summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio/src/time/driver/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/tokio/src/time/driver/mod.rs')
-rw-r--r--third_party/rust/tokio/src/time/driver/mod.rs528
1 files changed, 528 insertions, 0 deletions
diff --git a/third_party/rust/tokio/src/time/driver/mod.rs b/third_party/rust/tokio/src/time/driver/mod.rs
new file mode 100644
index 0000000000..9971877479
--- /dev/null
+++ b/third_party/rust/tokio/src/time/driver/mod.rs
@@ -0,0 +1,528 @@
+// Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
+// in the future, this will change to the reverse. For now, suppress this
+// warning and generally stick with being explicit about unsafety.
+#![allow(unused_unsafe)]
+#![cfg_attr(not(feature = "rt"), allow(dead_code))]
+
+//! Time driver.
+
+mod entry;
+pub(self) use self::entry::{EntryList, TimerEntry, TimerHandle, TimerShared};
+
+mod handle;
+pub(crate) use self::handle::Handle;
+
+mod wheel;
+
+pub(super) mod sleep;
+
+use crate::loom::sync::atomic::{AtomicBool, Ordering};
+use crate::loom::sync::{Arc, Mutex};
+use crate::park::{Park, Unpark};
+use crate::time::error::Error;
+use crate::time::{Clock, Duration, Instant};
+
+use std::convert::TryInto;
+use std::fmt;
+use std::{num::NonZeroU64, ptr::NonNull, task::Waker};
+
+/// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
+///
+/// A `Driver` instance tracks the state necessary for managing time and
+/// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
+///
+/// It is expected that a single instance manages many individual [`Sleep`][sleep]
+/// instances. The `Driver` implementation is thread-safe and, as such, is able
+/// to handle callers from across threads.
+///
+/// After creating the `Driver` instance, the caller must repeatedly call `park`
+/// or `park_timeout`. The time driver will perform no work unless `park` or
+/// `park_timeout` is called repeatedly.
+///
+/// The driver has a resolution of one millisecond. Any unit of time that falls
+/// between milliseconds are rounded up to the next millisecond.
+///
+/// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
+/// elapsed will be notified with an error. At this point, calling `poll` on the
+/// [`Sleep`][sleep] instance will result in panic.
+///
+/// # Implementation
+///
+/// The time driver is based on the [paper by Varghese and Lauck][paper].
+///
+/// A hashed timing wheel is a vector of slots, where each slot handles a time
+/// slice. As time progresses, the timer walks over the slot for the current
+/// instant, and processes each entry for that slot. When the timer reaches the
+/// end of the wheel, it starts again at the beginning.
+///
+/// The implementation maintains six wheels arranged in a set of levels. As the
+/// levels go up, the slots of the associated wheel represent larger intervals
+/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
+/// time equal to the wheel at the lower level. At level zero, each slot
+/// represents one millisecond of time.
+///
+/// The wheels are:
+///
+/// * Level 0: 64 x 1 millisecond slots.
+/// * Level 1: 64 x 64 millisecond slots.
+/// * Level 2: 64 x ~4 second slots.
+/// * Level 3: 64 x ~4 minute slots.
+/// * Level 4: 64 x ~4 hour slots.
+/// * Level 5: 64 x ~12 day slots.
+///
+/// When the timer processes entries at level zero, it will notify all the
+/// `Sleep` instances as their deadlines have been reached. For all higher
+/// levels, all entries will be redistributed across the wheel at the next level
+/// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
+/// either be canceled (dropped) or their associated entries will reach level
+/// zero and be notified.
+///
+/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
+/// [sleep]: crate::time::Sleep
+/// [timeout]: crate::time::Timeout
+/// [interval]: crate::time::Interval
+#[derive(Debug)]
+pub(crate) struct Driver<P: Park + 'static> {
+ /// Timing backend in use.
+ time_source: ClockTime,
+
+ /// Shared state.
+ handle: Handle,
+
+ /// Parker to delegate to.
+ park: P,
+
+ // When `true`, a call to `park_timeout` should immediately return and time
+ // should not advance. One reason for this to be `true` is if the task
+ // passed to `Runtime::block_on` called `task::yield_now()`.
+ //
+ // While it may look racy, it only has any effect when the clock is paused
+ // and pausing the clock is restricted to a single-threaded runtime.
+ #[cfg(feature = "test-util")]
+ did_wake: Arc<AtomicBool>,
+}
+
+/// A structure which handles conversion from Instants to u64 timestamps.
+#[derive(Debug, Clone)]
+pub(self) struct ClockTime {
+ clock: super::clock::Clock,
+ start_time: Instant,
+}
+
+impl ClockTime {
+ pub(self) fn new(clock: Clock) -> Self {
+ Self {
+ start_time: clock.now(),
+ clock,
+ }
+ }
+
+ pub(self) fn deadline_to_tick(&self, t: Instant) -> u64 {
+ // Round up to the end of a ms
+ self.instant_to_tick(t + Duration::from_nanos(999_999))
+ }
+
+ pub(self) fn instant_to_tick(&self, t: Instant) -> u64 {
+ // round up
+ let dur: Duration = t
+ .checked_duration_since(self.start_time)
+ .unwrap_or_else(|| Duration::from_secs(0));
+ let ms = dur.as_millis();
+
+ ms.try_into().unwrap_or(u64::MAX)
+ }
+
+ pub(self) fn tick_to_duration(&self, t: u64) -> Duration {
+ Duration::from_millis(t)
+ }
+
+ pub(self) fn now(&self) -> u64 {
+ self.instant_to_tick(self.clock.now())
+ }
+}
+
+/// Timer state shared between `Driver`, `Handle`, and `Registration`.
+struct Inner {
+ // The state is split like this so `Handle` can access `is_shutdown` without locking the mutex
+ pub(super) state: Mutex<InnerState>,
+
+ /// True if the driver is being shutdown.
+ pub(super) is_shutdown: AtomicBool,
+}
+
+/// Time state shared which must be protected by a `Mutex`
+struct InnerState {
+ /// Timing backend in use.
+ time_source: ClockTime,
+
+ /// The last published timer `elapsed` value.
+ elapsed: u64,
+
+ /// The earliest time at which we promise to wake up without unparking.
+ next_wake: Option<NonZeroU64>,
+
+ /// Timer wheel.
+ wheel: wheel::Wheel,
+
+ /// Unparker that can be used to wake the time driver.
+ unpark: Box<dyn Unpark>,
+}
+
+// ===== impl Driver =====
+
+impl<P> Driver<P>
+where
+ P: Park + 'static,
+{
+ /// Creates a new `Driver` instance that uses `park` to block the current
+ /// thread and `time_source` to get the current time and convert to ticks.
+ ///
+ /// Specifying the source of time is useful when testing.
+ pub(crate) fn new(park: P, clock: Clock) -> Driver<P> {
+ let time_source = ClockTime::new(clock);
+
+ let inner = Inner::new(time_source.clone(), Box::new(park.unpark()));
+
+ Driver {
+ time_source,
+ handle: Handle::new(Arc::new(inner)),
+ park,
+ #[cfg(feature = "test-util")]
+ did_wake: Arc::new(AtomicBool::new(false)),
+ }
+ }
+
+ /// Returns a handle to the timer.
+ ///
+ /// The `Handle` is how `Sleep` instances are created. The `Sleep` instances
+ /// can either be created directly or the `Handle` instance can be passed to
+ /// `with_default`, setting the timer as the default timer for the execution
+ /// context.
+ pub(crate) fn handle(&self) -> Handle {
+ self.handle.clone()
+ }
+
+ fn park_internal(&mut self, limit: Option<Duration>) -> Result<(), P::Error> {
+ let mut lock = self.handle.get().state.lock();
+
+ assert!(!self.handle.is_shutdown());
+
+ let next_wake = lock.wheel.next_expiration_time();
+ lock.next_wake =
+ next_wake.map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap()));
+
+ drop(lock);
+
+ match next_wake {
+ Some(when) => {
+ let now = self.time_source.now();
+ // Note that we effectively round up to 1ms here - this avoids
+ // very short-duration microsecond-resolution sleeps that the OS
+ // might treat as zero-length.
+ let mut duration = self.time_source.tick_to_duration(when.saturating_sub(now));
+
+ if duration > Duration::from_millis(0) {
+ if let Some(limit) = limit {
+ duration = std::cmp::min(limit, duration);
+ }
+
+ self.park_timeout(duration)?;
+ } else {
+ self.park.park_timeout(Duration::from_secs(0))?;
+ }
+ }
+ None => {
+ if let Some(duration) = limit {
+ self.park_timeout(duration)?;
+ } else {
+ self.park.park()?;
+ }
+ }
+ }
+
+ // Process pending timers after waking up
+ self.handle.process();
+
+ Ok(())
+ }
+
+ cfg_test_util! {
+ fn park_timeout(&mut self, duration: Duration) -> Result<(), P::Error> {
+ let clock = &self.time_source.clock;
+
+ if clock.is_paused() {
+ self.park.park_timeout(Duration::from_secs(0))?;
+
+ // If the time driver was woken, then the park completed
+ // before the "duration" elapsed (usually caused by a
+ // yield in `Runtime::block_on`). In this case, we don't
+ // advance the clock.
+ if !self.did_wake() {
+ // Simulate advancing time
+ clock.advance(duration);
+ }
+ } else {
+ self.park.park_timeout(duration)?;
+ }
+
+ Ok(())
+ }
+
+ fn did_wake(&self) -> bool {
+ self.did_wake.swap(false, Ordering::SeqCst)
+ }
+ }
+
+ cfg_not_test_util! {
+ fn park_timeout(&mut self, duration: Duration) -> Result<(), P::Error> {
+ self.park.park_timeout(duration)
+ }
+ }
+}
+
+impl Handle {
+ /// Runs timer related logic, and returns the next wakeup time
+ pub(self) fn process(&self) {
+ let now = self.time_source().now();
+
+ self.process_at_time(now)
+ }
+
+ pub(self) fn process_at_time(&self, mut now: u64) {
+ let mut waker_list: [Option<Waker>; 32] = Default::default();
+ let mut waker_idx = 0;
+
+ let mut lock = self.get().lock();
+
+ if now < lock.elapsed {
+ // Time went backwards! This normally shouldn't happen as the Rust language
+ // guarantees that an Instant is monotonic, but can happen when running
+ // Linux in a VM on a Windows host due to std incorrectly trusting the
+ // hardware clock to be monotonic.
+ //
+ // See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
+ now = lock.elapsed;
+ }
+
+ while let Some(entry) = lock.wheel.poll(now) {
+ debug_assert!(unsafe { entry.is_pending() });
+
+ // SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
+ if let Some(waker) = unsafe { entry.fire(Ok(())) } {
+ waker_list[waker_idx] = Some(waker);
+
+ waker_idx += 1;
+
+ if waker_idx == waker_list.len() {
+ // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
+ drop(lock);
+
+ for waker in waker_list.iter_mut() {
+ waker.take().unwrap().wake();
+ }
+
+ waker_idx = 0;
+
+ lock = self.get().lock();
+ }
+ }
+ }
+
+ // Update the elapsed cache
+ lock.elapsed = lock.wheel.elapsed();
+ lock.next_wake = lock
+ .wheel
+ .poll_at()
+ .map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap()));
+
+ drop(lock);
+
+ for waker in waker_list[0..waker_idx].iter_mut() {
+ waker.take().unwrap().wake();
+ }
+ }
+
+ /// Removes a registered timer from the driver.
+ ///
+ /// The timer will be moved to the cancelled state. Wakers will _not_ be
+ /// invoked. If the timer is already completed, this function is a no-op.
+ ///
+ /// This function always acquires the driver lock, even if the entry does
+ /// not appear to be registered.
+ ///
+ /// SAFETY: The timer must not be registered with some other driver, and
+ /// `add_entry` must not be called concurrently.
+ pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
+ unsafe {
+ let mut lock = self.get().lock();
+
+ if entry.as_ref().might_be_registered() {
+ lock.wheel.remove(entry);
+ }
+
+ entry.as_ref().handle().fire(Ok(()));
+ }
+ }
+
+ /// Removes and re-adds an entry to the driver.
+ ///
+ /// SAFETY: The timer must be either unregistered, or registered with this
+ /// driver. No other threads are allowed to concurrently manipulate the
+ /// timer at all (the current thread should hold an exclusive reference to
+ /// the `TimerEntry`)
+ pub(self) unsafe fn reregister(&self, new_tick: u64, entry: NonNull<TimerShared>) {
+ let waker = unsafe {
+ let mut lock = self.get().lock();
+
+ // We may have raced with a firing/deregistration, so check before
+ // deregistering.
+ if unsafe { entry.as_ref().might_be_registered() } {
+ lock.wheel.remove(entry);
+ }
+
+ // Now that we have exclusive control of this entry, mint a handle to reinsert it.
+ let entry = entry.as_ref().handle();
+
+ if self.is_shutdown() {
+ unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
+ } else {
+ entry.set_expiration(new_tick);
+
+ // Note: We don't have to worry about racing with some other resetting
+ // thread, because add_entry and reregister require exclusive control of
+ // the timer entry.
+ match unsafe { lock.wheel.insert(entry) } {
+ Ok(when) => {
+ if lock
+ .next_wake
+ .map(|next_wake| when < next_wake.get())
+ .unwrap_or(true)
+ {
+ lock.unpark.unpark();
+ }
+
+ None
+ }
+ Err((entry, super::error::InsertError::Elapsed)) => unsafe {
+ entry.fire(Ok(()))
+ },
+ }
+ }
+
+ // Must release lock before invoking waker to avoid the risk of deadlock.
+ };
+
+ // The timer was fired synchronously as a result of the reregistration.
+ // Wake the waker; this is needed because we might reset _after_ a poll,
+ // and otherwise the task won't be awoken to poll again.
+ if let Some(waker) = waker {
+ waker.wake();
+ }
+ }
+}
+
+impl<P> Park for Driver<P>
+where
+ P: Park + 'static,
+{
+ type Unpark = TimerUnpark<P>;
+ type Error = P::Error;
+
+ fn unpark(&self) -> Self::Unpark {
+ TimerUnpark::new(self)
+ }
+
+ fn park(&mut self) -> Result<(), Self::Error> {
+ self.park_internal(None)
+ }
+
+ fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
+ self.park_internal(Some(duration))
+ }
+
+ fn shutdown(&mut self) {
+ if self.handle.is_shutdown() {
+ return;
+ }
+
+ self.handle.get().is_shutdown.store(true, Ordering::SeqCst);
+
+ // Advance time forward to the end of time.
+
+ self.handle.process_at_time(u64::MAX);
+
+ self.park.shutdown();
+ }
+}
+
+impl<P> Drop for Driver<P>
+where
+ P: Park + 'static,
+{
+ fn drop(&mut self) {
+ self.shutdown();
+ }
+}
+
+pub(crate) struct TimerUnpark<P: Park + 'static> {
+ inner: P::Unpark,
+
+ #[cfg(feature = "test-util")]
+ did_wake: Arc<AtomicBool>,
+}
+
+impl<P: Park + 'static> TimerUnpark<P> {
+ fn new(driver: &Driver<P>) -> TimerUnpark<P> {
+ TimerUnpark {
+ inner: driver.park.unpark(),
+
+ #[cfg(feature = "test-util")]
+ did_wake: driver.did_wake.clone(),
+ }
+ }
+}
+
+impl<P: Park + 'static> Unpark for TimerUnpark<P> {
+ fn unpark(&self) {
+ #[cfg(feature = "test-util")]
+ self.did_wake.store(true, Ordering::SeqCst);
+
+ self.inner.unpark();
+ }
+}
+
+// ===== impl Inner =====
+
+impl Inner {
+ pub(self) fn new(time_source: ClockTime, unpark: Box<dyn Unpark>) -> Self {
+ Inner {
+ state: Mutex::new(InnerState {
+ time_source,
+ elapsed: 0,
+ next_wake: None,
+ unpark,
+ wheel: wheel::Wheel::new(),
+ }),
+ is_shutdown: AtomicBool::new(false),
+ }
+ }
+
+ /// Locks the driver's inner structure
+ pub(super) fn lock(&self) -> crate::loom::sync::MutexGuard<'_, InnerState> {
+ self.state.lock()
+ }
+
+ // Check whether the driver has been shutdown
+ pub(super) fn is_shutdown(&self) -> bool {
+ self.is_shutdown.load(Ordering::SeqCst)
+ }
+}
+
+impl fmt::Debug for Inner {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Inner").finish()
+ }
+}
+
+#[cfg(test)]
+mod tests;