summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/src/tile_cache.rs
blob: 3b2600d0c0b34041094d739589f72214aef1e16a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use api::{ColorF, PrimitiveFlags, QualitySettings, RasterSpace, ClipId};
use api::units::*;
use crate::clip::{ClipNodeKind, ClipLeafId, ClipNodeId, ClipTreeBuilder};
use crate::frame_builder::FrameBuilderConfig;
use crate::internal_types::{FastHashMap};
use crate::picture::{PrimitiveList, PictureCompositeMode, PicturePrimitive, SliceId};
use crate::picture::{Picture3DContext, TileCacheParams, TileOffset, PictureFlags};
use crate::prim_store::{PrimitiveInstance, PrimitiveStore, PictureIndex};
use crate::scene_building::SliceFlags;
use crate::scene_builder_thread::Interners;
use crate::spatial_tree::{SpatialNodeIndex, SceneSpatialTree};
use crate::util::VecHelper;
use std::mem;

/*
 Types and functionality related to picture caching. In future, we'll
 move more and more of the existing functionality out of picture.rs
 and into here.
 */

// If the page would create too many slices (an arbitrary definition where
// it's assumed the GPU memory + compositing overhead would be too high)
// then create a single picture cache for the remaining content. This at
// least means that we can cache small content changes efficiently when
// scrolling isn't occurring. Scrolling regions will be handled reasonably
// efficiently by the dirty rect tracking (since it's likely that if the
// page has so many slices there isn't a single major scroll region).
const MAX_CACHE_SLICES: usize = 12;

struct SliceDescriptor {
    prim_list: PrimitiveList,
    scroll_root: SpatialNodeIndex,
    shared_clip_node_id: ClipNodeId,
}

enum SliceKind {
    Default {
        secondary_slices: Vec<SliceDescriptor>,
    },
    Atomic {
        prim_list: PrimitiveList,
    },
}

impl SliceKind {
    fn default() -> Self {
        SliceKind::Default {
            secondary_slices: Vec::new(),
        }
    }
}

struct PrimarySlice {
    /// Whether this slice is atomic or has secondary slice(s)
    kind: SliceKind,
    /// Optional background color of this slice
    background_color: Option<ColorF>,
    /// Optional root clip for the iframe
    iframe_clip: Option<ClipId>,
    /// Information about how to draw and composite this slice
    slice_flags: SliceFlags,
}

impl PrimarySlice {
    fn new(
        slice_flags: SliceFlags,
        iframe_clip: Option<ClipId>,
        background_color: Option<ColorF>,
    ) -> Self {
        PrimarySlice {
            kind: SliceKind::default(),
            background_color,
            iframe_clip,
            slice_flags,
        }
    }

    fn has_too_many_slices(&self) -> bool {
        match self.kind {
            SliceKind::Atomic { .. } => false,
            SliceKind::Default { ref secondary_slices } => secondary_slices.len() > MAX_CACHE_SLICES,
        }
    }

    fn merge(&mut self) {
        self.slice_flags |= SliceFlags::IS_ATOMIC;

        let old = mem::replace(
            &mut self.kind,
            SliceKind::Default { secondary_slices: Vec::new() },
        );

        self.kind = match old {
            SliceKind::Default { mut secondary_slices } => {
                let mut prim_list = PrimitiveList::empty();

                for descriptor in secondary_slices.drain(..) {
                    prim_list.merge(descriptor.prim_list);
                }

                SliceKind::Atomic {
                    prim_list,
                }
            }
            atomic => atomic,
        }
    }
}

/// Used during scene building to construct the list of pending tile caches.
pub struct TileCacheBuilder {
    /// List of tile caches that have been created so far (last in the list is currently active).
    primary_slices: Vec<PrimarySlice>,
    /// Cache the previous scroll root search for a spatial node, since they are often the same.
    prev_scroll_root_cache: (SpatialNodeIndex, SpatialNodeIndex),
    /// Handle to the root reference frame
    root_spatial_node_index: SpatialNodeIndex,
}

/// The output of a tile cache builder, containing all details needed to construct the
/// tile cache(s) for the next scene, and retain tiles from the previous frame when sent
/// send to the frame builder.
pub struct TileCacheConfig {
    /// Mapping of slice id to the parameters needed to construct this tile cache.
    pub tile_caches: FastHashMap<SliceId, TileCacheParams>,
    /// Number of picture cache slices that were created (for profiler)
    pub picture_cache_slice_count: usize,
}

impl TileCacheConfig {
    pub fn new(picture_cache_slice_count: usize) -> Self {
        TileCacheConfig {
            tile_caches: FastHashMap::default(),
            picture_cache_slice_count,
        }
    }
}

impl TileCacheBuilder {
    /// Construct a new tile cache builder.
    pub fn new(
        root_spatial_node_index: SpatialNodeIndex,
        background_color: Option<ColorF>,
    ) -> Self {
        TileCacheBuilder {
            primary_slices: vec![PrimarySlice::new(SliceFlags::empty(), None, background_color)],
            prev_scroll_root_cache: (SpatialNodeIndex::INVALID, SpatialNodeIndex::INVALID),
            root_spatial_node_index,
        }
    }

    pub fn make_current_slice_atomic(&mut self) {
        self.primary_slices
            .last_mut()
            .unwrap()
            .merge();
    }

    /// Returns true if the current slice has no primitives added yet
    pub fn is_current_slice_empty(&self) -> bool {
        match self.primary_slices.last() {
            Some(slice) => {
                match slice.kind {
                    SliceKind::Default { ref secondary_slices } => {
                        secondary_slices.is_empty()
                    }
                    SliceKind::Atomic { ref prim_list } => {
                        prim_list.is_empty()
                    }
                }
            }
            None => {
                true
            }
        }
    }

    /// Set a barrier that forces a new tile cache next time a prim is added.
    pub fn add_tile_cache_barrier(
        &mut self,
        slice_flags: SliceFlags,
        iframe_clip: Option<ClipId>,
    ) {
        let new_slice = PrimarySlice::new(
            slice_flags,
            iframe_clip,
            None,
        );

        self.primary_slices.push(new_slice);
    }

    /// Create a new tile cache for an existing prim_list
    fn build_tile_cache(
        &mut self,
        prim_list: PrimitiveList,
        spatial_tree: &SceneSpatialTree,
        prim_instances: &[PrimitiveInstance],
        clip_tree_builder: &ClipTreeBuilder,
    ) -> Option<SliceDescriptor> {
        if prim_list.is_empty() {
            return None;
        }

        // Iterate the clusters and determine which is the most commonly occurring
        // scroll root. This is a reasonable heuristic to decide which spatial node
        // should be considered the scroll root of this tile cache, in order to
        // minimize the invalidations that occur due to scrolling. It's often the
        // case that a blend container will have only a single scroll root.
        let mut scroll_root_occurrences = FastHashMap::default();

        for cluster in &prim_list.clusters {
            // If we encounter a cluster which has an unknown spatial node,
            // we don't include that in the set of spatial nodes that we
            // are trying to find scroll roots for. Later on, in finalize_picture,
            // the cluster spatial node will be updated to the selected scroll root.
            if cluster.spatial_node_index == SpatialNodeIndex::UNKNOWN {
                continue;
            }

            let scroll_root = find_scroll_root(
                cluster.spatial_node_index,
                &mut self.prev_scroll_root_cache,
                spatial_tree,
            );

            *scroll_root_occurrences.entry(scroll_root).or_insert(0) += 1;
        }

        // We can't just select the most commonly occurring scroll root in this
        // primitive list. If that is a nested scroll root, there may be
        // primitives in the list that are outside that scroll root, which
        // can cause panics when calculating relative transforms. To ensure
        // this doesn't happen, only retain scroll root candidates that are
        // also ancestors of every other scroll root candidate.
        let scroll_roots: Vec<SpatialNodeIndex> = scroll_root_occurrences
            .keys()
            .cloned()
            .collect();

        scroll_root_occurrences.retain(|parent_spatial_node_index, _| {
            scroll_roots.iter().all(|child_spatial_node_index| {
                parent_spatial_node_index == child_spatial_node_index ||
                spatial_tree.is_ancestor(
                    *parent_spatial_node_index,
                    *child_spatial_node_index,
                )
            })
        });

        // Select the scroll root by finding the most commonly occurring one
        let scroll_root = scroll_root_occurrences
            .iter()
            .max_by_key(|entry | entry.1)
            .map(|(spatial_node_index, _)| *spatial_node_index)
            .unwrap_or(self.root_spatial_node_index);

        // Work out which clips are shared by all prim instances and can thus be applied
        // at the tile cache level. In future, we aim to remove this limitation by knowing
        // during initial scene build which are the relevant compositor clips, but for now
        // this is unlikely to be a significant cost.
        let mut shared_clip_node_id = None;

        for cluster in &prim_list.clusters {
            for prim_instance in &prim_instances[cluster.prim_range()] {
                let leaf = clip_tree_builder.get_leaf(prim_instance.clip_leaf_id);

                // TODO(gw): Need to cache last clip-node id here?
                shared_clip_node_id = match shared_clip_node_id {
                    Some(current) => {
                        Some(clip_tree_builder.find_lowest_common_ancestor(current, leaf.node_id))
                    }
                    None => {
                        Some(leaf.node_id)
                    }
                }
            }
        }

        let shared_clip_node_id = shared_clip_node_id.expect("bug: no shared clip root");

        Some(SliceDescriptor {
            scroll_root,
            shared_clip_node_id,
            prim_list,
        })
    }

    /// Add a primitive, either to the current tile cache, or a new one, depending on various conditions.
    pub fn add_prim(
        &mut self,
        prim_instance: PrimitiveInstance,
        prim_rect: LayoutRect,
        spatial_node_index: SpatialNodeIndex,
        prim_flags: PrimitiveFlags,
        spatial_tree: &SceneSpatialTree,
        interners: &Interners,
        quality_settings: &QualitySettings,
        prim_instances: &mut Vec<PrimitiveInstance>,
        clip_tree_builder: &ClipTreeBuilder,
    ) {
        let primary_slice = self.primary_slices.last_mut().unwrap();

        match primary_slice.kind {
            SliceKind::Atomic { ref mut prim_list } => {
                prim_list.add_prim(
                    prim_instance,
                    prim_rect,
                    spatial_node_index,
                    prim_flags,
                    prim_instances,
                    clip_tree_builder,
                );
            }
            SliceKind::Default { ref mut secondary_slices } => {
                assert_ne!(spatial_node_index, SpatialNodeIndex::UNKNOWN);

                // Check if we want to create a new slice based on the current / next scroll root
                let scroll_root = find_scroll_root(
                    spatial_node_index,
                    &mut self.prev_scroll_root_cache,
                    spatial_tree,
                );

                let current_scroll_root = secondary_slices
                    .last()
                    .map(|p| p.scroll_root);

                let mut want_new_tile_cache = secondary_slices.is_empty();

                if let Some(current_scroll_root) = current_scroll_root {
                    want_new_tile_cache |= match (current_scroll_root, scroll_root) {
                        (_, _) if current_scroll_root == self.root_spatial_node_index && scroll_root == self.root_spatial_node_index => {
                            // Both current slice and this cluster are fixed position, no need to cut
                            false
                        }
                        (_, _) if current_scroll_root == self.root_spatial_node_index => {
                            // A real scroll root is being established, so create a cache slice
                            true
                        }
                        (_, _) if scroll_root == self.root_spatial_node_index => {
                            // If quality settings force subpixel AA over performance, skip creating
                            // a slice for the fixed position element(s) here.
                            if quality_settings.force_subpixel_aa_where_possible {
                                false
                            } else {
                                // A fixed position slice is encountered within a scroll root. Only create
                                // a slice in this case if all the clips referenced by this cluster are also
                                // fixed position. There's no real point in creating slices for these cases,
                                // since we'll have to rasterize them as the scrolling clip moves anyway. It
                                // also allows us to retain subpixel AA in these cases. For these types of
                                // slices, the intra-slice dirty rect handling typically works quite well
                                // (a common case is parallax scrolling effects).
                                let mut create_slice = true;

                                let leaf = clip_tree_builder.get_leaf(prim_instance.clip_leaf_id);
                                let mut current_node_id = leaf.node_id;

                                while current_node_id != ClipNodeId::NONE {
                                    let node = clip_tree_builder.get_node(current_node_id);

                                    let clip_node_data = &interners.clip[node.handle];

                                    let spatial_root = find_scroll_root(
                                        clip_node_data.key.spatial_node_index,
                                        &mut self.prev_scroll_root_cache,
                                        spatial_tree,
                                    );

                                    if spatial_root != self.root_spatial_node_index {
                                        create_slice = false;
                                        break;
                                    }

                                    current_node_id = node.parent;
                                }

                                create_slice
                            }
                        }
                        (curr_scroll_root, scroll_root) => {
                            // Two scrolling roots - only need a new slice if they differ
                            curr_scroll_root != scroll_root
                        }
                    };

                    // Update the list of clips that apply to this primitive instance, to track which are the
                    // shared clips for this tile cache that can be applied during compositing.

                    let shared_clip_node_id = find_shared_clip_root(
                        current_scroll_root,
                        prim_instance.clip_leaf_id,
                        spatial_tree,
                        clip_tree_builder,
                        interners,
                    );

                    let current_shared_clip_node_id = secondary_slices.last().unwrap().shared_clip_node_id;

                    // If the shared clips are not compatible, create a new slice.
                    want_new_tile_cache |= shared_clip_node_id != current_shared_clip_node_id;
                }

                if want_new_tile_cache {

                    let shared_clip_node_id = find_shared_clip_root(
                        scroll_root,
                        prim_instance.clip_leaf_id,
                        spatial_tree,
                        clip_tree_builder,
                        interners,
                    );

                    secondary_slices.push(SliceDescriptor {
                        prim_list: PrimitiveList::empty(),
                        scroll_root,
                        shared_clip_node_id,
                    });
                }

                secondary_slices
                    .last_mut()
                    .unwrap()
                    .prim_list
                    .add_prim(
                        prim_instance,
                        prim_rect,
                        spatial_node_index,
                        prim_flags,
                        prim_instances,
                        clip_tree_builder,
                    );
            }
        }
    }

    /// Consume this object and build the list of tile cache primitives
    pub fn build(
        mut self,
        config: &FrameBuilderConfig,
        prim_store: &mut PrimitiveStore,
        spatial_tree: &SceneSpatialTree,
        prim_instances: &[PrimitiveInstance],
        clip_tree_builder: &mut ClipTreeBuilder,
    ) -> (TileCacheConfig, Vec<PictureIndex>) {
        let mut result = TileCacheConfig::new(self.primary_slices.len());
        let mut tile_cache_pictures = Vec::new();
        let primary_slices = std::mem::replace(&mut self.primary_slices, Vec::new());

        for mut primary_slice in primary_slices {

            if primary_slice.has_too_many_slices() {
                primary_slice.merge();
            }

            match primary_slice.kind {
                SliceKind::Atomic { prim_list } => {
                    if let Some(descriptor) = self.build_tile_cache(
                        prim_list,
                        spatial_tree,
                        prim_instances,
                        clip_tree_builder,
                    ) {
                        create_tile_cache(
                            primary_slice.slice_flags,
                            descriptor.scroll_root,
                            primary_slice.iframe_clip,
                            descriptor.prim_list,
                            primary_slice.background_color,
                            descriptor.shared_clip_node_id,
                            prim_store,
                            config,
                            &mut result.tile_caches,
                            &mut tile_cache_pictures,
                            clip_tree_builder,
                        );
                    }
                }
                SliceKind::Default { secondary_slices } => {
                    for descriptor in secondary_slices {
                        create_tile_cache(
                            primary_slice.slice_flags,
                            descriptor.scroll_root,
                            primary_slice.iframe_clip,
                            descriptor.prim_list,
                            primary_slice.background_color,
                            descriptor.shared_clip_node_id,
                            prim_store,
                            config,
                            &mut result.tile_caches,
                            &mut tile_cache_pictures,
                            clip_tree_builder,
                        );
                    }
                }
            }
        }

        (result, tile_cache_pictures)
    }
}

/// Find the scroll root for a given spatial node
fn find_scroll_root(
    spatial_node_index: SpatialNodeIndex,
    prev_scroll_root_cache: &mut (SpatialNodeIndex, SpatialNodeIndex),
    spatial_tree: &SceneSpatialTree,
) -> SpatialNodeIndex {
    if prev_scroll_root_cache.0 == spatial_node_index {
        return prev_scroll_root_cache.1;
    }

    let scroll_root = spatial_tree.find_scroll_root(spatial_node_index);
    *prev_scroll_root_cache = (spatial_node_index, scroll_root);

    scroll_root
}

fn find_shared_clip_root(
    scroll_root: SpatialNodeIndex,
    clip_leaf_id: ClipLeafId,
    spatial_tree: &SceneSpatialTree,
    clip_tree_builder: &ClipTreeBuilder,
    interners: &Interners,
) -> ClipNodeId {
    let leaf = clip_tree_builder.get_leaf(clip_leaf_id);
    let mut current_node_id = leaf.node_id;

    while current_node_id != ClipNodeId::NONE {
        let node = clip_tree_builder.get_node(current_node_id);

        let clip_node_data = &interners.clip[node.handle];

        if let ClipNodeKind::Rectangle = clip_node_data.key.kind.node_kind() {
            let is_ancestor = spatial_tree.is_ancestor(
                clip_node_data.key.spatial_node_index,
                scroll_root,
            );

            let has_complex_clips = clip_tree_builder.clip_node_has_complex_clips(
                current_node_id,
                interners,
            );

            if is_ancestor && !has_complex_clips {
                break;
            }
        }

        current_node_id = node.parent;
    }

    current_node_id
}

/// Given a PrimitiveList and scroll root, construct a tile cache primitive instance
/// that wraps the primitive list.
fn create_tile_cache(
    slice_flags: SliceFlags,
    scroll_root: SpatialNodeIndex,
    iframe_clip: Option<ClipId>,
    prim_list: PrimitiveList,
    background_color: Option<ColorF>,
    shared_clip_node_id: ClipNodeId,
    prim_store: &mut PrimitiveStore,
    frame_builder_config: &FrameBuilderConfig,
    tile_caches: &mut FastHashMap<SliceId, TileCacheParams>,
    tile_cache_pictures: &mut Vec<PictureIndex>,
    clip_tree_builder: &mut ClipTreeBuilder,
) {
    // Accumulate any clip instances from the iframe_clip into the shared clips
    // that will be applied by this tile cache during compositing.
    let mut additional_clips = Vec::new();

    if let Some(clip_id) = iframe_clip {
        additional_clips.push(clip_id);
    }

    let shared_clip_leaf_id = Some(clip_tree_builder.build_for_tile_cache(
        shared_clip_node_id,
        &additional_clips,
    ));

    // Build a clip-chain for the tile cache, that contains any of the shared clips
    // we will apply when drawing the tiles. In all cases provided by Gecko, these
    // are rectangle clips with a scale/offset transform only, and get handled as
    // a simple local clip rect in the vertex shader. However, this should in theory
    // also work with any complex clips, such as rounded rects and image masks, by
    // producing a clip mask that is applied to the picture cache tiles.

    let slice = tile_cache_pictures.len();

    let background_color = if slice == 0 {
        background_color
    } else {
        None
    };

    let slice_id = SliceId::new(slice);

    // Store some information about the picture cache slice. This is used when we swap the
    // new scene into the frame builder to either reuse existing slices, or create new ones.
    tile_caches.insert(slice_id, TileCacheParams {
        slice,
        slice_flags,
        spatial_node_index: scroll_root,
        background_color,
        shared_clip_node_id,
        shared_clip_leaf_id,
        virtual_surface_size: frame_builder_config.compositor_kind.get_virtual_surface_size(),
        compositor_surface_count: prim_list.compositor_surface_count,
    });

    let pic_index = prim_store.pictures.alloc().init(PicturePrimitive::new_image(
        Some(PictureCompositeMode::TileCache { slice_id }),
        Picture3DContext::Out,
        PrimitiveFlags::IS_BACKFACE_VISIBLE,
        prim_list,
        scroll_root,
        RasterSpace::Screen,
        PictureFlags::empty(),
    ));

    tile_cache_pictures.push(PictureIndex(pic_index));
}

/// Debug information about a set of picture cache slices, exposed via RenderResults
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PictureCacheDebugInfo {
    pub slices: FastHashMap<usize, SliceDebugInfo>,
}

impl PictureCacheDebugInfo {
    pub fn new() -> Self {
        PictureCacheDebugInfo {
            slices: FastHashMap::default(),
        }
    }

    /// Convenience method to retrieve a given slice. Deliberately panics
    /// if the slice isn't present.
    pub fn slice(&self, slice: usize) -> &SliceDebugInfo {
        &self.slices[&slice]
    }
}

impl Default for PictureCacheDebugInfo {
    fn default() -> PictureCacheDebugInfo {
        PictureCacheDebugInfo::new()
    }
}

/// Debug information about a set of picture cache tiles, exposed via RenderResults
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SliceDebugInfo {
    pub tiles: FastHashMap<TileOffset, TileDebugInfo>,
}

impl SliceDebugInfo {
    pub fn new() -> Self {
        SliceDebugInfo {
            tiles: FastHashMap::default(),
        }
    }

    /// Convenience method to retrieve a given tile. Deliberately panics
    /// if the tile isn't present.
    pub fn tile(&self, x: i32, y: i32) -> &TileDebugInfo {
        &self.tiles[&TileOffset::new(x, y)]
    }
}

/// Debug information about a tile that was dirty and was rasterized
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct DirtyTileDebugInfo {
    pub local_valid_rect: PictureRect,
    pub local_dirty_rect: PictureRect,
}

/// Debug information about the state of a tile
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TileDebugInfo {
    /// Tile was occluded by a tile in front of it
    Occluded,
    /// Tile was culled (not visible in current display port)
    Culled,
    /// Tile was valid (no rasterization was done) and visible
    Valid,
    /// Tile was dirty, and was updated
    Dirty(DirtyTileDebugInfo),
}

impl TileDebugInfo {
    pub fn is_occluded(&self) -> bool {
        match self {
            TileDebugInfo::Occluded => true,
            TileDebugInfo::Culled |
            TileDebugInfo::Valid |
            TileDebugInfo::Dirty(..) => false,
        }
    }

    pub fn is_valid(&self) -> bool {
        match self {
            TileDebugInfo::Valid => true,
            TileDebugInfo::Culled |
            TileDebugInfo::Occluded |
            TileDebugInfo::Dirty(..) => false,
        }
    }

    pub fn is_culled(&self) -> bool {
        match self {
            TileDebugInfo::Culled => true,
            TileDebugInfo::Valid |
            TileDebugInfo::Occluded |
            TileDebugInfo::Dirty(..) => false,
        }
    }

    pub fn as_dirty(&self) -> &DirtyTileDebugInfo {
        match self {
            TileDebugInfo::Occluded |
            TileDebugInfo::Culled |
            TileDebugInfo::Valid => {
                panic!("not a dirty tile!");
            }
            TileDebugInfo::Dirty(ref info) => {
                info
            }
        }
    }
}