summaryrefslogtreecommitdiffstats
path: root/toolkit/components/translations/fasttext/fasttext.js
diff options
context:
space:
mode:
Diffstat (limited to 'toolkit/components/translations/fasttext/fasttext.js')
-rw-r--r--toolkit/components/translations/fasttext/fasttext.js536
1 files changed, 536 insertions, 0 deletions
diff --git a/toolkit/components/translations/fasttext/fasttext.js b/toolkit/components/translations/fasttext/fasttext.js
new file mode 100644
index 0000000000..a79dfeffa0
--- /dev/null
+++ b/toolkit/components/translations/fasttext/fasttext.js
@@ -0,0 +1,536 @@
+/**
+ * Copyright (c) 2016-present, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the MIT license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+
+let fastTextModule;
+
+const _initFastTextModule = async function (wasmModule) {
+ try {
+ fastTextModule = await loadFastTextModule(wasmModule);
+ } catch(e) {
+ console.error(e);
+ }
+ return true
+}
+
+let postRunFunc = null;
+const addOnPostRun = function (func) {
+ postRunFunc = func;
+};
+
+
+const loadFastText = (wasmModule) => {
+ _initFastTextModule(wasmModule).then((res) => {
+ if (postRunFunc) {
+ postRunFunc();
+ }
+ })
+}
+const thisModule = this;
+const trainFileInWasmFs = 'train.txt';
+const testFileInWasmFs = 'test.txt';
+const modelFileInWasmFs = 'model.bin';
+
+const getFloat32ArrayFromHeap = (len) => {
+ const dataBytes = len * Float32Array.BYTES_PER_ELEMENT;
+ const dataPtr = fastTextModule._malloc(dataBytes);
+ const dataHeap = new Uint8Array(fastTextModule.HEAPU8.buffer,
+ dataPtr,
+ dataBytes);
+ return {
+ 'ptr':dataHeap.byteOffset,
+ 'size':len,
+ 'buffer':dataHeap.buffer
+ };
+};
+
+const heapToFloat32 = (r) => new Float32Array(r.buffer, r.ptr, r.size);
+
+class FastText {
+ constructor(fastTextModule) {
+ this.f = new fastTextModule.FastText();
+ }
+
+ /**
+ * loadModel
+ *
+ * Loads the model file from the specified url, and returns the
+ * corresponding `FastTextModel` object.
+ *
+ * @param {string} url
+ * the url of the model file.
+ *
+ * @return {Promise} promise object that resolves to a `FastTextModel`
+ *
+ */
+ loadModel(url) {
+ const fetchFunc = (thisModule && thisModule.fetch) || fetch;
+
+ const fastTextNative = this.f;
+ return new Promise(function(resolve, reject) {
+ fetchFunc(url).then(response => {
+ return response.arrayBuffer();
+ }).then(bytes => {
+ const byteArray = new Uint8Array(bytes);
+ const FS = fastTextModule.FS;
+ FS.writeFile(modelFileInWasmFs, byteArray);
+ }).then(() => {
+ fastTextNative.loadModel(modelFileInWasmFs);
+ resolve(new FastTextModel(fastTextNative));
+ }).catch(error => {
+ reject(error);
+ });
+ });
+ }
+
+ loadModelBinary(buffer) {
+ const fastTextNative = this.f;
+ const byteArray = new Uint8Array(buffer);
+ const FS = fastTextModule.FS;
+ FS.writeFile(modelFileInWasmFs, byteArray);
+ fastTextNative.loadModel(modelFileInWasmFs);
+ return new FastTextModel(fastTextNative);
+ }
+
+ _train(url, modelName, kwargs = {}, callback = null) {
+ const fetchFunc = (thisModule && thisModule.fetch) || fetch;
+ const fastTextNative = this.f;
+
+ return new Promise(function(resolve, reject) {
+ fetchFunc(url).then(response => {
+ return response.arrayBuffer();
+ }).then(bytes => {
+ const byteArray = new Uint8Array(bytes);
+ const FS = fastTextModule.FS;
+ FS.writeFile(trainFileInWasmFs, byteArray);
+ }).then(() => {
+ const argsList = ['lr', 'lrUpdateRate', 'dim', 'ws', 'epoch',
+ 'minCount', 'minCountLabel', 'neg', 'wordNgrams', 'loss',
+ 'model', 'bucket', 'minn', 'maxn', 't', 'label', 'verbose',
+ 'pretrainedVectors', 'saveOutput', 'seed', 'qout', 'retrain',
+ 'qnorm', 'cutoff', 'dsub', 'qnorm', 'autotuneValidationFile',
+ 'autotuneMetric', 'autotunePredictions', 'autotuneDuration',
+ 'autotuneModelSize'];
+ const args = new fastTextModule.Args();
+ argsList.forEach(k => {
+ if (k in kwargs) {
+ args[k] = kwargs[k];
+ }
+ });
+ args.model = fastTextModule.ModelName[modelName];
+ args.loss = ('loss' in kwargs) ?
+ fastTextModule.LossName[kwargs['loss']] : 'hs';
+ args.thread = 1;
+ args.input = trainFileInWasmFs;
+
+ fastTextNative.train(args, callback);
+
+ resolve(new FastTextModel(fastTextNative));
+ }).catch(error => {
+ reject(error);
+ });
+ });
+ }
+
+ /**
+ * trainSupervised
+ *
+ * Downloads the input file from the specified url, trains a supervised
+ * model and returns a `FastTextModel` object.
+ *
+ * @param {string} url
+ * the url of the input file.
+ * The input file must must contain at least one label per line. For an
+ * example consult the example datasets which are part of the fastText
+ * repository such as the dataset pulled by classification-example.sh.
+ *
+ * @param {dict} kwargs
+ * train parameters.
+ * For example {'lr': 0.5, 'epoch': 5}
+ *
+ * @param {function} callback
+ * train callback function
+ * `callback` function is called regularly from the train loop:
+ * `callback(progress, loss, wordsPerSec, learningRate, eta)`
+ *
+ * @return {Promise} promise object that resolves to a `FastTextModel`
+ *
+ */
+ trainSupervised(url, kwargs = {}, callback) {
+ const self = this;
+ return new Promise(function(resolve, reject) {
+ self._train(url, 'supervised', kwargs, callback).then(model => {
+ resolve(model);
+ }).catch(error => {
+ reject(error);
+ });
+ });
+ }
+
+ /**
+ * trainUnsupervised
+ *
+ * Downloads the input file from the specified url, trains an unsupervised
+ * model and returns a `FastTextModel` object.
+ *
+ * @param {string} url
+ * the url of the input file.
+ * The input file must not contain any labels or use the specified label
+ * prefixunless it is ok for those words to be ignored. For an example
+ * consult the dataset pulled by the example script word-vector-example.sh
+ * which is part of the fastText repository.
+ *
+ * @param {string} modelName
+ * Model to be used for unsupervised learning. `cbow` or `skipgram`.
+ *
+ * @param {dict} kwargs
+ * train parameters.
+ * For example {'lr': 0.5, 'epoch': 5}
+ *
+ * @param {function} callback
+ * train callback function
+ * `callback` function is called regularly from the train loop:
+ * `callback(progress, loss, wordsPerSec, learningRate, eta)`
+ *
+ * @return {Promise} promise object that resolves to a `FastTextModel`
+ *
+ */
+ trainUnsupervised(url, modelName, kwargs = {}, callback) {
+ const self = this;
+ return new Promise(function(resolve, reject) {
+ self._train(url, modelName, kwargs, callback).then(model => {
+ resolve(model);
+ }).catch(error => {
+ reject(error);
+ });
+ });
+ }
+
+}
+
+
+class FastTextModel {
+ /**
+ * `FastTextModel` represents a trained model.
+ *
+ * @constructor
+ *
+ * @param {object} fastTextNative
+ * webassembly object that makes the bridge between js and C++
+ */
+ constructor(fastTextNative) {
+ this.f = fastTextNative;
+ }
+
+ /**
+ * isQuant
+ *
+ * @return {bool} true if the model is quantized
+ *
+ */
+ isQuant() {
+ return this.f.isQuant;
+ }
+
+ /**
+ * getDimension
+ *
+ * @return {int} the dimension (size) of a lookup vector (hidden layer)
+ *
+ */
+ getDimension() {
+ return this.f.args.dim;
+ }
+
+ /**
+ * getWordVector
+ *
+ * @param {string} word
+ *
+ * @return {Float32Array} the vector representation of `word`.
+ *
+ */
+ getWordVector(word) {
+ const b = getFloat32ArrayFromHeap(this.getDimension());
+ this.f.getWordVector(b, word);
+
+ return heapToFloat32(b);
+ }
+
+ /**
+ * getSentenceVector
+ *
+ * @param {string} text
+ *
+ * @return {Float32Array} the vector representation of `text`.
+ *
+ */
+ getSentenceVector(text) {
+ if (text.indexOf('\n') != -1) {
+ "sentence vector processes one line at a time (remove '\\n')";
+ }
+ text += '\n';
+ const b = getFloat32ArrayFromHeap(this.getDimension());
+ this.f.getSentenceVector(b, text);
+
+ return heapToFloat32(b);
+ }
+
+ /**
+ * getNearestNeighbors
+ *
+ * returns the nearest `k` neighbors of `word`.
+ *
+ * @param {string} word
+ * @param {int} k
+ *
+ * @return {Array.<Pair.<number, string>>}
+ * words and their corresponding cosine similarities.
+ *
+ */
+ getNearestNeighbors(word, k = 10) {
+ return this.f.getNN(word, k);
+ }
+
+ /**
+ * getAnalogies
+ *
+ * returns the nearest `k` neighbors of the operation
+ * `wordA - wordB + wordC`.
+ *
+ * @param {string} wordA
+ * @param {string} wordB
+ * @param {string} wordC
+ * @param {int} k
+ *
+ * @return {Array.<Pair.<number, string>>}
+ * words and their corresponding cosine similarities
+ *
+ */
+ getAnalogies(wordA, wordB, wordC, k) {
+ return this.f.getAnalogies(k, wordA, wordB, wordC);
+ }
+
+ /**
+ * getWordId
+ *
+ * Given a word, get the word id within the dictionary.
+ * Returns -1 if word is not in the dictionary.
+ *
+ * @return {int} word id
+ *
+ */
+ getWordId(word) {
+ return this.f.getWordId(word);
+ }
+
+ /**
+ * getSubwordId
+ *
+ * Given a subword, return the index (within input matrix) it hashes to.
+ *
+ * @return {int} subword id
+ *
+ */
+ getSubwordId(subword) {
+ return this.f.getSubwordId(subword);
+ }
+
+ /**
+ * getSubwords
+ *
+ * returns the subwords and their indicies.
+ *
+ * @param {string} word
+ *
+ * @return {Pair.<Array.<string>, Array.<int>>}
+ * words and their corresponding indicies
+ *
+ */
+ getSubwords(word) {
+ return this.f.getSubwords(word);
+ }
+
+ /**
+ * getInputVector
+ *
+ * Given an index, get the corresponding vector of the Input Matrix.
+ *
+ * @param {int} ind
+ *
+ * @return {Float32Array} the vector of the `ind`'th index
+ *
+ */
+ getInputVector(ind) {
+ const b = getFloat32ArrayFromHeap(this.getDimension());
+ this.f.getInputVector(b, ind);
+
+ return heapToFloat32(b);
+ }
+
+ /**
+ * predict
+ *
+ * Given a string, get a list of labels and a list of corresponding
+ * probabilities. k controls the number of returned labels.
+ *
+ * @param {string} text
+ * @param {int} k, the number of predictions to be returned
+ * @param {number} probability threshold
+ *
+ * @return {Array.<Pair.<number, string>>}
+ * labels and their probabilities
+ *
+ */
+ predict(text, k = 1, threshold = 0.0) {
+ return this.f.predict(text, k, threshold);
+ }
+
+ /**
+ * getInputMatrix
+ *
+ * Get a reference to the full input matrix of a Model. This only
+ * works if the model is not quantized.
+ *
+ * @return {DenseMatrix}
+ * densematrix with functions: `rows`, `cols`, `at(i,j)`
+ *
+ * example:
+ * let inputMatrix = model.getInputMatrix();
+ * let value = inputMatrix.at(1, 2);
+ */
+ getInputMatrix() {
+ if (this.isQuant()) {
+ throw new Error("Can't get quantized Matrix");
+ }
+ return this.f.getInputMatrix();
+ }
+
+ /**
+ * getOutputMatrix
+ *
+ * Get a reference to the full input matrix of a Model. This only
+ * works if the model is not quantized.
+ *
+ * @return {DenseMatrix}
+ * densematrix with functions: `rows`, `cols`, `at(i,j)`
+ *
+ * example:
+ * let outputMatrix = model.getOutputMatrix();
+ * let value = outputMatrix.at(1, 2);
+ */
+ getOutputMatrix() {
+ if (this.isQuant()) {
+ throw new Error("Can't get quantized Matrix");
+ }
+ return this.f.getOutputMatrix();
+ }
+
+ /**
+ * getWords
+ *
+ * Get the entire list of words of the dictionary including the frequency
+ * of the individual words. This does not include any subwords. For that
+ * please consult the function get_subwords.
+ *
+ * @return {Pair.<Array.<string>, Array.<int>>}
+ * words and their corresponding frequencies
+ *
+ */
+ getWords() {
+ return this.f.getWords();
+ }
+
+ /**
+ * getLabels
+ *
+ * Get the entire list of labels of the dictionary including the frequency
+ * of the individual labels.
+ *
+ * @return {Pair.<Array.<string>, Array.<int>>}
+ * labels and their corresponding frequencies
+ *
+ */
+ getLabels() {
+ return this.f.getLabels();
+ }
+
+ /**
+ * getLine
+ *
+ * Split a line of text into words and labels. Labels must start with
+ * the prefix used to create the model (__label__ by default).
+ *
+ * @param {string} text
+ *
+ * @return {Pair.<Array.<string>, Array.<string>>}
+ * words and labels
+ *
+ */
+ getLine(text) {
+ return this.f.getLine(text);
+ }
+
+ /**
+ * saveModel
+ *
+ * Saves the model file in web assembly in-memory FS and returns a blob
+ *
+ * @return {Blob} blob data of the file saved in web assembly FS
+ *
+ */
+ saveModel() {
+ this.f.saveModel(modelFileInWasmFs);
+ const content = fastTextModule.FS.readFile(modelFileInWasmFs,
+ { encoding: 'binary' });
+ return new Blob(
+ [new Uint8Array(content, content.byteOffset, content.length)],
+ { type: ' application/octet-stream' }
+ );
+ }
+
+ /**
+ * test
+ *
+ * Downloads the test file from the specified url, evaluates the supervised
+ * model with it.
+ *
+ * @param {string} url
+ * @param {int} k, the number of predictions to be returned
+ * @param {number} probability threshold
+ *
+ * @return {Promise} promise object that resolves to a `Meter` object
+ *
+ * example:
+ * model.test("/absolute/url/to/test.txt", 1, 0.0).then((meter) => {
+ * console.log(meter.precision);
+ * console.log(meter.recall);
+ * console.log(meter.f1Score);
+ * console.log(meter.nexamples());
+ * });
+ *
+ */
+ test(url, k, threshold) {
+ const fetchFunc = (thisModule && thisModule.fetch) || fetch;
+ const fastTextNative = this.f;
+
+ return new Promise(function(resolve, reject) {
+ fetchFunc(url).then(response => {
+ return response.arrayBuffer();
+ }).then(bytes => {
+ const byteArray = new Uint8Array(bytes);
+ const FS = fastTextModule.FS;
+ FS.writeFile(testFileInWasmFs, byteArray);
+ }).then(() => {
+ const meter = fastTextNative.test(testFileInWasmFs, k, threshold);
+ resolve(meter);
+ }).catch(error => {
+ reject(error);
+ });
+ });
+ }
+}