summaryrefslogtreecommitdiffstats
path: root/docs/performance/sorting_algorithms_comparison.md
blob: 8450d116e07e8c033d6a7cf3d170231aa2326d80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Sorting algorithms comparison

This program compares the performance of three different sorting
algorithms:

-   bubble sort
-   selection sort
-   quicksort

It consists of the following functions:

  ----------------------- ---------------------------------------------------------------------------------------------------
  **`sortAll()`**         Top-level function. Iteratively (200 iterations) generates a randomized array and calls `sort()`.
  **`sort()`**            Calls each of `bubbleSort()`, `selectionSort()`, `quickSort()` in turn and logs the result.
  **`bubbleSort()`**      Implements a bubble sort, returning the sorted array.
  **`selectionSort()`**   Implements a selection sort, returning the sorted array.
  **`quickSort()`**       Implements quicksort, returning the sorted array.
  `swap()`                Helper function for `bubbleSort()` and `selectionSort()`.
  `partition()`           Helper function for `quickSort()`.
  ----------------------- ---------------------------------------------------------------------------------------------------

Its call graph looks like this:

    sortAll()                     // (generate random array, then call sort) x 200

        -> sort()                 // sort with each algorithm, log the result

            -> bubbleSort()

                -> swap()

            -> selectionSort()

                -> swap()

            -> quickSort()

                -> partition()

The implementations of the sorting algorithms in the program are taken
from <https://github.com/nzakas/computer-science-in-javascript/> and are
used under the MIT license.

You can try out the example program
[here](https://mdn.github.io/performance-scenarios/js-call-tree-1/index.html)
and clone the code [here](https://github.com/mdn/performance-scenarios)
(be sure to check out the gh-pages branch). You can also [download the
specific profile we
discuss](https://github.com/mdn/performance-scenarios/tree/gh-pages/js-call-tree-1/profile)
- just import it to the Performance tool if you want to follow along. Of
course, you can generate your own profile, too, but the numbers will be
a little different.