1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Class to handle encryption and decryption of logins stored in Chrome/Chromium
* on Windows.
*/
import { ChromeMigrationUtils } from "resource:///modules/ChromeMigrationUtils.sys.mjs";
import { OSCrypto } from "resource://gre/modules/OSCrypto_win.sys.mjs";
import { XPCOMUtils } from "resource://gre/modules/XPCOMUtils.sys.mjs";
/**
* These constants should match those from Chromium.
*
* @see https://source.chromium.org/chromium/chromium/src/+/master:components/os_crypt/os_crypt_win.cc
*/
const AEAD_KEY_LENGTH = 256 / 8;
const ALGORITHM_NAME = "AES-GCM";
const DPAPI_KEY_PREFIX = "DPAPI";
const ENCRYPTION_VERSION_PREFIX = "v10";
const NONCE_LENGTH = 96 / 8;
const gTextDecoder = new TextDecoder();
const gTextEncoder = new TextEncoder();
/**
* Instances of this class have a shape similar to OSCrypto so it can be dropped
* into code which uses that. The algorithms here are
* specific to what is needed for Chrome login storage on Windows.
*/
export class ChromeWindowsLoginCrypto {
/**
* @param {string} userDataPathSuffix The unique identifier for the variant of
* Chrome that is having its logins imported. These are the keys in the
* SUB_DIRECTORIES object in ChromeMigrationUtils.getDataPath.
*/
constructor(userDataPathSuffix) {
this.osCrypto = new OSCrypto();
// Lazily decrypt the key from "Chrome"s local state using OSCrypto and save
// it as the master key to decrypt or encrypt passwords.
XPCOMUtils.defineLazyGetter(this, "_keyPromise", async () => {
let keyData;
try {
// NB: For testing, allow directory service to be faked before getting.
const localState = await ChromeMigrationUtils.getLocalState(
userDataPathSuffix
);
const withHeader = atob(localState.os_crypt.encrypted_key);
if (!withHeader.startsWith(DPAPI_KEY_PREFIX)) {
throw new Error("Invalid key format");
}
const encryptedKey = withHeader.slice(DPAPI_KEY_PREFIX.length);
keyData = this.osCrypto.decryptData(encryptedKey, null, "bytes");
} catch (ex) {
console.error(`${userDataPathSuffix} os_crypt key: ${ex}`);
// Use a generic key that will fail for actually encrypted data, but for
// testing it'll be consistent for both encrypting and decrypting.
keyData = AEAD_KEY_LENGTH;
}
return crypto.subtle.importKey(
"raw",
new Uint8Array(keyData),
ALGORITHM_NAME,
false,
["decrypt", "encrypt"]
);
});
}
/**
* Must be invoked once after last use of any of the provided helpers.
*/
finalize() {
this.osCrypto.finalize();
}
/**
* Convert an array containing only two bytes unsigned numbers to a string.
*
* @param {number[]} arr - the array that needs to be converted.
* @returns {string} the string representation of the array.
*/
arrayToString(arr) {
let str = "";
for (let i = 0; i < arr.length; i++) {
str += String.fromCharCode(arr[i]);
}
return str;
}
stringToArray(binary_string) {
const len = binary_string.length;
const bytes = new Uint8Array(len);
for (let i = 0; i < len; i++) {
bytes[i] = binary_string.charCodeAt(i);
}
return bytes;
}
/**
* @param {string} ciphertext ciphertext optionally prefixed by the encryption version
* (see ENCRYPTION_VERSION_PREFIX).
* @returns {string} plaintext password
*/
async decryptData(ciphertext) {
const ciphertextString = this.arrayToString(ciphertext);
return ciphertextString.startsWith(ENCRYPTION_VERSION_PREFIX)
? this._decryptV10(ciphertext)
: this._decryptUnversioned(ciphertextString);
}
async _decryptUnversioned(ciphertext) {
return this.osCrypto.decryptData(ciphertext);
}
async _decryptV10(ciphertext) {
const key = await this._keyPromise;
if (!key) {
throw new Error("Cannot decrypt without a key");
}
// Split the nonce/iv from the rest of the encrypted value and decrypt.
const nonceIndex = ENCRYPTION_VERSION_PREFIX.length;
const cipherIndex = nonceIndex + NONCE_LENGTH;
const iv = new Uint8Array(ciphertext.slice(nonceIndex, cipherIndex));
const algorithm = {
name: ALGORITHM_NAME,
iv,
};
const cipherArray = new Uint8Array(ciphertext.slice(cipherIndex));
const plaintext = await crypto.subtle.decrypt(algorithm, key, cipherArray);
return gTextDecoder.decode(new Uint8Array(plaintext));
}
/**
* @param {USVString} plaintext to encrypt
* @param {?string} version to encrypt default unversioned
* @returns {string} encrypted string consisting of UTF-16 code units prefixed
* by the ENCRYPTION_VERSION_PREFIX.
*/
async encryptData(plaintext, version = undefined) {
return version === ENCRYPTION_VERSION_PREFIX
? this._encryptV10(plaintext)
: this._encryptUnversioned(plaintext);
}
async _encryptUnversioned(plaintext) {
return this.osCrypto.encryptData(plaintext);
}
async _encryptV10(plaintext) {
const key = await this._keyPromise;
if (!key) {
throw new Error("Cannot encrypt without a key");
}
// Encrypt and concatenate the prefix, nonce/iv and encrypted value.
const iv = crypto.getRandomValues(new Uint8Array(NONCE_LENGTH));
const algorithm = {
name: ALGORITHM_NAME,
iv,
};
const plainArray = gTextEncoder.encode(plaintext);
const ciphertext = await crypto.subtle.encrypt(algorithm, key, plainArray);
return (
ENCRYPTION_VERSION_PREFIX +
this.arrayToString(iv) +
this.arrayToString(new Uint8Array(ciphertext))
);
}
}
|