1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// We are going to be doing so, so many transforms, so descriptive labels are
// critical.
#include "Colorspaces.h"
#include "nsDebug.h"
#include "qcms.h"
namespace mozilla::color {
// tf = { k * linear | linear < b
// { a * pow(linear, 1/g) - (1-a) | linear >= b
float TfFromLinear(const PiecewiseGammaDesc& desc, const float linear) {
if (linear < desc.b) {
return linear * desc.k;
}
float ret = linear;
ret = powf(ret, 1.0f / desc.g);
ret *= desc.a;
ret -= (desc.a - 1);
return ret;
}
float LinearFromTf(const PiecewiseGammaDesc& desc, const float tf) {
const auto linear_if_low = tf / desc.k;
if (linear_if_low < desc.b) {
return linear_if_low;
}
float ret = tf;
ret += (desc.a - 1);
ret /= desc.a;
ret = powf(ret, 1.0f * desc.g);
return ret;
}
// -
mat3 YuvFromRgb(const YuvLumaCoeffs& yc) {
// Y is always [0,1]
// U and V are signed, and could be either [-1,+1] or [-0.5,+0.5].
// Specs generally use [-0.5,+0.5], so we use that too.
// E.g.
// y = 0.2126*r + 0.7152*g + 0.0722*b
// u = (b - y) / (u_range = u_max - u_min) // u_min = -u_max
// = (b - y) / (u(0,0,1) - u(1,1,0))
// = (b - y) / (2 * u(0,0,1))
// = (b - y) / (2 * u.b))
// = (b - y) / (2 * (1 - 0.0722))
// = (-0.2126*r + -0.7152*g + (1-0.0722)*b) / 1.8556
// v = (r - y) / 1.5748;
// = ((1-0.2126)*r + -0.7152*g + -0.0722*b) / 1.5748
const auto y = vec3({yc.r, yc.g, yc.b});
const auto u = vec3({0, 0, 1}) - y;
const auto v = vec3({1, 0, 0}) - y;
// From rows:
return mat3({y, u / (2 * u.z()), v / (2 * v.x())});
}
mat4 YuvFromYcbcr(const YcbcrDesc& d) {
// E.g.
// y = (yy - 16) / (235 - 16); // 16->0, 235->1
// u = (cb - 128) / (240 - 16); // 16->-0.5, 128->0, 240->+0.5
// v = (cr - 128) / (240 - 16);
const auto yRange = d.y1 - d.y0;
const auto uHalfRange = d.uPlusHalf - d.u0;
const auto uRange = 2 * uHalfRange;
const auto ycbcrFromYuv = mat4{{vec4{{yRange, 0, 0, d.y0}},
{{0, uRange, 0, d.u0}},
{{0, 0, uRange, d.u0}},
{{0, 0, 0, 1}}}};
const auto yuvFromYcbcr = inverse(ycbcrFromYuv);
return yuvFromYcbcr;
}
inline vec3 CIEXYZ_from_CIExyY(const vec2 xy, const float Y = 1) {
const auto xyz = vec3(xy, 1 - xy.x() - xy.y());
const auto XYZ = xyz * (Y / xy.y());
return XYZ;
}
mat3 XyzFromLinearRgb(const Chromaticities& c) {
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
// Given red (xr, yr), green (xg, yg), blue (xb, yb),
// and whitepoint (XW, YW, ZW)
// [ X ] [ R ]
// [ Y ] = M x [ G ]
// [ Z ] [ B ]
// [ Sr*Xr Sg*Xg Sb*Xb ]
// M = [ Sr*Yr Sg*Yg Sb*Yb ]
// [ Sr*Zr Sg*Zg Sb*Zb ]
// Xr = xr / yr
// Yr = 1
// Zr = (1 - xr - yr) / yr
// Xg = xg / yg
// Yg = 1
// Zg = (1 - xg - yg) / yg
// Xb = xb / yb
// Yb = 1
// Zb = (1 - xb - yb) / yb
// [ Sr ] [ Xr Xg Xb ]^-1 [ XW ]
// [ Sg ] = [ Yr Yg Yb ] x [ YW ]
// [ Sb ] [ Zr Zg Zb ] [ ZW ]
const auto xrgb = vec3({c.rx, c.gx, c.bx});
const auto yrgb = vec3({c.ry, c.gy, c.by});
const auto Xrgb = xrgb / yrgb;
const auto Yrgb = vec3(1);
const auto Zrgb = (vec3(1) - xrgb - yrgb) / yrgb;
const auto XYZrgb = mat3({Xrgb, Yrgb, Zrgb});
const auto XYZrgb_inv = inverse(XYZrgb);
const auto XYZwhitepoint = vec3({c.wx, c.wy, 1 - c.wx - c.wy}) / c.wy;
const auto Srgb = XYZrgb_inv * XYZwhitepoint;
const auto M = mat3({Srgb * Xrgb, Srgb * Yrgb, Srgb * Zrgb});
return M;
}
// -
ColorspaceTransform ColorspaceTransform::Create(const ColorspaceDesc& src,
const ColorspaceDesc& dst) {
auto ct = ColorspaceTransform{src, dst};
ct.srcTf = src.tf;
ct.dstTf = dst.tf;
const auto RgbTfFrom = [&](const ColorspaceDesc& cs) {
auto rgbFrom = mat4::Identity();
if (cs.yuv) {
const auto yuvFromYcbcr = YuvFromYcbcr(cs.yuv->ycbcr);
const auto yuvFromRgb = YuvFromRgb(cs.yuv->yCoeffs);
const auto rgbFromYuv = inverse(yuvFromRgb);
const auto rgbFromYuv4 = mat4(rgbFromYuv);
const auto rgbFromYcbcr = rgbFromYuv4 * yuvFromYcbcr;
rgbFrom = rgbFromYcbcr;
}
return rgbFrom;
};
ct.srcRgbTfFromSrc = RgbTfFrom(src);
const auto dstRgbTfFromDst = RgbTfFrom(dst);
ct.dstFromDstRgbTf = inverse(dstRgbTfFromDst);
// -
ct.dstRgbLinFromSrcRgbLin = mat3::Identity();
if (!(src.chrom == dst.chrom)) {
const auto xyzFromSrcRgbLin = XyzFromLinearRgb(src.chrom);
const auto xyzFromDstRgbLin = XyzFromLinearRgb(dst.chrom);
const auto dstRgbLinFromXyz = inverse(xyzFromDstRgbLin);
ct.dstRgbLinFromSrcRgbLin = dstRgbLinFromXyz * xyzFromSrcRgbLin;
}
return ct;
}
vec3 ColorspaceTransform::DstFromSrc(const vec3 src) const {
const auto srcRgbTf = srcRgbTfFromSrc * vec4(src, 1);
auto srcRgbLin = srcRgbTf;
if (srcTf) {
srcRgbLin.x(LinearFromTf(*srcTf, srcRgbTf.x()));
srcRgbLin.y(LinearFromTf(*srcTf, srcRgbTf.y()));
srcRgbLin.z(LinearFromTf(*srcTf, srcRgbTf.z()));
}
const auto dstRgbLin = dstRgbLinFromSrcRgbLin * vec3(srcRgbLin);
auto dstRgbTf = dstRgbLin;
if (dstTf) {
dstRgbTf.x(TfFromLinear(*dstTf, dstRgbLin.x()));
dstRgbTf.y(TfFromLinear(*dstTf, dstRgbLin.y()));
dstRgbTf.z(TfFromLinear(*dstTf, dstRgbLin.z()));
}
const auto dst4 = dstFromDstRgbTf * vec4(dstRgbTf, 1);
return vec3(dst4);
}
// -
mat3 XyzAFromXyzB_BradfordLinear(const vec2 xyA, const vec2 xyB) {
// This is what ICC profiles use to do whitepoint transforms,
// because ICC also requires D50 for the Profile Connection Space.
// From https://www.color.org/specification/ICC.1-2022-05.pdf
// E.3 "Linearized Bradford transformation":
const auto M_BFD = mat3{{
vec3{{0.8951, 0.2664f, -0.1614f}},
vec3{{-0.7502f, 1.7135f, 0.0367f}},
vec3{{0.0389f, -0.0685f, 1.0296f}},
}};
// NB: They use rho/gamma/beta, but we'll use R/G/B here.
const auto XYZDst = CIEXYZ_from_CIExyY(xyA); // "XYZ_W", WP of PCS
const auto XYZSrc = CIEXYZ_from_CIExyY(xyB); // "XYZ_NAW", WP of src
const auto rgbSrc = M_BFD * XYZSrc; // "RGB_SRC"
const auto rgbDst = M_BFD * XYZDst; // "RGB_PCS"
const auto rgbDstOverSrc = rgbDst / rgbSrc;
const auto M_dstOverSrc = mat3::Scale(rgbDstOverSrc);
const auto M_adapt = inverse(M_BFD) * M_dstOverSrc * M_BFD;
return M_adapt;
}
std::optional<mat4> ColorspaceTransform::ToMat4() const {
mat4 fromSrc = srcRgbTfFromSrc;
if (srcTf) return {};
fromSrc = mat4(dstRgbLinFromSrcRgbLin) * fromSrc;
if (dstTf) return {};
fromSrc = dstFromDstRgbTf * fromSrc;
return fromSrc;
}
Lut3 ColorspaceTransform::ToLut3(const ivec3 size) const {
auto lut = Lut3::Create(size);
lut.SetMap([&](const vec3& srcVal) { return DstFromSrc(srcVal); });
return lut;
}
vec3 Lut3::Sample(const vec3 in01) const {
const auto coord = vec3(size - 1) * in01;
const auto p0 = floor(coord);
const auto dp = coord - p0;
const auto ip0 = ivec3(p0);
// Trilinear
const auto f000 = Fetch(ip0 + ivec3({0, 0, 0}));
const auto f100 = Fetch(ip0 + ivec3({1, 0, 0}));
const auto f010 = Fetch(ip0 + ivec3({0, 1, 0}));
const auto f110 = Fetch(ip0 + ivec3({1, 1, 0}));
const auto f001 = Fetch(ip0 + ivec3({0, 0, 1}));
const auto f101 = Fetch(ip0 + ivec3({1, 0, 1}));
const auto f011 = Fetch(ip0 + ivec3({0, 1, 1}));
const auto f111 = Fetch(ip0 + ivec3({1, 1, 1}));
const auto fx00 = mix(f000, f100, dp.x());
const auto fx10 = mix(f010, f110, dp.x());
const auto fx01 = mix(f001, f101, dp.x());
const auto fx11 = mix(f011, f111, dp.x());
const auto fxy0 = mix(fx00, fx10, dp.y());
const auto fxy1 = mix(fx01, fx11, dp.y());
const auto fxyz = mix(fxy0, fxy1, dp.z());
return fxyz;
}
// -
ColorProfileDesc ColorProfileDesc::From(const ColorspaceDesc& cspace) {
auto ret = ColorProfileDesc{};
if (cspace.yuv) {
const auto yuvFromYcbcr = YuvFromYcbcr(cspace.yuv->ycbcr);
const auto yuvFromRgb = YuvFromRgb(cspace.yuv->yCoeffs);
const auto rgbFromYuv = inverse(yuvFromRgb);
ret.rgbFromYcbcr = mat4(rgbFromYuv) * yuvFromYcbcr;
}
if (cspace.tf) {
const size_t tableSize = 256;
auto& tableR = ret.linearFromTf.r;
tableR.resize(tableSize);
for (size_t i = 0; i < tableR.size(); i++) {
const float tfVal = i / float(tableR.size() - 1);
const float linearVal = LinearFromTf(*cspace.tf, tfVal);
tableR[i] = linearVal;
}
ret.linearFromTf.g = tableR;
ret.linearFromTf.b = tableR;
}
ret.xyzd65FromLinearRgb = XyzFromLinearRgb(cspace.chrom);
return ret;
}
// -
template <class T>
constexpr inline T NewtonEstimateX(const T x1, const T y1, const T dydx,
const T y2 = 0) {
// Estimate x s.t. y=0
// y = y0 + x*dydx;
// y0 = y - x*dydx;
// y1 - x1*dydx = y2 - x2*dydx
// x2*dydx = y2 - y1 + x1*dydx
// x2 = (y2 - y1)/dydx + x1
return (y2 - y1) / dydx + x1;
}
float GuessGamma(const std::vector<float>& vals, float exp_guess) {
// Approximate (signed) error = 0.0.
constexpr float d_exp = 0.001;
constexpr float error_tolerance = 0.001;
struct Samples {
float y1, y2;
};
const auto Sample = [&](const float exp) {
int i = -1;
auto samples = Samples{};
for (const auto& expected : vals) {
i += 1;
const auto in = i / float(vals.size() - 1);
samples.y1 += powf(in, exp) - expected;
samples.y2 += powf(in, exp + d_exp) - expected;
}
samples.y1 /= vals.size(); // Normalize by val count.
samples.y2 /= vals.size();
return samples;
};
constexpr int MAX_ITERS = 10;
for (int i = 1;; i++) {
const auto err = Sample(exp_guess);
const auto derr = err.y2 - err.y1;
exp_guess = NewtonEstimateX(exp_guess, err.y1, derr / d_exp);
// Check if we were close before, because then this last round of estimation
// should get us pretty much right on it.
if (std::abs(err.y1) < error_tolerance) {
return exp_guess;
}
if (i >= MAX_ITERS) {
printf_stderr("GuessGamma() -> %f after %i iterations (avg err %f)\n",
exp_guess, i, err.y1);
MOZ_ASSERT(false, "GuessGamma failed.");
return exp_guess;
}
}
}
// -
ColorProfileDesc ColorProfileDesc::From(const qcms_profile& qcmsProfile) {
ColorProfileDesc ret;
qcms_profile_data data = {};
qcms_profile_get_data(&qcmsProfile, &data);
auto xyzd50FromLinearRgb = mat3{};
// X contributions from [R,G,B]
xyzd50FromLinearRgb.at(0, 0) = data.red_colorant_xyzd50[0];
xyzd50FromLinearRgb.at(1, 0) = data.green_colorant_xyzd50[0];
xyzd50FromLinearRgb.at(2, 0) = data.blue_colorant_xyzd50[0];
// Y contributions from [R,G,B]
xyzd50FromLinearRgb.at(0, 1) = data.red_colorant_xyzd50[1];
xyzd50FromLinearRgb.at(1, 1) = data.green_colorant_xyzd50[1];
xyzd50FromLinearRgb.at(2, 1) = data.blue_colorant_xyzd50[1];
// Z contributions from [R,G,B]
xyzd50FromLinearRgb.at(0, 2) = data.red_colorant_xyzd50[2];
xyzd50FromLinearRgb.at(1, 2) = data.green_colorant_xyzd50[2];
xyzd50FromLinearRgb.at(2, 2) = data.blue_colorant_xyzd50[2];
const auto d65FromD50 = XyzAFromXyzB_BradfordLinear(D65, D50);
ret.xyzd65FromLinearRgb = d65FromD50 * xyzd50FromLinearRgb;
// -
const auto Fn = [&](std::vector<float>* const linearFromTf,
int32_t claimed_samples,
const qcms_color_channel channel) {
if (claimed_samples == 0) return; // No tf.
if (claimed_samples == -1) {
claimed_samples = 4096; // Ask it to generate a bunch.
claimed_samples = 256; // Ask it to generate a bunch.
}
linearFromTf->resize(AssertedCast<size_t>(claimed_samples));
const auto begin = linearFromTf->data();
qcms_profile_get_lut(&qcmsProfile, channel, begin,
begin + linearFromTf->size());
};
Fn(&ret.linearFromTf.r, data.linear_from_trc_red_samples,
qcms_color_channel::Red);
Fn(&ret.linearFromTf.b, data.linear_from_trc_blue_samples,
qcms_color_channel::Blue);
Fn(&ret.linearFromTf.g, data.linear_from_trc_green_samples,
qcms_color_channel::Green);
// -
return ret;
}
// -
ColorProfileConversionDesc ColorProfileConversionDesc::From(
const FromDesc& desc) {
const auto dstLinearRgbFromXyzd65 = inverse(desc.dst.xyzd65FromLinearRgb);
auto ret = ColorProfileConversionDesc{
.srcRgbFromSrcYuv = desc.src.rgbFromYcbcr,
.srcLinearFromSrcTf = desc.src.linearFromTf,
.dstLinearFromSrcLinear =
dstLinearRgbFromXyzd65 * desc.src.xyzd65FromLinearRgb,
.dstTfFromDstLinear = {},
};
bool sameTF = true;
sameTF &= desc.src.linearFromTf.r == desc.dst.linearFromTf.r;
sameTF &= desc.src.linearFromTf.g == desc.dst.linearFromTf.g;
sameTF &= desc.src.linearFromTf.b == desc.dst.linearFromTf.b;
if (sameTF) {
ret.srcLinearFromSrcTf = {};
ret.dstTfFromDstLinear = {};
} else {
const auto Invert = [](const std::vector<float>& linearFromTf,
std::vector<float>* const tfFromLinear) {
const auto size = linearFromTf.size();
MOZ_ASSERT(size != 1); // Less than two is uninvertable.
if (size < 2) return;
(*tfFromLinear).resize(size);
InvertLut(linearFromTf, &*tfFromLinear);
};
Invert(desc.dst.linearFromTf.r, &ret.dstTfFromDstLinear.r);
Invert(desc.dst.linearFromTf.g, &ret.dstTfFromDstLinear.g);
Invert(desc.dst.linearFromTf.b, &ret.dstTfFromDstLinear.b);
}
return ret;
}
} // namespace mozilla::color
|