSet, + rhs: ast::ClassSet, + ) -> ast::ClassSet { + ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { + span, + kind: ast::ClassSetBinaryOpKind::SymmetricDifference, + lhs: Box::new(lhs), + rhs: Box::new(rhs), + }) + } + + fn itemset(item: ast::ClassSetItem) -> ast::ClassSet { + ast::ClassSet::Item(item) + } + + fn item_ascii(cls: ast::ClassAscii) -> ast::ClassSetItem { + ast::ClassSetItem::Ascii(cls) + } + + fn item_unicode(cls: ast::ClassUnicode) -> ast::ClassSetItem { + ast::ClassSetItem::Unicode(cls) + } + + fn item_perl(cls: ast::ClassPerl) -> ast::ClassSetItem { + ast::ClassSetItem::Perl(cls) + } + + fn item_bracket(cls: ast::ClassBracketed) -> ast::ClassSetItem { + ast::ClassSetItem::Bracketed(Box::new(cls)) + } + + fn lit(span: Span, c: char) -> ast::ClassSetItem { + ast::ClassSetItem::Literal(ast::Literal { + span, + kind: ast::LiteralKind::Verbatim, + c, + }) + } + + fn empty(span: Span) -> ast::ClassSetItem { + ast::ClassSetItem::Empty(span) + } + + fn range(span: Span, start: char, end: char) -> ast::ClassSetItem { + let pos1 = Position { + offset: span.start.offset + start.len_utf8(), + column: span.start.column + 1, + ..span.start + }; + let pos2 = Position { + offset: span.end.offset - end.len_utf8(), + column: span.end.column - 1, + ..span.end + }; + ast::ClassSetItem::Range(ast::ClassSetRange { + span, + start: ast::Literal { + span: Span { end: pos1, ..span }, + kind: ast::LiteralKind::Verbatim, + c: start, + }, + end: ast::Literal { + span: Span { start: pos2, ..span }, + kind: ast::LiteralKind::Verbatim, + c: end, + }, + }) + } + + fn alnum(span: Span, negated: bool) -> ast::ClassAscii { + ast::ClassAscii { span, kind: ast::ClassAsciiKind::Alnum, negated } + } + + fn lower(span: Span, negated: bool) -> ast::ClassAscii { + ast::ClassAscii { span, kind: ast::ClassAsciiKind::Lower, negated } + } + + assert_eq!( + parser("[[:alnum:]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..11), + negated: false, + kind: itemset(item_ascii(alnum(span(1..10), false))), + }))) + ); + assert_eq!( + parser("[[[:alnum:]]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..13), + negated: false, + kind: itemset(item_bracket(ast::ClassBracketed { + span: span(1..12), + negated: false, + kind: itemset(item_ascii(alnum(span(2..11), false))), + })), + }))) + ); + assert_eq!( + parser("[[:alnum:]&&[:lower:]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..22), + negated: false, + kind: intersection( + span(1..21), + itemset(item_ascii(alnum(span(1..10), false))), + itemset(item_ascii(lower(span(12..21), false))), + ), + }))) + ); + assert_eq!( + parser("[[:alnum:]--[:lower:]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..22), + negated: false, + kind: difference( + span(1..21), + itemset(item_ascii(alnum(span(1..10), false))), + itemset(item_ascii(lower(span(12..21), false))), + ), + }))) + ); + assert_eq!( + parser("[[:alnum:]~~[:lower:]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..22), + negated: false, + kind: symdifference( + span(1..21), + itemset(item_ascii(alnum(span(1..10), false))), + itemset(item_ascii(lower(span(12..21), false))), + ), + }))) + ); + + assert_eq!( + parser("[a]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..3), + negated: false, + kind: itemset(lit(span(1..2), 'a')), + }))) + ); + assert_eq!( + parser(r"[a\]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..5), + negated: false, + kind: union( + span(1..4), + vec![ + lit(span(1..2), 'a'), + ast::ClassSetItem::Literal(ast::Literal { + span: span(2..4), + kind: ast::LiteralKind::Punctuation, + c: ']', + }), + ] + ), + }))) + ); + assert_eq!( + parser(r"[a\-z]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..6), + negated: false, + kind: union( + span(1..5), + vec![ + lit(span(1..2), 'a'), + ast::ClassSetItem::Literal(ast::Literal { + span: span(2..4), + kind: ast::LiteralKind::Punctuation, + c: '-', + }), + lit(span(4..5), 'z'), + ] + ), + }))) + ); + assert_eq!( + parser("[ab]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: union( + span(1..3), + vec![lit(span(1..2), 'a'), lit(span(2..3), 'b'),] + ), + }))) + ); + assert_eq!( + parser("[a-]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: union( + span(1..3), + vec![lit(span(1..2), 'a'), lit(span(2..3), '-'),] + ), + }))) + ); + assert_eq!( + parser("[-a]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: union( + span(1..3), + vec![lit(span(1..2), '-'), lit(span(2..3), 'a'),] + ), + }))) + ); + assert_eq!( + parser(r"[\pL]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..5), + negated: false, + kind: itemset(item_unicode(ast::ClassUnicode { + span: span(1..4), + negated: false, + kind: ast::ClassUnicodeKind::OneLetter('L'), + })), + }))) + ); + assert_eq!( + parser(r"[\w]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: itemset(item_perl(ast::ClassPerl { + span: span(1..3), + kind: ast::ClassPerlKind::Word, + negated: false, + })), + }))) + ); + assert_eq!( + parser(r"[a\wz]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..6), + negated: false, + kind: union( + span(1..5), + vec![ + lit(span(1..2), 'a'), + item_perl(ast::ClassPerl { + span: span(2..4), + kind: ast::ClassPerlKind::Word, + negated: false, + }), + lit(span(4..5), 'z'), + ] + ), + }))) + ); + + assert_eq!( + parser("[a-z]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..5), + negated: false, + kind: itemset(range(span(1..4), 'a', 'z')), + }))) + ); + assert_eq!( + parser("[a-cx-z]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..8), + negated: false, + kind: union( + span(1..7), + vec![ + range(span(1..4), 'a', 'c'), + range(span(4..7), 'x', 'z'), + ] + ), + }))) + ); + assert_eq!( + parser(r"[\w&&a-cx-z]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..12), + negated: false, + kind: intersection( + span(1..11), + itemset(item_perl(ast::ClassPerl { + span: span(1..3), + kind: ast::ClassPerlKind::Word, + negated: false, + })), + union( + span(5..11), + vec![ + range(span(5..8), 'a', 'c'), + range(span(8..11), 'x', 'z'), + ] + ), + ), + }))) + ); + assert_eq!( + parser(r"[a-cx-z&&\w]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..12), + negated: false, + kind: intersection( + span(1..11), + union( + span(1..7), + vec![ + range(span(1..4), 'a', 'c'), + range(span(4..7), 'x', 'z'), + ] + ), + itemset(item_perl(ast::ClassPerl { + span: span(9..11), + kind: ast::ClassPerlKind::Word, + negated: false, + })), + ), + }))) + ); + assert_eq!( + parser(r"[a--b--c]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..9), + negated: false, + kind: difference( + span(1..8), + difference( + span(1..5), + itemset(lit(span(1..2), 'a')), + itemset(lit(span(4..5), 'b')), + ), + itemset(lit(span(7..8), 'c')), + ), + }))) + ); + assert_eq!( + parser(r"[a~~b~~c]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..9), + negated: false, + kind: symdifference( + span(1..8), + symdifference( + span(1..5), + itemset(lit(span(1..2), 'a')), + itemset(lit(span(4..5), 'b')), + ), + itemset(lit(span(7..8), 'c')), + ), + }))) + ); + assert_eq!( + parser(r"[\^&&^]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..7), + negated: false, + kind: intersection( + span(1..6), + itemset(ast::ClassSetItem::Literal(ast::Literal { + span: span(1..3), + kind: ast::LiteralKind::Punctuation, + c: '^', + })), + itemset(lit(span(5..6), '^')), + ), + }))) + ); + assert_eq!( + parser(r"[\&&&&]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..7), + negated: false, + kind: intersection( + span(1..6), + itemset(ast::ClassSetItem::Literal(ast::Literal { + span: span(1..3), + kind: ast::LiteralKind::Punctuation, + c: '&', + })), + itemset(lit(span(5..6), '&')), + ), + }))) + ); + assert_eq!( + parser(r"[&&&&]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..6), + negated: false, + kind: intersection( + span(1..5), + intersection( + span(1..3), + itemset(empty(span(1..1))), + itemset(empty(span(3..3))), + ), + itemset(empty(span(5..5))), + ), + }))) + ); + + let pat = "[☃-⛄]"; + assert_eq!( + parser(pat).parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span_range(pat, 0..9), + negated: false, + kind: itemset(ast::ClassSetItem::Range(ast::ClassSetRange { + span: span_range(pat, 1..8), + start: ast::Literal { + span: span_range(pat, 1..4), + kind: ast::LiteralKind::Verbatim, + c: '☃', + }, + end: ast::Literal { + span: span_range(pat, 5..8), + kind: ast::LiteralKind::Verbatim, + c: '⛄', + }, + })), + }))) + ); + + assert_eq!( + parser(r"[]]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..3), + negated: false, + kind: itemset(lit(span(1..2), ']')), + }))) + ); + assert_eq!( + parser(r"[]\[]").parse(), + Ok(Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..5), + negated: false, + kind: union( + span(1..4), + vec![ + lit(span(1..2), ']'), + ast::ClassSetItem::Literal(ast::Literal { + span: span(2..4), + kind: ast::LiteralKind::Punctuation, + c: '[', + }), + ] + ), + }))) + ); + assert_eq!( + parser(r"[\[]]").parse(), + Ok(concat( + 0..5, + vec![ + Ast::Class(ast::Class::Bracketed(ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: itemset(ast::ClassSetItem::Literal( + ast::Literal { + span: span(1..3), + kind: ast::LiteralKind::Punctuation, + c: '[', + } + )), + })), + Ast::Literal(ast::Literal { + span: span(4..5), + kind: ast::LiteralKind::Verbatim, + c: ']', + }), + ] + )) + ); + + assert_eq!( + parser("[").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[[").parse().unwrap_err(), + TestError { + span: span(1..2), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[[-]").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[[[:alnum:]").parse().unwrap_err(), + TestError { + span: span(1..2), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser(r"[\b]").parse().unwrap_err(), + TestError { + span: span(1..3), + kind: ast::ErrorKind::ClassEscapeInvalid, + } + ); + assert_eq!( + parser(r"[\w-a]").parse().unwrap_err(), + TestError { + span: span(1..3), + kind: ast::ErrorKind::ClassRangeLiteral, + } + ); + assert_eq!( + parser(r"[a-\w]").parse().unwrap_err(), + TestError { + span: span(3..5), + kind: ast::ErrorKind::ClassRangeLiteral, + } + ); + assert_eq!( + parser(r"[z-a]").parse().unwrap_err(), + TestError { + span: span(1..4), + kind: ast::ErrorKind::ClassRangeInvalid, + } + ); + + assert_eq!( + parser_ignore_whitespace("[a ").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser_ignore_whitespace("[a- ").parse().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + } + + #[test] + fn parse_set_class_open() { + assert_eq!(parser("[a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..1), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(1..1), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { span: span(1..1), items: vec![] }; + Ok((set, union)) + }); + assert_eq!( + parser_ignore_whitespace("[ a]").parse_set_class_open(), + { + let set = ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(4..4), + items: vec![], + }), + }; + let union = + ast::ClassSetUnion { span: span(4..4), items: vec![] }; + Ok((set, union)) + } + ); + assert_eq!(parser("[^a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..2), + negated: true, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(2..2), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { span: span(2..2), items: vec![] }; + Ok((set, union)) + }); + assert_eq!( + parser_ignore_whitespace("[ ^ a]").parse_set_class_open(), + { + let set = ast::ClassBracketed { + span: span(0..4), + negated: true, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(4..4), + items: vec![], + }), + }; + let union = + ast::ClassSetUnion { span: span(4..4), items: vec![] }; + Ok((set, union)) + } + ); + assert_eq!(parser("[-a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..2), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(1..1), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(1..2), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(1..2), + kind: ast::LiteralKind::Verbatim, + c: '-', + })], + }; + Ok((set, union)) + }); + assert_eq!( + parser_ignore_whitespace("[ - a]").parse_set_class_open(), + { + let set = ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(2..2), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(2..3), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(2..3), + kind: ast::LiteralKind::Verbatim, + c: '-', + })], + }; + Ok((set, union)) + } + ); + assert_eq!(parser("[^-a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..3), + negated: true, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(2..2), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(2..3), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(2..3), + kind: ast::LiteralKind::Verbatim, + c: '-', + })], + }; + Ok((set, union)) + }); + assert_eq!(parser("[--a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..3), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(1..1), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(1..3), + items: vec![ + ast::ClassSetItem::Literal(ast::Literal { + span: span(1..2), + kind: ast::LiteralKind::Verbatim, + c: '-', + }), + ast::ClassSetItem::Literal(ast::Literal { + span: span(2..3), + kind: ast::LiteralKind::Verbatim, + c: '-', + }), + ], + }; + Ok((set, union)) + }); + assert_eq!(parser("[]a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..2), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(1..1), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(1..2), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(1..2), + kind: ast::LiteralKind::Verbatim, + c: ']', + })], + }; + Ok((set, union)) + }); + assert_eq!( + parser_ignore_whitespace("[ ] a]").parse_set_class_open(), + { + let set = ast::ClassBracketed { + span: span(0..4), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(2..2), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(2..3), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(2..3), + kind: ast::LiteralKind::Verbatim, + c: ']', + })], + }; + Ok((set, union)) + } + ); + assert_eq!(parser("[^]a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..3), + negated: true, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(2..2), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(2..3), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(2..3), + kind: ast::LiteralKind::Verbatim, + c: ']', + })], + }; + Ok((set, union)) + }); + assert_eq!(parser("[-]a]").parse_set_class_open(), { + let set = ast::ClassBracketed { + span: span(0..2), + negated: false, + kind: ast::ClassSet::union(ast::ClassSetUnion { + span: span(1..1), + items: vec![], + }), + }; + let union = ast::ClassSetUnion { + span: span(1..2), + items: vec![ast::ClassSetItem::Literal(ast::Literal { + span: span(1..2), + kind: ast::LiteralKind::Verbatim, + c: '-', + })], + }; + Ok((set, union)) + }); + + assert_eq!( + parser("[").parse_set_class_open().unwrap_err(), + TestError { + span: span(0..1), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser_ignore_whitespace("[ ") + .parse_set_class_open() + .unwrap_err(), + TestError { + span: span(0..5), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[^").parse_set_class_open().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[]").parse_set_class_open().unwrap_err(), + TestError { + span: span(0..2), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[-").parse_set_class_open().unwrap_err(), + TestError { + span: span(0..0), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + assert_eq!( + parser("[--").parse_set_class_open().unwrap_err(), + TestError { + span: span(0..0), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + + // See: https://github.com/rust-lang/regex/issues/792 + assert_eq!( + parser("(?x)[-#]").parse_with_comments().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::ClassUnclosed, + } + ); + } + + #[test] + fn maybe_parse_ascii_class() { + assert_eq!( + parser(r"[:alnum:]").maybe_parse_ascii_class(), + Some(ast::ClassAscii { + span: span(0..9), + kind: ast::ClassAsciiKind::Alnum, + negated: false, + }) + ); + assert_eq!( + parser(r"[:alnum:]A").maybe_parse_ascii_class(), + Some(ast::ClassAscii { + span: span(0..9), + kind: ast::ClassAsciiKind::Alnum, + negated: false, + }) + ); + assert_eq!( + parser(r"[:^alnum:]").maybe_parse_ascii_class(), + Some(ast::ClassAscii { + span: span(0..10), + kind: ast::ClassAsciiKind::Alnum, + negated: true, + }) + ); + + let p = parser(r"[:"); + assert_eq!(p.maybe_parse_ascii_class(), None); + assert_eq!(p.offset(), 0); + + let p = parser(r"[:^"); + assert_eq!(p.maybe_parse_ascii_class(), None); + assert_eq!(p.offset(), 0); + + let p = parser(r"[^:alnum:]"); + assert_eq!(p.maybe_parse_ascii_class(), None); + assert_eq!(p.offset(), 0); + + let p = parser(r"[:alnnum:]"); + assert_eq!(p.maybe_parse_ascii_class(), None); + assert_eq!(p.offset(), 0); + + let p = parser(r"[:alnum]"); + assert_eq!(p.maybe_parse_ascii_class(), None); + assert_eq!(p.offset(), 0); + + let p = parser(r"[:alnum:"); + assert_eq!(p.maybe_parse_ascii_class(), None); + assert_eq!(p.offset(), 0); + } + + #[test] + fn parse_unicode_class() { + assert_eq!( + parser(r"\pN").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..3), + negated: false, + kind: ast::ClassUnicodeKind::OneLetter('N'), + })) + ); + assert_eq!( + parser(r"\PN").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..3), + negated: true, + kind: ast::ClassUnicodeKind::OneLetter('N'), + })) + ); + assert_eq!( + parser(r"\p{N}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..5), + negated: false, + kind: ast::ClassUnicodeKind::Named(s("N")), + })) + ); + assert_eq!( + parser(r"\P{N}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..5), + negated: true, + kind: ast::ClassUnicodeKind::Named(s("N")), + })) + ); + assert_eq!( + parser(r"\p{Greek}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..9), + negated: false, + kind: ast::ClassUnicodeKind::Named(s("Greek")), + })) + ); + + assert_eq!( + parser(r"\p{scx:Katakana}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..16), + negated: false, + kind: ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::Colon, + name: s("scx"), + value: s("Katakana"), + }, + })) + ); + assert_eq!( + parser(r"\p{scx=Katakana}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..16), + negated: false, + kind: ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::Equal, + name: s("scx"), + value: s("Katakana"), + }, + })) + ); + assert_eq!( + parser(r"\p{scx!=Katakana}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..17), + negated: false, + kind: ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::NotEqual, + name: s("scx"), + value: s("Katakana"), + }, + })) + ); + + assert_eq!( + parser(r"\p{:}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..5), + negated: false, + kind: ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::Colon, + name: s(""), + value: s(""), + }, + })) + ); + assert_eq!( + parser(r"\p{=}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..5), + negated: false, + kind: ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::Equal, + name: s(""), + value: s(""), + }, + })) + ); + assert_eq!( + parser(r"\p{!=}").parse_escape(), + Ok(Primitive::Unicode(ast::ClassUnicode { + span: span(0..6), + negated: false, + kind: ast::ClassUnicodeKind::NamedValue { + op: ast::ClassUnicodeOpKind::NotEqual, + name: s(""), + value: s(""), + }, + })) + ); + + assert_eq!( + parser(r"\p").parse_escape().unwrap_err(), + TestError { + span: span(2..2), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\p{").parse_escape().unwrap_err(), + TestError { + span: span(3..3), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\p{N").parse_escape().unwrap_err(), + TestError { + span: span(4..4), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + assert_eq!( + parser(r"\p{Greek").parse_escape().unwrap_err(), + TestError { + span: span(8..8), + kind: ast::ErrorKind::EscapeUnexpectedEof, + } + ); + + assert_eq!( + parser(r"\pNz").parse(), + Ok(Ast::Concat(ast::Concat { + span: span(0..4), + asts: vec![ + Ast::Class(ast::Class::Unicode(ast::ClassUnicode { + span: span(0..3), + negated: false, + kind: ast::ClassUnicodeKind::OneLetter('N'), + })), + Ast::Literal(ast::Literal { + span: span(3..4), + kind: ast::LiteralKind::Verbatim, + c: 'z', + }), + ], + })) + ); + assert_eq!( + parser(r"\p{Greek}z").parse(), + Ok(Ast::Concat(ast::Concat { + span: span(0..10), + asts: vec![ + Ast::Class(ast::Class::Unicode(ast::ClassUnicode { + span: span(0..9), + negated: false, + kind: ast::ClassUnicodeKind::Named(s("Greek")), + })), + Ast::Literal(ast::Literal { + span: span(9..10), + kind: ast::LiteralKind::Verbatim, + c: 'z', + }), + ], + })) + ); + assert_eq!( + parser(r"\p\{").parse().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::UnicodeClassInvalid, + } + ); + assert_eq!( + parser(r"\P\{").parse().unwrap_err(), + TestError { + span: span(2..3), + kind: ast::ErrorKind::UnicodeClassInvalid, + } + ); + } + + #[test] + fn parse_perl_class() { + assert_eq!( + parser(r"\d").parse_escape(), + Ok(Primitive::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Digit, + negated: false, + })) + ); + assert_eq!( + parser(r"\D").parse_escape(), + Ok(Primitive::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Digit, + negated: true, + })) + ); + assert_eq!( + parser(r"\s").parse_escape(), + Ok(Primitive::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Space, + negated: false, + })) + ); + assert_eq!( + parser(r"\S").parse_escape(), + Ok(Primitive::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Space, + negated: true, + })) + ); + assert_eq!( + parser(r"\w").parse_escape(), + Ok(Primitive::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Word, + negated: false, + })) + ); + assert_eq!( + parser(r"\W").parse_escape(), + Ok(Primitive::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Word, + negated: true, + })) + ); + + assert_eq!( + parser(r"\d").parse(), + Ok(Ast::Class(ast::Class::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Digit, + negated: false, + }))) + ); + assert_eq!( + parser(r"\dz").parse(), + Ok(Ast::Concat(ast::Concat { + span: span(0..3), + asts: vec![ + Ast::Class(ast::Class::Perl(ast::ClassPerl { + span: span(0..2), + kind: ast::ClassPerlKind::Digit, + negated: false, + })), + Ast::Literal(ast::Literal { + span: span(2..3), + kind: ast::LiteralKind::Verbatim, + c: 'z', + }), + ], + })) + ); + } + + // This tests a bug fix where the nest limit checker wasn't decrementing + // its depth during post-traversal, which causes long regexes to trip + // the default limit too aggressively. + #[test] + fn regression_454_nest_too_big() { + let pattern = r#" + 2(?: + [45]\d{3}| + 7(?: + 1[0-267]| + 2[0-289]| + 3[0-29]| + 4[01]| + 5[1-3]| + 6[013]| + 7[0178]| + 91 + )| + 8(?: + 0[125]| + [139][1-6]| + 2[0157-9]| + 41| + 6[1-35]| + 7[1-5]| + 8[1-8]| + 90 + )| + 9(?: + 0[0-2]| + 1[0-4]| + 2[568]| + 3[3-6]| + 5[5-7]| + 6[0167]| + 7[15]| + 8[0146-9] + ) + )\d{4} + "#; + assert!(parser_nest_limit(pattern, 50).parse().is_ok()); + } + + // This tests that we treat a trailing `-` in a character class as a + // literal `-` even when whitespace mode is enabled and there is whitespace + // after the trailing `-`. + #[test] + fn regression_455_trailing_dash_ignore_whitespace() { + assert!(parser("(?x)[ / - ]").parse().is_ok()); + assert!(parser("(?x)[ a - ]").parse().is_ok()); + assert!(parser( + "(?x)[ + a + - ] + " + ) + .parse() + .is_ok()); + assert!(parser( + "(?x)[ + a # wat + - ] + " + ) + .parse() + .is_ok()); + + assert!(parser("(?x)[ / -").parse().is_err()); + assert!(parser("(?x)[ / - ").parse().is_err()); + assert!(parser( + "(?x)[ + / - + " + ) + .parse() + .is_err()); + assert!(parser( + "(?x)[ + / - # wat + " + ) + .parse() + .is_err()); + } +} diff --git a/third_party/rust/regex-syntax/src/ast/print.rs b/third_party/rust/regex-syntax/src/ast/print.rs new file mode 100644 index 0000000000..045de2eaf2 --- /dev/null +++ b/third_party/rust/regex-syntax/src/ast/print.rs @@ -0,0 +1,568 @@ +/*! +This module provides a regular expression printer for `Ast`. +*/ + +use std::fmt; + +use crate::ast::visitor::{self, Visitor}; +use crate::ast::{self, Ast}; + +/// A builder for constructing a printer. +/// +/// Note that since a printer doesn't have any configuration knobs, this type +/// remains unexported. +#[derive(Clone, Debug)] +struct PrinterBuilder { + _priv: (), +} + +impl Default for PrinterBuilder { + fn default() -> PrinterBuilder { + PrinterBuilder::new() + } +} + +impl PrinterBuilder { + fn new() -> PrinterBuilder { + PrinterBuilder { _priv: () } + } + + fn build(&self) -> Printer { + Printer { _priv: () } + } +} + +/// A printer for a regular expression abstract syntax tree. +/// +/// A printer converts an abstract syntax tree (AST) to a regular expression +/// pattern string. This particular printer uses constant stack space and heap +/// space proportional to the size of the AST. +/// +/// This printer will not necessarily preserve the original formatting of the +/// regular expression pattern string. For example, all whitespace and comments +/// are ignored. +#[derive(Debug)] +pub struct Printer { + _priv: (), +} + +impl Printer { + /// Create a new printer. + pub fn new() -> Printer { + PrinterBuilder::new().build() + } + + /// Print the given `Ast` to the given writer. The writer must implement + /// `fmt::Write`. Typical implementations of `fmt::Write` that can be used + /// here are a `fmt::Formatter` (which is available in `fmt::Display` + /// implementations) or a `&mut String`. + pub fn print<W: fmt::Write>(&mut self, ast: &Ast, wtr: W) -> fmt::Result { + visitor::visit(ast, Writer { wtr }) + } +} + +#[derive(Debug)] +struct Writer<W> { + wtr: W, +} + +impl<W: fmt::Write> Visitor for Writer<W> { + type Output = (); + type Err = fmt::Error; + + fn finish(self) -> fmt::Result { + Ok(()) + } + + fn visit_pre(&mut self, ast: &Ast) -> fmt::Result { + match *ast { + Ast::Group(ref x) => self.fmt_group_pre(x), + Ast::Class(ast::Class::Bracketed(ref x)) => { + self.fmt_class_bracketed_pre(x) + } + _ => Ok(()), + } + } + + fn visit_post(&mut self, ast: &Ast) -> fmt::Result { + use crate::ast::Class; + + match *ast { + Ast::Empty(_) => Ok(()), + Ast::Flags(ref x) => self.fmt_set_flags(x), + Ast::Literal(ref x) => self.fmt_literal(x), + Ast::Dot(_) => self.wtr.write_str("."), + Ast::Assertion(ref x) => self.fmt_assertion(x), + Ast::Class(Class::Perl(ref x)) => self.fmt_class_perl(x), + Ast::Class(Class::Unicode(ref x)) => self.fmt_class_unicode(x), + Ast::Class(Class::Bracketed(ref x)) => { + self.fmt_class_bracketed_post(x) + } + Ast::Repetition(ref x) => self.fmt_repetition(x), + Ast::Group(ref x) => self.fmt_group_post(x), + Ast::Alternation(_) => Ok(()), + Ast::Concat(_) => Ok(()), + } + } + + fn visit_alternation_in(&mut self) -> fmt::Result { + self.wtr.write_str("|") + } + + fn visit_class_set_item_pre( + &mut self, + ast: &ast::ClassSetItem, + ) -> Result<(), Self::Err> { + match *ast { + ast::ClassSetItem::Bracketed(ref x) => { + self.fmt_class_bracketed_pre(x) + } + _ => Ok(()), + } + } + + fn visit_class_set_item_post( + &mut self, + ast: &ast::ClassSetItem, + ) -> Result<(), Self::Err> { + use crate::ast::ClassSetItem::*; + + match *ast { + Empty(_) => Ok(()), + Literal(ref x) => self.fmt_literal(x), + Range(ref x) => { + self.fmt_literal(&x.start)?; + self.wtr.write_str("-")?; + self.fmt_literal(&x.end)?; + Ok(()) + } + Ascii(ref x) => self.fmt_class_ascii(x), + Unicode(ref x) => self.fmt_class_unicode(x), + Perl(ref x) => self.fmt_class_perl(x), + Bracketed(ref x) => self.fmt_class_bracketed_post(x), + Union(_) => Ok(()), + } + } + + fn visit_class_set_binary_op_in( + &mut self, + ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + self.fmt_class_set_binary_op_kind(&ast.kind) + } +} + +impl<W: fmt::Write> Writer<W> { + fn fmt_group_pre(&mut self, ast: &ast::Group) -> fmt::Result { + use crate::ast::GroupKind::*; + match ast.kind { + CaptureIndex(_) => self.wtr.write_str("("), + CaptureName(ref x) => { + self.wtr.write_str("(?P<")?; + self.wtr.write_str(&x.name)?; + self.wtr.write_str(">")?; + Ok(()) + } + NonCapturing(ref flags) => { + self.wtr.write_str("(?")?; + self.fmt_flags(flags)?; + self.wtr.write_str(":")?; + Ok(()) + } + } + } + + fn fmt_group_post(&mut self, _ast: &ast::Group) -> fmt::Result { + self.wtr.write_str(")") + } + + fn fmt_repetition(&mut self, ast: &ast::Repetition) -> fmt::Result { + use crate::ast::RepetitionKind::*; + match ast.op.kind { + ZeroOrOne if ast.greedy => self.wtr.write_str("?"), + ZeroOrOne => self.wtr.write_str("??"), + ZeroOrMore if ast.greedy => self.wtr.write_str("*"), + ZeroOrMore => self.wtr.write_str("*?"), + OneOrMore if ast.greedy => self.wtr.write_str("+"), + OneOrMore => self.wtr.write_str("+?"), + Range(ref x) => { + self.fmt_repetition_range(x)?; + if !ast.greedy { + self.wtr.write_str("?")?; + } + Ok(()) + } + } + } + + fn fmt_repetition_range( + &mut self, + ast: &ast::RepetitionRange, + ) -> fmt::Result { + use crate::ast::RepetitionRange::*; + match *ast { + Exactly(x) => write!(self.wtr, "{{{}}}", x), + AtLeast(x) => write!(self.wtr, "{{{},}}", x), + Bounded(x, y) => write!(self.wtr, "{{{},{}}}", x, y), + } + } + + fn fmt_literal(&mut self, ast: &ast::Literal) -> fmt::Result { + use crate::ast::LiteralKind::*; + + match ast.kind { + Verbatim => self.wtr.write_char(ast.c), + Punctuation => write!(self.wtr, r"\{}", ast.c), + Octal => write!(self.wtr, r"\{:o}", ast.c as u32), + HexFixed(ast::HexLiteralKind::X) => { + write!(self.wtr, r"\x{:02X}", ast.c as u32) + } + HexFixed(ast::HexLiteralKind::UnicodeShort) => { + write!(self.wtr, r"\u{:04X}", ast.c as u32) + } + HexFixed(ast::HexLiteralKind::UnicodeLong) => { + write!(self.wtr, r"\U{:08X}", ast.c as u32) + } + HexBrace(ast::HexLiteralKind::X) => { + write!(self.wtr, r"\x{{{:X}}}", ast.c as u32) + } + HexBrace(ast::HexLiteralKind::UnicodeShort) => { + write!(self.wtr, r"\u{{{:X}}}", ast.c as u32) + } + HexBrace(ast::HexLiteralKind::UnicodeLong) => { + write!(self.wtr, r"\U{{{:X}}}", ast.c as u32) + } + Special(ast::SpecialLiteralKind::Bell) => { + self.wtr.write_str(r"\a") + } + Special(ast::SpecialLiteralKind::FormFeed) => { + self.wtr.write_str(r"\f") + } + Special(ast::SpecialLiteralKind::Tab) => self.wtr.write_str(r"\t"), + Special(ast::SpecialLiteralKind::LineFeed) => { + self.wtr.write_str(r"\n") + } + Special(ast::SpecialLiteralKind::CarriageReturn) => { + self.wtr.write_str(r"\r") + } + Special(ast::SpecialLiteralKind::VerticalTab) => { + self.wtr.write_str(r"\v") + } + Special(ast::SpecialLiteralKind::Space) => { + self.wtr.write_str(r"\ ") + } + } + } + + fn fmt_assertion(&mut self, ast: &ast::Assertion) -> fmt::Result { + use crate::ast::AssertionKind::*; + match ast.kind { + StartLine => self.wtr.write_str("^"), + EndLine => self.wtr.write_str("$"), + StartText => self.wtr.write_str(r"\A"), + EndText => self.wtr.write_str(r"\z"), + WordBoundary => self.wtr.write_str(r"\b"), + NotWordBoundary => self.wtr.write_str(r"\B"), + } + } + + fn fmt_set_flags(&mut self, ast: &ast::SetFlags) -> fmt::Result { + self.wtr.write_str("(?")?; + self.fmt_flags(&ast.flags)?; + self.wtr.write_str(")")?; + Ok(()) + } + + fn fmt_flags(&mut self, ast: &ast::Flags) -> fmt::Result { + use crate::ast::{Flag, FlagsItemKind}; + + for item in &ast.items { + match item.kind { + FlagsItemKind::Negation => self.wtr.write_str("-"), + FlagsItemKind::Flag(ref flag) => match *flag { + Flag::CaseInsensitive => self.wtr.write_str("i"), + Flag::MultiLine => self.wtr.write_str("m"), + Flag::DotMatchesNewLine => self.wtr.write_str("s"), + Flag::SwapGreed => self.wtr.write_str("U"), + Flag::Unicode => self.wtr.write_str("u"), + Flag::IgnoreWhitespace => self.wtr.write_str("x"), + }, + }?; + } + Ok(()) + } + + fn fmt_class_bracketed_pre( + &mut self, + ast: &ast::ClassBracketed, + ) -> fmt::Result { + if ast.negated { + self.wtr.write_str("[^") + } else { + self.wtr.write_str("[") + } + } + + fn fmt_class_bracketed_post( + &mut self, + _ast: &ast::ClassBracketed, + ) -> fmt::Result { + self.wtr.write_str("]") + } + + fn fmt_class_set_binary_op_kind( + &mut self, + ast: &ast::ClassSetBinaryOpKind, + ) -> fmt::Result { + use crate::ast::ClassSetBinaryOpKind::*; + match *ast { + Intersection => self.wtr.write_str("&&"), + Difference => self.wtr.write_str("--"), + SymmetricDifference => self.wtr.write_str("~~"), + } + } + + fn fmt_class_perl(&mut self, ast: &ast::ClassPerl) -> fmt::Result { + use crate::ast::ClassPerlKind::*; + match ast.kind { + Digit if ast.negated => self.wtr.write_str(r"\D"), + Digit => self.wtr.write_str(r"\d"), + Space if ast.negated => self.wtr.write_str(r"\S"), + Space => self.wtr.write_str(r"\s"), + Word if ast.negated => self.wtr.write_str(r"\W"), + Word => self.wtr.write_str(r"\w"), + } + } + + fn fmt_class_ascii(&mut self, ast: &ast::ClassAscii) -> fmt::Result { + use crate::ast::ClassAsciiKind::*; + match ast.kind { + Alnum if ast.negated => self.wtr.write_str("[:^alnum:]"), + Alnum => self.wtr.write_str("[:alnum:]"), + Alpha if ast.negated => self.wtr.write_str("[:^alpha:]"), + Alpha => self.wtr.write_str("[:alpha:]"), + Ascii if ast.negated => self.wtr.write_str("[:^ascii:]"), + Ascii => self.wtr.write_str("[:ascii:]"), + Blank if ast.negated => self.wtr.write_str("[:^blank:]"), + Blank => self.wtr.write_str("[:blank:]"), + Cntrl if ast.negated => self.wtr.write_str("[:^cntrl:]"), + Cntrl => self.wtr.write_str("[:cntrl:]"), + Digit if ast.negated => self.wtr.write_str("[:^digit:]"), + Digit => self.wtr.write_str("[:digit:]"), + Graph if ast.negated => self.wtr.write_str("[:^graph:]"), + Graph => self.wtr.write_str("[:graph:]"), + Lower if ast.negated => self.wtr.write_str("[:^lower:]"), + Lower => self.wtr.write_str("[:lower:]"), + Print if ast.negated => self.wtr.write_str("[:^print:]"), + Print => self.wtr.write_str("[:print:]"), + Punct if ast.negated => self.wtr.write_str("[:^punct:]"), + Punct => self.wtr.write_str("[:punct:]"), + Space if ast.negated => self.wtr.write_str("[:^space:]"), + Space => self.wtr.write_str("[:space:]"), + Upper if ast.negated => self.wtr.write_str("[:^upper:]"), + Upper => self.wtr.write_str("[:upper:]"), + Word if ast.negated => self.wtr.write_str("[:^word:]"), + Word => self.wtr.write_str("[:word:]"), + Xdigit if ast.negated => self.wtr.write_str("[:^xdigit:]"), + Xdigit => self.wtr.write_str("[:xdigit:]"), + } + } + + fn fmt_class_unicode(&mut self, ast: &ast::ClassUnicode) -> fmt::Result { + use crate::ast::ClassUnicodeKind::*; + use crate::ast::ClassUnicodeOpKind::*; + + if ast.negated { + self.wtr.write_str(r"\P")?; + } else { + self.wtr.write_str(r"\p")?; + } + match ast.kind { + OneLetter(c) => self.wtr.write_char(c), + Named(ref x) => write!(self.wtr, "{{{}}}", x), + NamedValue { op: Equal, ref name, ref value } => { + write!(self.wtr, "{{{}={}}}", name, value) + } + NamedValue { op: Colon, ref name, ref value } => { + write!(self.wtr, "{{{}:{}}}", name, value) + } + NamedValue { op: NotEqual, ref name, ref value } => { + write!(self.wtr, "{{{}!={}}}", name, value) + } + } + } +} + +#[cfg(test)] +mod tests { + use super::Printer; + use crate::ast::parse::ParserBuilder; + + fn roundtrip(given: &str) { + roundtrip_with(|b| b, given); + } + + fn roundtrip_with<F>(mut f: F, given: &str) + where + F: FnMut(&mut ParserBuilder) -> &mut ParserBuilder, + { + let mut builder = ParserBuilder::new(); + f(&mut builder); + let ast = builder.build().parse(given).unwrap(); + + let mut printer = Printer::new(); + let mut dst = String::new(); + printer.print(&ast, &mut dst).unwrap(); + assert_eq!(given, dst); + } + + #[test] + fn print_literal() { + roundtrip("a"); + roundtrip(r"\["); + roundtrip_with(|b| b.octal(true), r"\141"); + roundtrip(r"\x61"); + roundtrip(r"\x7F"); + roundtrip(r"\u0061"); + roundtrip(r"\U00000061"); + roundtrip(r"\x{61}"); + roundtrip(r"\x{7F}"); + roundtrip(r"\u{61}"); + roundtrip(r"\U{61}"); + + roundtrip(r"\a"); + roundtrip(r"\f"); + roundtrip(r"\t"); + roundtrip(r"\n"); + roundtrip(r"\r"); + roundtrip(r"\v"); + roundtrip(r"(?x)\ "); + } + + #[test] + fn print_dot() { + roundtrip("."); + } + + #[test] + fn print_concat() { + roundtrip("ab"); + roundtrip("abcde"); + roundtrip("a(bcd)ef"); + } + + #[test] + fn print_alternation() { + roundtrip("a|b"); + roundtrip("a|b|c|d|e"); + roundtrip("|a|b|c|d|e"); + roundtrip("|a|b|c|d|e|"); + roundtrip("a(b|c|d)|e|f"); + } + + #[test] + fn print_assertion() { + roundtrip(r"^"); + roundtrip(r"$"); + roundtrip(r"\A"); + roundtrip(r"\z"); + roundtrip(r"\b"); + roundtrip(r"\B"); + } + + #[test] + fn print_repetition() { + roundtrip("a?"); + roundtrip("a??"); + roundtrip("a*"); + roundtrip("a*?"); + roundtrip("a+"); + roundtrip("a+?"); + roundtrip("a{5}"); + roundtrip("a{5}?"); + roundtrip("a{5,}"); + roundtrip("a{5,}?"); + roundtrip("a{5,10}"); + roundtrip("a{5,10}?"); + } + + #[test] + fn print_flags() { + roundtrip("(?i)"); + roundtrip("(?-i)"); + roundtrip("(?s-i)"); + roundtrip("(?-si)"); + roundtrip("(?siUmux)"); + } + + #[test] + fn print_group() { + roundtrip("(?i:a)"); + roundtrip("(?P<foo>a)"); + roundtrip("(a)"); + } + + #[test] + fn print_class() { + roundtrip(r"[abc]"); + roundtrip(r"[a-z]"); + roundtrip(r"[^a-z]"); + roundtrip(r"[a-z0-9]"); + roundtrip(r"[-a-z0-9]"); + roundtrip(r"[-a-z0-9]"); + roundtrip(r"[a-z0-9---]"); + roundtrip(r"[a-z&&m-n]"); + roundtrip(r"[[a-z&&m-n]]"); + roundtrip(r"[a-z--m-n]"); + roundtrip(r"[a-z~~m-n]"); + roundtrip(r"[a-z[0-9]]"); + roundtrip(r"[a-z[^0-9]]"); + + roundtrip(r"\d"); + roundtrip(r"\D"); + roundtrip(r"\s"); + roundtrip(r"\S"); + roundtrip(r"\w"); + roundtrip(r"\W"); + + roundtrip(r"[[:alnum:]]"); + roundtrip(r"[[:^alnum:]]"); + roundtrip(r"[[:alpha:]]"); + roundtrip(r"[[:^alpha:]]"); + roundtrip(r"[[:ascii:]]"); + roundtrip(r"[[:^ascii:]]"); + roundtrip(r"[[:blank:]]"); + roundtrip(r"[[:^blank:]]"); + roundtrip(r"[[:cntrl:]]"); + roundtrip(r"[[:^cntrl:]]"); + roundtrip(r"[[:digit:]]"); + roundtrip(r"[[:^digit:]]"); + roundtrip(r"[[:graph:]]"); + roundtrip(r"[[:^graph:]]"); + roundtrip(r"[[:lower:]]"); + roundtrip(r"[[:^lower:]]"); + roundtrip(r"[[:print:]]"); + roundtrip(r"[[:^print:]]"); + roundtrip(r"[[:punct:]]"); + roundtrip(r"[[:^punct:]]"); + roundtrip(r"[[:space:]]"); + roundtrip(r"[[:^space:]]"); + roundtrip(r"[[:upper:]]"); + roundtrip(r"[[:^upper:]]"); + roundtrip(r"[[:word:]]"); + roundtrip(r"[[:^word:]]"); + roundtrip(r"[[:xdigit:]]"); + roundtrip(r"[[:^xdigit:]]"); + + roundtrip(r"\pL"); + roundtrip(r"\PL"); + roundtrip(r"\p{L}"); + roundtrip(r"\P{L}"); + roundtrip(r"\p{X=Y}"); + roundtrip(r"\P{X=Y}"); + roundtrip(r"\p{X:Y}"); + roundtrip(r"\P{X:Y}"); + roundtrip(r"\p{X!=Y}"); + roundtrip(r"\P{X!=Y}"); + } +} diff --git a/third_party/rust/regex-syntax/src/ast/visitor.rs b/third_party/rust/regex-syntax/src/ast/visitor.rs new file mode 100644 index 0000000000..78ee487cff --- /dev/null +++ b/third_party/rust/regex-syntax/src/ast/visitor.rs @@ -0,0 +1,517 @@ +use std::fmt; + +use crate::ast::{self, Ast}; + +/// A trait for visiting an abstract syntax tree (AST) in depth first order. +/// +/// The principle aim of this trait is to enable callers to perform case +/// analysis on an abstract syntax tree without necessarily using recursion. +/// In particular, this permits callers to do case analysis with constant stack +/// usage, which can be important since the size of an abstract syntax tree +/// may be proportional to end user input. +/// +/// Typical usage of this trait involves providing an implementation and then +/// running it using the [`visit`](fn.visit.html) function. +/// +/// Note that the abstract syntax tree for a regular expression is quite +/// complex. Unless you specifically need it, you might be able to use the +/// much simpler +/// [high-level intermediate representation](../hir/struct.Hir.html) +/// and its +/// [corresponding `Visitor` trait](../hir/trait.Visitor.html) +/// instead. +pub trait Visitor { + /// The result of visiting an AST. + type Output; + /// An error that visiting an AST might return. + type Err; + + /// All implementors of `Visitor` must provide a `finish` method, which + /// yields the result of visiting the AST or an error. + fn finish(self) -> Result<Self::Output, Self::Err>; + + /// This method is called before beginning traversal of the AST. + fn start(&mut self) {} + + /// This method is called on an `Ast` before descending into child `Ast` + /// nodes. + fn visit_pre(&mut self, _ast: &Ast) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on an `Ast` after descending all of its child + /// `Ast` nodes. + fn visit_post(&mut self, _ast: &Ast) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called between child nodes of an + /// [`Alternation`](struct.Alternation.html). + fn visit_alternation_in(&mut self) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetItem`](enum.ClassSetItem.html) + /// before descending into child nodes. + fn visit_class_set_item_pre( + &mut self, + _ast: &ast::ClassSetItem, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetItem`](enum.ClassSetItem.html) + /// after descending into child nodes. + fn visit_class_set_item_post( + &mut self, + _ast: &ast::ClassSetItem, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) + /// before descending into child nodes. + fn visit_class_set_binary_op_pre( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) + /// after descending into child nodes. + fn visit_class_set_binary_op_post( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called between the left hand and right hand child nodes + /// of a [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html). + fn visit_class_set_binary_op_in( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + Ok(()) + } +} + +/// Executes an implementation of `Visitor` in constant stack space. +/// +/// This function will visit every node in the given `Ast` while calling the +/// appropriate methods provided by the +/// [`Visitor`](trait.Visitor.html) trait. +/// +/// The primary use case for this method is when one wants to perform case +/// analysis over an `Ast` without using a stack size proportional to the depth +/// of the `Ast`. Namely, this method will instead use constant stack size, but +/// will use heap space proportional to the size of the `Ast`. This may be +/// desirable in cases where the size of `Ast` is proportional to end user +/// input. +/// +/// If the visitor returns an error at any point, then visiting is stopped and +/// the error is returned. +pub fn visit<V: Visitor>(ast: &Ast, visitor: V) -> Result<V::Output, V::Err> { + HeapVisitor::new().visit(ast, visitor) +} + +/// HeapVisitor visits every item in an `Ast` recursively using constant stack +/// size and a heap size proportional to the size of the `Ast`. +struct HeapVisitor<'a> { + /// A stack of `Ast` nodes. This is roughly analogous to the call stack + /// used in a typical recursive visitor. + stack: Vec<(&'a Ast, Frame<'a>)>, + /// Similar to the `Ast` stack above, but is used only for character + /// classes. In particular, character classes embed their own mini + /// recursive syntax. + stack_class: Vec<(ClassInduct<'a>, ClassFrame<'a>)>, +} + +/// Represents a single stack frame while performing structural induction over +/// an `Ast`. +enum Frame<'a> { + /// A stack frame allocated just before descending into a repetition + /// operator's child node. + Repetition(&'a ast::Repetition), + /// A stack frame allocated just before descending into a group's child + /// node. + Group(&'a ast::Group), + /// The stack frame used while visiting every child node of a concatenation + /// of expressions. + Concat { + /// The child node we are currently visiting. + head: &'a Ast, + /// The remaining child nodes to visit (which may be empty). + tail: &'a [Ast], + }, + /// The stack frame used while visiting every child node of an alternation + /// of expressions. + Alternation { + /// The child node we are currently visiting. + head: &'a Ast, + /// The remaining child nodes to visit (which may be empty). + tail: &'a [Ast], + }, +} + +/// Represents a single stack frame while performing structural induction over +/// a character class. +enum ClassFrame<'a> { + /// The stack frame used while visiting every child node of a union of + /// character class items. + Union { + /// The child node we are currently visiting. + head: &'a ast::ClassSetItem, + /// The remaining child nodes to visit (which may be empty). + tail: &'a [ast::ClassSetItem], + }, + /// The stack frame used while a binary class operation. + Binary { op: &'a ast::ClassSetBinaryOp }, + /// A stack frame allocated just before descending into a binary operator's + /// left hand child node. + BinaryLHS { + op: &'a ast::ClassSetBinaryOp, + lhs: &'a ast::ClassSet, + rhs: &'a ast::ClassSet, + }, + /// A stack frame allocated just before descending into a binary operator's + /// right hand child node. + BinaryRHS { op: &'a ast::ClassSetBinaryOp, rhs: &'a ast::ClassSet }, +} + +/// A representation of the inductive step when performing structural induction +/// over a character class. +/// +/// Note that there is no analogous explicit type for the inductive step for +/// `Ast` nodes because the inductive step is just an `Ast`. For character +/// classes, the inductive step can produce one of two possible child nodes: +/// an item or a binary operation. (An item cannot be a binary operation +/// because that would imply binary operations can be unioned in the concrete +/// syntax, which is not possible.) +enum ClassInduct<'a> { + Item(&'a ast::ClassSetItem), + BinaryOp(&'a ast::ClassSetBinaryOp), +} + +impl<'a> HeapVisitor<'a> { + fn new() -> HeapVisitor<'a> { + HeapVisitor { stack: vec![], stack_class: vec![] } + } + + fn visit<V: Visitor>( + &mut self, + mut ast: &'a Ast, + mut visitor: V, + ) -> Result<V::Output, V::Err> { + self.stack.clear(); + self.stack_class.clear(); + + visitor.start(); + loop { + visitor.visit_pre(ast)?; + if let Some(x) = self.induct(ast, &mut visitor)? { + let child = x.child(); + self.stack.push((ast, x)); + ast = child; + continue; + } + // No induction means we have a base case, so we can post visit + // it now. + visitor.visit_post(ast)?; + + // At this point, we now try to pop our call stack until it is + // either empty or we hit another inductive case. + loop { + let (post_ast, frame) = match self.stack.pop() { + None => return visitor.finish(), + Some((post_ast, frame)) => (post_ast, frame), + }; + // If this is a concat/alternate, then we might have additional + // inductive steps to process. + if let Some(x) = self.pop(frame) { + if let Frame::Alternation { .. } = x { + visitor.visit_alternation_in()?; + } + ast = x.child(); + self.stack.push((post_ast, x)); + break; + } + // Otherwise, we've finished visiting all the child nodes for + // this AST, so we can post visit it now. + visitor.visit_post(post_ast)?; + } + } + } + + /// Build a stack frame for the given AST if one is needed (which occurs if + /// and only if there are child nodes in the AST). Otherwise, return None. + /// + /// If this visits a class, then the underlying visitor implementation may + /// return an error which will be passed on here. + fn induct<V: Visitor>( + &mut self, + ast: &'a Ast, + visitor: &mut V, + ) -> Result<Option<Frame<'a>>, V::Err> { + Ok(match *ast { + Ast::Class(ast::Class::Bracketed(ref x)) => { + self.visit_class(x, visitor)?; + None + } + Ast::Repetition(ref x) => Some(Frame::Repetition(x)), + Ast::Group(ref x) => Some(Frame::Group(x)), + Ast::Concat(ref x) if x.asts.is_empty() => None, + Ast::Concat(ref x) => { + Some(Frame::Concat { head: &x.asts[0], tail: &x.asts[1..] }) + } + Ast::Alternation(ref x) if x.asts.is_empty() => None, + Ast::Alternation(ref x) => Some(Frame::Alternation { + head: &x.asts[0], + tail: &x.asts[1..], + }), + _ => None, + }) + } + + /// Pops the given frame. If the frame has an additional inductive step, + /// then return it, otherwise return `None`. + fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> { + match induct { + Frame::Repetition(_) => None, + Frame::Group(_) => None, + Frame::Concat { tail, .. } => { + if tail.is_empty() { + None + } else { + Some(Frame::Concat { head: &tail[0], tail: &tail[1..] }) + } + } + Frame::Alternation { tail, .. } => { + if tail.is_empty() { + None + } else { + Some(Frame::Alternation { + head: &tail[0], + tail: &tail[1..], + }) + } + } + } + } + + fn visit_class<V: Visitor>( + &mut self, + ast: &'a ast::ClassBracketed, + visitor: &mut V, + ) -> Result<(), V::Err> { + let mut ast = ClassInduct::from_bracketed(ast); + loop { + self.visit_class_pre(&ast, visitor)?; + if let Some(x) = self.induct_class(&ast) { + let child = x.child(); + self.stack_class.push((ast, x)); + ast = child; + continue; + } + self.visit_class_post(&ast, visitor)?; + + // At this point, we now try to pop our call stack until it is + // either empty or we hit another inductive case. + loop { + let (post_ast, frame) = match self.stack_class.pop() { + None => return Ok(()), + Some((post_ast, frame)) => (post_ast, frame), + }; + // If this is a union or a binary op, then we might have + // additional inductive steps to process. + if let Some(x) = self.pop_class(frame) { + if let ClassFrame::BinaryRHS { ref op, .. } = x { + visitor.visit_class_set_binary_op_in(op)?; + } + ast = x.child(); + self.stack_class.push((post_ast, x)); + break; + } + // Otherwise, we've finished visiting all the child nodes for + // this class node, so we can post visit it now. + self.visit_class_post(&post_ast, visitor)?; + } + } + } + + /// Call the appropriate `Visitor` methods given an inductive step. + fn visit_class_pre<V: Visitor>( + &self, + ast: &ClassInduct<'a>, + visitor: &mut V, + ) -> Result<(), V::Err> { + match *ast { + ClassInduct::Item(item) => { + visitor.visit_class_set_item_pre(item)?; + } + ClassInduct::BinaryOp(op) => { + visitor.visit_class_set_binary_op_pre(op)?; + } + } + Ok(()) + } + + /// Call the appropriate `Visitor` methods given an inductive step. + fn visit_class_post<V: Visitor>( + &self, + ast: &ClassInduct<'a>, + visitor: &mut V, + ) -> Result<(), V::Err> { + match *ast { + ClassInduct::Item(item) => { + visitor.visit_class_set_item_post(item)?; + } + ClassInduct::BinaryOp(op) => { + visitor.visit_class_set_binary_op_post(op)?; + } + } + Ok(()) + } + + /// Build a stack frame for the given class node if one is needed (which + /// occurs if and only if there are child nodes). Otherwise, return None. + fn induct_class(&self, ast: &ClassInduct<'a>) -> Option<ClassFrame<'a>> { + match *ast { + ClassInduct::Item(&ast::ClassSetItem::Bracketed(ref x)) => { + match x.kind { + ast::ClassSet::Item(ref item) => { + Some(ClassFrame::Union { head: item, tail: &[] }) + } + ast::ClassSet::BinaryOp(ref op) => { + Some(ClassFrame::Binary { op }) + } + } + } + ClassInduct::Item(&ast::ClassSetItem::Union(ref x)) => { + if x.items.is_empty() { + None + } else { + Some(ClassFrame::Union { + head: &x.items[0], + tail: &x.items[1..], + }) + } + } + ClassInduct::BinaryOp(op) => { + Some(ClassFrame::BinaryLHS { op, lhs: &op.lhs, rhs: &op.rhs }) + } + _ => None, + } + } + + /// Pops the given frame. If the frame has an additional inductive step, + /// then return it, otherwise return `None`. + fn pop_class(&self, induct: ClassFrame<'a>) -> Option<ClassFrame<'a>> { + match induct { + ClassFrame::Union { tail, .. } => { + if tail.is_empty() { + None + } else { + Some(ClassFrame::Union { + head: &tail[0], + tail: &tail[1..], + }) + } + } + ClassFrame::Binary { .. } => None, + ClassFrame::BinaryLHS { op, rhs, .. } => { + Some(ClassFrame::BinaryRHS { op, rhs }) + } + ClassFrame::BinaryRHS { .. } => None, + } + } +} + +impl<'a> Frame<'a> { + /// Perform the next inductive step on this frame and return the next + /// child AST node to visit. + fn child(&self) -> &'a Ast { + match *self { + Frame::Repetition(rep) => &rep.ast, + Frame::Group(group) => &group.ast, + Frame::Concat { head, .. } => head, + Frame::Alternation { head, .. } => head, + } + } +} + +impl<'a> ClassFrame<'a> { + /// Perform the next inductive step on this frame and return the next + /// child class node to visit. + fn child(&self) -> ClassInduct<'a> { + match *self { + ClassFrame::Union { head, .. } => ClassInduct::Item(head), + ClassFrame::Binary { op, .. } => ClassInduct::BinaryOp(op), + ClassFrame::BinaryLHS { ref lhs, .. } => { + ClassInduct::from_set(lhs) + } + ClassFrame::BinaryRHS { ref rhs, .. } => { + ClassInduct::from_set(rhs) + } + } + } +} + +impl<'a> ClassInduct<'a> { + fn from_bracketed(ast: &'a ast::ClassBracketed) -> ClassInduct<'a> { + ClassInduct::from_set(&ast.kind) + } + + fn from_set(ast: &'a ast::ClassSet) -> ClassInduct<'a> { + match *ast { + ast::ClassSet::Item(ref item) => ClassInduct::Item(item), + ast::ClassSet::BinaryOp(ref op) => ClassInduct::BinaryOp(op), + } + } +} + +impl<'a> fmt::Debug for ClassFrame<'a> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let x = match *self { + ClassFrame::Union { .. } => "Union", + ClassFrame::Binary { .. } => "Binary", + ClassFrame::BinaryLHS { .. } => "BinaryLHS", + ClassFrame::BinaryRHS { .. } => "BinaryRHS", + }; + write!(f, "{}", x) + } +} + +impl<'a> fmt::Debug for ClassInduct<'a> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let x = match *self { + ClassInduct::Item(it) => match *it { + ast::ClassSetItem::Empty(_) => "Item(Empty)", + ast::ClassSetItem::Literal(_) => "Item(Literal)", + ast::ClassSetItem::Range(_) => "Item(Range)", + ast::ClassSetItem::Ascii(_) => "Item(Ascii)", + ast::ClassSetItem::Perl(_) => "Item(Perl)", + ast::ClassSetItem::Unicode(_) => "Item(Unicode)", + ast::ClassSetItem::Bracketed(_) => "Item(Bracketed)", + ast::ClassSetItem::Union(_) => "Item(Union)", + }, + ClassInduct::BinaryOp(it) => match it.kind { + ast::ClassSetBinaryOpKind::Intersection => { + "BinaryOp(Intersection)" + } + ast::ClassSetBinaryOpKind::Difference => { + "BinaryOp(Difference)" + } + ast::ClassSetBinaryOpKind::SymmetricDifference => { + "BinaryOp(SymmetricDifference)" + } + }, + }; + write!(f, "{}", x) + } +} |