summaryrefslogtreecommitdiffstats
path: root/image/SurfaceCache.cpp
blob: a514f41b7cbeeefefb8ff32de3c3b3cabe2fea23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/**
 * SurfaceCache is a service for caching temporary surfaces in imagelib.
 */

#include "SurfaceCache.h"

#include <algorithm>
#include <utility>

#include "ISurfaceProvider.h"
#include "Image.h"
#include "LookupResult.h"
#include "ShutdownTracker.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "imgFrame.h"
#include "mozilla/AppShutdown.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Likely.h"
#include "mozilla/RefPtr.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/StaticPrefs_image.h"
#include "mozilla/StaticPtr.h"

#include "nsExpirationTracker.h"
#include "nsHashKeys.h"
#include "nsIMemoryReporter.h"
#include "nsRefPtrHashtable.h"
#include "nsSize.h"
#include "nsTArray.h"
#include "Orientation.h"
#include "prsystem.h"

using std::max;
using std::min;

namespace mozilla {

using namespace gfx;

namespace image {

MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf)

class CachedSurface;
class SurfaceCacheImpl;

///////////////////////////////////////////////////////////////////////////////
// Static Data
///////////////////////////////////////////////////////////////////////////////

// The single surface cache instance.
static StaticRefPtr<SurfaceCacheImpl> sInstance;

// The mutex protecting the surface cache.
static StaticMutex sInstanceMutex MOZ_UNANNOTATED;

///////////////////////////////////////////////////////////////////////////////
// SurfaceCache Implementation
///////////////////////////////////////////////////////////////////////////////

/**
 * Cost models the cost of storing a surface in the cache. Right now, this is
 * simply an estimate of the size of the surface in bytes, but in the future it
 * may be worth taking into account the cost of rematerializing the surface as
 * well.
 */
typedef size_t Cost;

static Cost ComputeCost(const IntSize& aSize, uint32_t aBytesPerPixel) {
  MOZ_ASSERT(aBytesPerPixel == 1 || aBytesPerPixel == 4);
  return aSize.width * aSize.height * aBytesPerPixel;
}

/**
 * Since we want to be able to make eviction decisions based on cost, we need to
 * be able to look up the CachedSurface which has a certain cost as well as the
 * cost associated with a certain CachedSurface. To make this possible, in data
 * structures we actually store a CostEntry, which contains a weak pointer to
 * its associated surface.
 *
 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
 * StartTracking after a surface is stored in the cache and StopTracking before
 * it is removed.
 */
class CostEntry {
 public:
  CostEntry(NotNull<CachedSurface*> aSurface, Cost aCost)
      : mSurface(aSurface), mCost(aCost) {}

  NotNull<CachedSurface*> Surface() const { return mSurface; }
  Cost GetCost() const { return mCost; }

  bool operator==(const CostEntry& aOther) const {
    return mSurface == aOther.mSurface && mCost == aOther.mCost;
  }

  bool operator<(const CostEntry& aOther) const {
    return mCost < aOther.mCost ||
           (mCost == aOther.mCost && mSurface < aOther.mSurface);
  }

 private:
  NotNull<CachedSurface*> mSurface;
  Cost mCost;
};

/**
 * A CachedSurface associates a surface with a key that uniquely identifies that
 * surface.
 */
class CachedSurface {
  ~CachedSurface() {}

 public:
  MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface)
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface)

  explicit CachedSurface(NotNull<ISurfaceProvider*> aProvider)
      : mProvider(aProvider), mIsLocked(false) {}

  DrawableSurface GetDrawableSurface() const {
    if (MOZ_UNLIKELY(IsPlaceholder())) {
      MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
      return DrawableSurface();
    }

    return mProvider->Surface();
  }

  DrawableSurface GetDrawableSurfaceEvenIfPlaceholder() const {
    return mProvider->Surface();
  }

  void SetLocked(bool aLocked) {
    if (IsPlaceholder()) {
      return;  // Can't lock a placeholder.
    }

    // Update both our state and our provider's state. Some surface providers
    // are permanently locked; maintaining our own locking state enables us to
    // respect SetLocked() even when it's meaningless from the provider's
    // perspective.
    mIsLocked = aLocked;
    mProvider->SetLocked(aLocked);
  }

  bool IsLocked() const {
    return !IsPlaceholder() && mIsLocked && mProvider->IsLocked();
  }

  void SetCannotSubstitute() {
    mProvider->Availability().SetCannotSubstitute();
  }
  bool CannotSubstitute() const {
    return mProvider->Availability().CannotSubstitute();
  }

  bool IsPlaceholder() const {
    return mProvider->Availability().IsPlaceholder();
  }
  bool IsDecoded() const { return !IsPlaceholder() && mProvider->IsFinished(); }

  ImageKey GetImageKey() const { return mProvider->GetImageKey(); }
  const SurfaceKey& GetSurfaceKey() const { return mProvider->GetSurfaceKey(); }
  nsExpirationState* GetExpirationState() { return &mExpirationState; }

  CostEntry GetCostEntry() {
    return image::CostEntry(WrapNotNull(this), mProvider->LogicalSizeInBytes());
  }

  size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + aMallocSizeOf(mProvider.get());
  }

  void InvalidateRecording() { mProvider->InvalidateRecording(); }

  // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
  struct MOZ_STACK_CLASS SurfaceMemoryReport {
    SurfaceMemoryReport(nsTArray<SurfaceMemoryCounter>& aCounters,
                        MallocSizeOf aMallocSizeOf)
        : mCounters(aCounters), mMallocSizeOf(aMallocSizeOf) {}

    void Add(NotNull<CachedSurface*> aCachedSurface, bool aIsFactor2) {
      if (aCachedSurface->IsPlaceholder()) {
        return;
      }

      // Record the memory used by the ISurfaceProvider. This may not have a
      // straightforward relationship to the size of the surface that
      // DrawableRef() returns if the surface is generated dynamically. (i.e.,
      // for surfaces with PlaybackType::eAnimated.)
      aCachedSurface->mProvider->AddSizeOfExcludingThis(
          mMallocSizeOf, [&](ISurfaceProvider::AddSizeOfCbData& aMetadata) {
            SurfaceMemoryCounter counter(aCachedSurface->GetSurfaceKey(),
                                         aCachedSurface->IsLocked(),
                                         aCachedSurface->CannotSubstitute(),
                                         aIsFactor2, aMetadata.mFinished);

            counter.Values().SetDecodedHeap(aMetadata.mHeapBytes);
            counter.Values().SetDecodedNonHeap(aMetadata.mNonHeapBytes);
            counter.Values().SetDecodedUnknown(aMetadata.mUnknownBytes);
            counter.Values().SetExternalHandles(aMetadata.mExternalHandles);
            counter.Values().SetFrameIndex(aMetadata.mIndex);
            counter.Values().SetExternalId(aMetadata.mExternalId);
            counter.Values().SetSurfaceTypes(aMetadata.mTypes);

            mCounters.AppendElement(counter);
          });
    }

   private:
    nsTArray<SurfaceMemoryCounter>& mCounters;
    MallocSizeOf mMallocSizeOf;
  };

 private:
  nsExpirationState mExpirationState;
  NotNull<RefPtr<ISurfaceProvider>> mProvider;
  bool mIsLocked;
};

static int64_t AreaOfIntSize(const IntSize& aSize) {
  return static_cast<int64_t>(aSize.width) * static_cast<int64_t>(aSize.height);
}

/**
 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
 * able to remove all surfaces associated with an image when the image is
 * destroyed or invalidated. Since this will happen frequently, it makes sense
 * to make it cheap by storing the surfaces for each image separately.
 *
 * ImageSurfaceCache also keeps track of whether its associated image is locked
 * or unlocked.
 *
 * The cache may also enter "factor of 2" mode which occurs when the number of
 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
 * pref plus the number of native sizes of the image. When in "factor of 2"
 * mode, the cache will strongly favour sizes which are a factor of 2 of the
 * largest native size. It accomplishes this by suggesting a factor of 2 size
 * when lookups fail and substituting the nearest factor of 2 surface to the
 * ideal size as the "best" available (as opposed to substitution but not
 * found). This allows us to minimize memory consumption and CPU time spent
 * decoding when a website requires many variants of the same surface.
 */
class ImageSurfaceCache {
  ~ImageSurfaceCache() {}

 public:
  explicit ImageSurfaceCache(const ImageKey aImageKey)
      : mLocked(false),
        mFactor2Mode(false),
        mFactor2Pruned(false),
        mIsVectorImage(aImageKey->GetType() == imgIContainer::TYPE_VECTOR) {}

  MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache)
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache)

  typedef nsRefPtrHashtable<nsGenericHashKey<SurfaceKey>, CachedSurface>
      SurfaceTable;

  auto Values() const { return mSurfaces.Values(); }
  uint32_t Count() const { return mSurfaces.Count(); }
  bool IsEmpty() const { return mSurfaces.Count() == 0; }

  size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
    size_t bytes = aMallocSizeOf(this) +
                   mSurfaces.ShallowSizeOfExcludingThis(aMallocSizeOf);
    for (const auto& value : Values()) {
      bytes += value->ShallowSizeOfIncludingThis(aMallocSizeOf);
    }
    return bytes;
  }

  [[nodiscard]] bool Insert(NotNull<CachedSurface*> aSurface) {
    MOZ_ASSERT(!mLocked || aSurface->IsPlaceholder() || aSurface->IsLocked(),
               "Inserting an unlocked surface for a locked image");
    const auto& surfaceKey = aSurface->GetSurfaceKey();
    if (surfaceKey.Region()) {
      // We don't allow substitutes for surfaces with regions, so we don't want
      // to allow factor of 2 mode pruning to release these surfaces.
      aSurface->SetCannotSubstitute();
    }
    return mSurfaces.InsertOrUpdate(surfaceKey, RefPtr<CachedSurface>{aSurface},
                                    fallible);
  }

  already_AddRefed<CachedSurface> Remove(NotNull<CachedSurface*> aSurface) {
    MOZ_ASSERT(mSurfaces.GetWeak(aSurface->GetSurfaceKey()),
               "Should not be removing a surface we don't have");

    RefPtr<CachedSurface> surface;
    mSurfaces.Remove(aSurface->GetSurfaceKey(), getter_AddRefs(surface));
    AfterMaybeRemove();
    return surface.forget();
  }

  already_AddRefed<CachedSurface> Lookup(const SurfaceKey& aSurfaceKey,
                                         bool aForAccess) {
    RefPtr<CachedSurface> surface;
    mSurfaces.Get(aSurfaceKey, getter_AddRefs(surface));

    if (aForAccess) {
      if (surface) {
        // We don't want to allow factor of 2 mode pruning to release surfaces
        // for which the callers will accept no substitute.
        surface->SetCannotSubstitute();
      } else if (!mFactor2Mode) {
        // If no exact match is found, and this is for use rather than internal
        // accounting (i.e. insert and removal), we know this will trigger a
        // decode. Make sure we switch now to factor of 2 mode if necessary.
        MaybeSetFactor2Mode();
      }
    }

    return surface.forget();
  }

  /**
   * @returns A tuple containing the best matching CachedSurface if available,
   *          a MatchType describing how the CachedSurface was selected, and
   *          an IntSize which is the size the caller should choose to decode
   *          at should it attempt to do so.
   */
  std::tuple<already_AddRefed<CachedSurface>, MatchType, IntSize>
  LookupBestMatch(const SurfaceKey& aIdealKey) {
    // Try for an exact match first.
    RefPtr<CachedSurface> exactMatch;
    mSurfaces.Get(aIdealKey, getter_AddRefs(exactMatch));
    if (exactMatch) {
      if (exactMatch->IsDecoded()) {
        return std::make_tuple(exactMatch.forget(), MatchType::EXACT,
                               IntSize());
      }
    } else if (aIdealKey.Region()) {
      // We cannot substitute if we have a region. Allow it to create an exact
      // match.
      return std::make_tuple(exactMatch.forget(), MatchType::NOT_FOUND,
                             IntSize());
    } else if (!mFactor2Mode) {
      // If no exact match is found, and we are not in factor of 2 mode, then
      // we know that we will trigger a decode because at best we will provide
      // a substitute. Make sure we switch now to factor of 2 mode if necessary.
      MaybeSetFactor2Mode();
    }

    // Try for a best match second, if using compact.
    IntSize suggestedSize = SuggestedSize(aIdealKey.Size());
    if (suggestedSize != aIdealKey.Size()) {
      if (!exactMatch) {
        SurfaceKey compactKey = aIdealKey.CloneWithSize(suggestedSize);
        mSurfaces.Get(compactKey, getter_AddRefs(exactMatch));
        if (exactMatch && exactMatch->IsDecoded()) {
          MOZ_ASSERT(suggestedSize != aIdealKey.Size());
          return std::make_tuple(exactMatch.forget(),
                                 MatchType::SUBSTITUTE_BECAUSE_BEST,
                                 suggestedSize);
        }
      }
    }

    // There's no perfect match, so find the best match we can.
    RefPtr<CachedSurface> bestMatch;
    for (const auto& value : Values()) {
      NotNull<CachedSurface*> current = WrapNotNull(value);
      const SurfaceKey& currentKey = current->GetSurfaceKey();

      // We never match a placeholder or a surface with a region.
      if (current->IsPlaceholder() || currentKey.Region()) {
        continue;
      }
      // Matching the playback type and SVG context is required.
      if (currentKey.Playback() != aIdealKey.Playback() ||
          currentKey.SVGContext() != aIdealKey.SVGContext()) {
        continue;
      }
      // Matching the flags is required.
      if (currentKey.Flags() != aIdealKey.Flags()) {
        continue;
      }
      // Anything is better than nothing! (Within the constraints we just
      // checked, of course.)
      if (!bestMatch) {
        bestMatch = current;
        continue;
      }

      MOZ_ASSERT(bestMatch, "Should have a current best match");

      // Always prefer completely decoded surfaces.
      bool bestMatchIsDecoded = bestMatch->IsDecoded();
      if (bestMatchIsDecoded && !current->IsDecoded()) {
        continue;
      }
      if (!bestMatchIsDecoded && current->IsDecoded()) {
        bestMatch = current;
        continue;
      }

      SurfaceKey bestMatchKey = bestMatch->GetSurfaceKey();
      if (CompareArea(aIdealKey.Size(), bestMatchKey.Size(),
                      currentKey.Size())) {
        bestMatch = current;
      }
    }

    MatchType matchType;
    if (bestMatch) {
      if (!exactMatch) {
        // No exact match, neither ideal nor factor of 2.
        MOZ_ASSERT(suggestedSize != bestMatch->GetSurfaceKey().Size(),
                   "No exact match despite the fact the sizes match!");
        matchType = MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND;
      } else if (exactMatch != bestMatch) {
        // The exact match is still decoding, but we found a substitute.
        matchType = MatchType::SUBSTITUTE_BECAUSE_PENDING;
      } else if (aIdealKey.Size() != bestMatch->GetSurfaceKey().Size()) {
        // The best factor of 2 match is still decoding, but the best we've got.
        MOZ_ASSERT(suggestedSize != aIdealKey.Size());
        MOZ_ASSERT(mFactor2Mode || mIsVectorImage);
        matchType = MatchType::SUBSTITUTE_BECAUSE_BEST;
      } else {
        // The exact match is still decoding, but it's the best we've got.
        matchType = MatchType::EXACT;
      }
    } else {
      if (exactMatch) {
        // We found an "exact match"; it must have been a placeholder.
        MOZ_ASSERT(exactMatch->IsPlaceholder());
        matchType = MatchType::PENDING;
      } else {
        // We couldn't find an exact match *or* a substitute.
        matchType = MatchType::NOT_FOUND;
      }
    }

    return std::make_tuple(bestMatch.forget(), matchType, suggestedSize);
  }

  void MaybeSetFactor2Mode() {
    MOZ_ASSERT(!mFactor2Mode);

    // Typically an image cache will not have too many size-varying surfaces, so
    // if we exceed the given threshold, we should consider using a subset.
    int32_t thresholdSurfaces =
        StaticPrefs::image_cache_factor2_threshold_surfaces();
    if (thresholdSurfaces < 0 ||
        mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
      return;
    }

    // Determine how many native surfaces this image has. If it is zero, and it
    // is a vector image, then we should impute a single native size. Otherwise,
    // it may be zero because we don't know yet, or the image has an error, or
    // it isn't supported.
    NotNull<CachedSurface*> current =
        WrapNotNull(mSurfaces.ConstIter().UserData());
    Image* image = static_cast<Image*>(current->GetImageKey());
    size_t nativeSizes = image->GetNativeSizesLength();
    if (mIsVectorImage) {
      MOZ_ASSERT(nativeSizes == 0);
      nativeSizes = 1;
    } else if (nativeSizes == 0) {
      return;
    }

    // Increase the threshold by the number of native sizes. This ensures that
    // we do not prevent decoding of the image at all its native sizes. It does
    // not guarantee we will provide a surface at that size however (i.e. many
    // other sized surfaces are requested, in addition to the native sizes).
    thresholdSurfaces += nativeSizes;
    if (mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
      return;
    }

    // We have a valid size, we can change modes.
    mFactor2Mode = true;
  }

  template <typename Function>
  void Prune(Function&& aRemoveCallback) {
    if (!mFactor2Mode || mFactor2Pruned) {
      return;
    }

    // Attempt to discard any surfaces which are not factor of 2 and the best
    // factor of 2 match exists.
    bool hasNotFactorSize = false;
    for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
      NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
      const SurfaceKey& currentKey = current->GetSurfaceKey();
      const IntSize& currentSize = currentKey.Size();

      // First we check if someone requested this size and would not accept
      // an alternatively sized surface.
      if (current->CannotSubstitute()) {
        continue;
      }

      // Next we find the best factor of 2 size for this surface. If this
      // surface is a factor of 2 size, then we want to keep it.
      IntSize bestSize = SuggestedSize(currentSize);
      if (bestSize == currentSize) {
        continue;
      }

      // Check the cache for a surface with the same parameters except for the
      // size which uses the closest factor of 2 size.
      SurfaceKey compactKey = currentKey.CloneWithSize(bestSize);
      RefPtr<CachedSurface> compactMatch;
      mSurfaces.Get(compactKey, getter_AddRefs(compactMatch));
      if (compactMatch && compactMatch->IsDecoded()) {
        aRemoveCallback(current);
        iter.Remove();
      } else {
        hasNotFactorSize = true;
      }
    }

    // We have no surfaces that are not factor of 2 sized, so we can stop
    // pruning henceforth, because we avoid the insertion of new surfaces that
    // don't match our sizing set (unless the caller won't accept a
    // substitution.)
    if (!hasNotFactorSize) {
      mFactor2Pruned = true;
    }

    // We should never leave factor of 2 mode due to pruning in of itself, but
    // if we discarded surfaces due to the volatile buffers getting released,
    // it is possible.
    AfterMaybeRemove();
  }

  template <typename Function>
  bool Invalidate(Function&& aRemoveCallback) {
    // Remove all non-blob recordings from the cache. Invalidate any blob
    // recordings.
    bool foundRecording = false;
    for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
      NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());

      if (current->GetSurfaceKey().Flags() & SurfaceFlags::RECORD_BLOB) {
        foundRecording = true;
        current->InvalidateRecording();
        continue;
      }

      aRemoveCallback(current);
      iter.Remove();
    }

    AfterMaybeRemove();
    return foundRecording;
  }

  IntSize SuggestedSize(const IntSize& aSize) const {
    IntSize suggestedSize = SuggestedSizeInternal(aSize);
    if (mIsVectorImage) {
      suggestedSize = SurfaceCache::ClampVectorSize(suggestedSize);
    }
    return suggestedSize;
  }

  IntSize SuggestedSizeInternal(const IntSize& aSize) const {
    // When not in factor of 2 mode, we can always decode at the given size.
    if (!mFactor2Mode) {
      return aSize;
    }

    // We cannot enter factor of 2 mode unless we have a minimum number of
    // surfaces, and we should have left it if the cache was emptied.
    if (MOZ_UNLIKELY(IsEmpty())) {
      MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
      return aSize;
    }

    // This bit of awkwardness gets the largest native size of the image.
    NotNull<CachedSurface*> firstSurface =
        WrapNotNull(mSurfaces.ConstIter().UserData());
    Image* image = static_cast<Image*>(firstSurface->GetImageKey());
    IntSize factorSize;
    if (NS_FAILED(image->GetWidth(&factorSize.width)) ||
        NS_FAILED(image->GetHeight(&factorSize.height)) ||
        factorSize.IsEmpty()) {
      // Valid vector images may have a default size of 0x0. In that case, just
      // assume a default size of 100x100 and apply the intrinsic ratio if
      // available. If our guess was too small, don't use factor-of-scaling.
      MOZ_ASSERT(mIsVectorImage);
      factorSize = IntSize(100, 100);
      Maybe<AspectRatio> aspectRatio = image->GetIntrinsicRatio();
      if (aspectRatio && *aspectRatio) {
        factorSize.width =
            NSToIntRound(aspectRatio->ApplyToFloat(float(factorSize.height)));
        if (factorSize.IsEmpty()) {
          return aSize;
        }
      }
    }

    if (mIsVectorImage) {
      // Ensure the aspect ratio matches the native size before forcing the
      // caller to accept a factor of 2 size. The difference between the aspect
      // ratios is:
      //
      //     delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
      //
      //     delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
      //                                      - desiredWidth*nativeHeight
      //
      // Using the maximum accepted delta as a constant, we can avoid the
      // floating point division and just compare after some integer ops.
      int32_t delta =
          factorSize.width * aSize.height - aSize.width * factorSize.height;
      int32_t maxDelta = (factorSize.height * aSize.height) >> 4;
      if (delta > maxDelta || delta < -maxDelta) {
        return aSize;
      }

      // If the requested size is bigger than the native size, we actually need
      // to grow the native size instead of shrinking it.
      if (factorSize.width < aSize.width) {
        do {
          IntSize candidate(factorSize.width * 2, factorSize.height * 2);
          if (!SurfaceCache::IsLegalSize(candidate)) {
            break;
          }

          factorSize = candidate;
        } while (factorSize.width < aSize.width);

        return factorSize;
      }

      // Otherwise we can find the best fit as normal.
    }

    // Start with the native size as the best first guess.
    IntSize bestSize = factorSize;
    factorSize.width /= 2;
    factorSize.height /= 2;

    while (!factorSize.IsEmpty()) {
      if (!CompareArea(aSize, bestSize, factorSize)) {
        // This size is not better than the last. Since we proceed from largest
        // to smallest, we know that the next size will not be better if the
        // previous size was rejected. Break early.
        break;
      }

      // The current factor of 2 size is better than the last selected size.
      bestSize = factorSize;
      factorSize.width /= 2;
      factorSize.height /= 2;
    }

    return bestSize;
  }

  bool CompareArea(const IntSize& aIdealSize, const IntSize& aBestSize,
                   const IntSize& aSize) const {
    // Compare sizes. We use an area-based heuristic here instead of computing a
    // truly optimal answer, since it seems very unlikely to make a difference
    // for realistic sizes.
    int64_t idealArea = AreaOfIntSize(aIdealSize);
    int64_t currentArea = AreaOfIntSize(aSize);
    int64_t bestMatchArea = AreaOfIntSize(aBestSize);

    // If the best match is smaller than the ideal size, prefer bigger sizes.
    if (bestMatchArea < idealArea) {
      if (currentArea > bestMatchArea) {
        return true;
      }
      return false;
    }

    // Other, prefer sizes closer to the ideal size, but still not smaller.
    if (idealArea <= currentArea && currentArea < bestMatchArea) {
      return true;
    }

    // This surface isn't an improvement over the current best match.
    return false;
  }

  template <typename Function>
  void CollectSizeOfSurfaces(nsTArray<SurfaceMemoryCounter>& aCounters,
                             MallocSizeOf aMallocSizeOf,
                             Function&& aRemoveCallback) {
    CachedSurface::SurfaceMemoryReport report(aCounters, aMallocSizeOf);
    for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
      NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());

      // We don't need the drawable surface for ourselves, but adding a surface
      // to the report will trigger this indirectly. If the surface was
      // discarded by the OS because it was in volatile memory, we should remove
      // it from the cache immediately rather than include it in the report.
      DrawableSurface drawableSurface;
      if (!surface->IsPlaceholder()) {
        drawableSurface = surface->GetDrawableSurface();
        if (!drawableSurface) {
          aRemoveCallback(surface);
          iter.Remove();
          continue;
        }
      }

      const IntSize& size = surface->GetSurfaceKey().Size();
      bool factor2Size = false;
      if (mFactor2Mode) {
        factor2Size = (size == SuggestedSize(size));
      }
      report.Add(surface, factor2Size);
    }

    AfterMaybeRemove();
  }

  void SetLocked(bool aLocked) { mLocked = aLocked; }
  bool IsLocked() const { return mLocked; }

 private:
  void AfterMaybeRemove() {
    if (IsEmpty() && mFactor2Mode) {
      // The last surface for this cache was removed. This can happen if the
      // surface was stored in a volatile buffer and got purged, or the surface
      // expired from the cache. If the cache itself lingers for some reason
      // (e.g. in the process of performing a lookup, the cache itself is
      // locked), then we need to reset the factor of 2 state because it
      // requires at least one surface present to get the native size
      // information from the image.
      mFactor2Mode = mFactor2Pruned = false;
    }
  }

  SurfaceTable mSurfaces;

  bool mLocked;

  // True in "factor of 2" mode.
  bool mFactor2Mode;

  // True if all non-factor of 2 surfaces have been removed from the cache. Note
  // that this excludes unsubstitutable sizes.
  bool mFactor2Pruned;

  // True if the surfaces are produced from a vector image. If so, it must match
  // the aspect ratio when using factor of 2 mode.
  bool mIsVectorImage;
};

/**
 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
 * and managing the surface cache data structures. Rather than interact with
 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
 * maintains high-level invariants and encapsulates the details of the surface
 * cache's implementation.
 */
class SurfaceCacheImpl final : public nsIMemoryReporter {
 public:
  NS_DECL_ISUPPORTS

  SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS,
                   uint32_t aSurfaceCacheDiscardFactor,
                   uint32_t aSurfaceCacheSize)
      : mExpirationTracker(aSurfaceCacheExpirationTimeMS),
        mMemoryPressureObserver(new MemoryPressureObserver),
        mDiscardFactor(aSurfaceCacheDiscardFactor),
        mMaxCost(aSurfaceCacheSize),
        mAvailableCost(aSurfaceCacheSize),
        mLockedCost(0),
        mOverflowCount(0),
        mAlreadyPresentCount(0),
        mTableFailureCount(0),
        mTrackingFailureCount(0) {
    nsCOMPtr<nsIObserverService> os = services::GetObserverService();
    if (os) {
      os->AddObserver(mMemoryPressureObserver, "memory-pressure", false);
    }
  }

 private:
  virtual ~SurfaceCacheImpl() {
    nsCOMPtr<nsIObserverService> os = services::GetObserverService();
    if (os) {
      os->RemoveObserver(mMemoryPressureObserver, "memory-pressure");
    }

    UnregisterWeakMemoryReporter(this);
  }

 public:
  void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }

  InsertOutcome Insert(NotNull<ISurfaceProvider*> aProvider, bool aSetAvailable,
                       const StaticMutexAutoLock& aAutoLock) {
    // If this is a duplicate surface, refuse to replace the original.
    // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
    // twice. We'll make this more efficient in bug 1185137.
    LookupResult result =
        Lookup(aProvider->GetImageKey(), aProvider->GetSurfaceKey(), aAutoLock,
               /* aMarkUsed = */ false);
    if (MOZ_UNLIKELY(result)) {
      mAlreadyPresentCount++;
      return InsertOutcome::FAILURE_ALREADY_PRESENT;
    }

    if (result.Type() == MatchType::PENDING) {
      RemoveEntry(aProvider->GetImageKey(), aProvider->GetSurfaceKey(),
                  aAutoLock);
    }

    MOZ_ASSERT(result.Type() == MatchType::NOT_FOUND ||
                   result.Type() == MatchType::PENDING,
               "A LookupResult with no surface should be NOT_FOUND or PENDING");

    // If this is bigger than we can hold after discarding everything we can,
    // refuse to cache it.
    Cost cost = aProvider->LogicalSizeInBytes();
    if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost))) {
      mOverflowCount++;
      return InsertOutcome::FAILURE;
    }

    // Remove elements in order of cost until we can fit this in the cache. Note
    // that locked surfaces aren't in mCosts, so we never remove them here.
    while (cost > mAvailableCost) {
      MOZ_ASSERT(!mCosts.IsEmpty(),
                 "Removed everything and it still won't fit");
      Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
             aAutoLock);
    }

    // Locate the appropriate per-image cache. If there's not an existing cache
    // for this image, create it.
    const ImageKey imageKey = aProvider->GetImageKey();
    RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
    if (!cache) {
      cache = new ImageSurfaceCache(imageKey);
      if (!mImageCaches.InsertOrUpdate(aProvider->GetImageKey(), RefPtr{cache},
                                       fallible)) {
        mTableFailureCount++;
        return InsertOutcome::FAILURE;
      }
    }

    // If we were asked to mark the cache entry available, do so.
    if (aSetAvailable) {
      aProvider->Availability().SetAvailable();
    }

    auto surface = MakeNotNull<RefPtr<CachedSurface>>(aProvider);

    // We require that locking succeed if the image is locked and we're not
    // inserting a placeholder; the caller may need to know this to handle
    // errors correctly.
    bool mustLock = cache->IsLocked() && !surface->IsPlaceholder();
    if (mustLock) {
      surface->SetLocked(true);
      if (!surface->IsLocked()) {
        return InsertOutcome::FAILURE;
      }
    }

    // Insert.
    MOZ_ASSERT(cost <= mAvailableCost, "Inserting despite too large a cost");
    if (!cache->Insert(surface)) {
      mTableFailureCount++;
      if (mustLock) {
        surface->SetLocked(false);
      }
      return InsertOutcome::FAILURE;
    }

    if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
      MOZ_ASSERT(!mustLock);
      Remove(surface, /* aStopTracking */ false, aAutoLock);
      return InsertOutcome::FAILURE;
    }

    return InsertOutcome::SUCCESS;
  }

  void Remove(NotNull<CachedSurface*> aSurface, bool aStopTracking,
              const StaticMutexAutoLock& aAutoLock) {
    ImageKey imageKey = aSurface->GetImageKey();

    RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
    MOZ_ASSERT(cache, "Shouldn't try to remove a surface with no image cache");

    // If the surface was not a placeholder, tell its image that we discarded
    // it.
    if (!aSurface->IsPlaceholder()) {
      static_cast<Image*>(imageKey)->OnSurfaceDiscarded(
          aSurface->GetSurfaceKey());
    }

    // If we failed during StartTracking, we can skip this step.
    if (aStopTracking) {
      StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
    }

    // Individual surfaces must be freed outside the lock.
    mCachedSurfacesDiscard.AppendElement(cache->Remove(aSurface));

    MaybeRemoveEmptyCache(imageKey, cache);
  }

  bool StartTracking(NotNull<CachedSurface*> aSurface,
                     const StaticMutexAutoLock& aAutoLock) {
    CostEntry costEntry = aSurface->GetCostEntry();
    MOZ_ASSERT(costEntry.GetCost() <= mAvailableCost,
               "Cost too large and the caller didn't catch it");

    if (aSurface->IsLocked()) {
      mLockedCost += costEntry.GetCost();
      MOZ_ASSERT(mLockedCost <= mMaxCost, "Locked more than we can hold?");
    } else {
      if (NS_WARN_IF(!mCosts.InsertElementSorted(costEntry, fallible))) {
        mTrackingFailureCount++;
        return false;
      }

      // This may fail during XPCOM shutdown, so we need to ensure the object is
      // tracked before calling RemoveObject in StopTracking.
      nsresult rv = mExpirationTracker.AddObjectLocked(aSurface, aAutoLock);
      if (NS_WARN_IF(NS_FAILED(rv))) {
        DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
        MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
        mTrackingFailureCount++;
        return false;
      }
    }

    mAvailableCost -= costEntry.GetCost();
    return true;
  }

  void StopTracking(NotNull<CachedSurface*> aSurface, bool aIsTracked,
                    const StaticMutexAutoLock& aAutoLock) {
    CostEntry costEntry = aSurface->GetCostEntry();

    if (aSurface->IsLocked()) {
      MOZ_ASSERT(mLockedCost >= costEntry.GetCost(), "Costs don't balance");
      mLockedCost -= costEntry.GetCost();
      // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
      MOZ_ASSERT(!mCosts.Contains(costEntry),
                 "Shouldn't have a cost entry for a locked surface");
    } else {
      if (MOZ_LIKELY(aSurface->GetExpirationState()->IsTracked())) {
        MOZ_ASSERT(aIsTracked, "Expiration-tracking a surface unexpectedly!");
        mExpirationTracker.RemoveObjectLocked(aSurface, aAutoLock);
      } else {
        // Our call to AddObject must have failed in StartTracking; most likely
        // we're in XPCOM shutdown right now.
        MOZ_ASSERT(!aIsTracked, "Not expiration-tracking an unlocked surface!");
      }

      DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
      MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
    }

    mAvailableCost += costEntry.GetCost();
    MOZ_ASSERT(mAvailableCost <= mMaxCost,
               "More available cost than we started with");
  }

  LookupResult Lookup(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
                      const StaticMutexAutoLock& aAutoLock, bool aMarkUsed) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      // No cached surfaces for this image.
      return LookupResult(MatchType::NOT_FOUND);
    }

    RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey, aMarkUsed);
    if (!surface) {
      // Lookup in the per-image cache missed.
      return LookupResult(MatchType::NOT_FOUND);
    }

    if (surface->IsPlaceholder()) {
      return LookupResult(MatchType::PENDING);
    }

    DrawableSurface drawableSurface = surface->GetDrawableSurface();
    if (!drawableSurface) {
      // The surface was released by the operating system. Remove the cache
      // entry as well.
      Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
      return LookupResult(MatchType::NOT_FOUND);
    }

    if (aMarkUsed &&
        !MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
      Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
      return LookupResult(MatchType::NOT_FOUND);
    }

    MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
               "Lookup() not returning an exact match?");
    return LookupResult(std::move(drawableSurface), MatchType::EXACT);
  }

  LookupResult LookupBestMatch(const ImageKey aImageKey,
                               const SurfaceKey& aSurfaceKey,
                               const StaticMutexAutoLock& aAutoLock,
                               bool aMarkUsed) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      // No cached surfaces for this image.
      return LookupResult(
          MatchType::NOT_FOUND,
          SurfaceCache::ClampSize(aImageKey, aSurfaceKey.Size()));
    }

    // Repeatedly look up the best match, trying again if the resulting surface
    // has been freed by the operating system, until we can either lock a
    // surface for drawing or there are no matching surfaces left.
    // XXX(seth): This is O(N^2), but N is expected to be very small. If we
    // encounter a performance problem here we can revisit this.

    RefPtr<CachedSurface> surface;
    DrawableSurface drawableSurface;
    MatchType matchType = MatchType::NOT_FOUND;
    IntSize suggestedSize;
    while (true) {
      std::tie(surface, matchType, suggestedSize) =
          cache->LookupBestMatch(aSurfaceKey);

      if (!surface) {
        return LookupResult(
            matchType, suggestedSize);  // Lookup in the per-image cache missed.
      }

      drawableSurface = surface->GetDrawableSurface();
      if (drawableSurface) {
        break;
      }

      // The surface was released by the operating system. Remove the cache
      // entry as well.
      Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
    }

    MOZ_ASSERT_IF(matchType == MatchType::EXACT,
                  surface->GetSurfaceKey() == aSurfaceKey);
    MOZ_ASSERT_IF(
        matchType == MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND ||
            matchType == MatchType::SUBSTITUTE_BECAUSE_PENDING,
        surface->GetSurfaceKey().Region() == aSurfaceKey.Region() &&
            surface->GetSurfaceKey().SVGContext() == aSurfaceKey.SVGContext() &&
            surface->GetSurfaceKey().Playback() == aSurfaceKey.Playback() &&
            surface->GetSurfaceKey().Flags() == aSurfaceKey.Flags());

    if (matchType == MatchType::EXACT ||
        matchType == MatchType::SUBSTITUTE_BECAUSE_BEST) {
      if (aMarkUsed &&
          !MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
        Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
      }
    }

    return LookupResult(std::move(drawableSurface), matchType, suggestedSize);
  }

  bool CanHold(const Cost aCost) const { return aCost <= mMaxCost; }

  size_t MaximumCapacity() const { return size_t(mMaxCost); }

  void SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider,
                        const StaticMutexAutoLock& aAutoLock) {
    if (!aProvider->Availability().IsPlaceholder()) {
      MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
      return;
    }

    // Reinsert the provider, requesting that Insert() mark it available. This
    // may or may not succeed, depending on whether some other decoder has
    // beaten us to the punch and inserted a non-placeholder version of this
    // surface first, but it's fine either way.
    // XXX(seth): This could be implemented more efficiently; we should be able
    // to just update our data structures without reinserting.
    Insert(aProvider, /* aSetAvailable = */ true, aAutoLock);
  }

  void LockImage(const ImageKey aImageKey) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      cache = new ImageSurfaceCache(aImageKey);
      mImageCaches.InsertOrUpdate(aImageKey, RefPtr{cache});
    }

    cache->SetLocked(true);

    // We don't relock this image's existing surfaces right away; instead, the
    // image should arrange for Lookup() to touch them if they are still useful.
  }

  void UnlockImage(const ImageKey aImageKey,
                   const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache || !cache->IsLocked()) {
      return;  // Already unlocked.
    }

    cache->SetLocked(false);
    DoUnlockSurfaces(WrapNotNull(cache), /* aStaticOnly = */ false, aAutoLock);
  }

  void UnlockEntries(const ImageKey aImageKey,
                     const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache || !cache->IsLocked()) {
      return;  // Already unlocked.
    }

    // (Note that we *don't* unlock the per-image cache here; that's the
    // difference between this and UnlockImage.)
    DoUnlockSurfaces(WrapNotNull(cache),
                     /* aStaticOnly = */
                     !StaticPrefs::image_mem_animated_discardable_AtStartup(),
                     aAutoLock);
  }

  already_AddRefed<ImageSurfaceCache> RemoveImage(
      const ImageKey aImageKey, const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      return nullptr;  // No cached surfaces for this image, so nothing to do.
    }

    // Discard all of the cached surfaces for this image.
    // XXX(seth): This is O(n^2) since for each item in the cache we are
    // removing an element from the costs array. Since n is expected to be
    // small, performance should be good, but if usage patterns change we should
    // change the data structure used for mCosts.
    for (const auto& value : cache->Values()) {
      StopTracking(WrapNotNull(value),
                   /* aIsTracked */ true, aAutoLock);
    }

    // The per-image cache isn't needed anymore, so remove it as well.
    // This implicitly unlocks the image if it was locked.
    mImageCaches.Remove(aImageKey);

    // Since we did not actually remove any of the surfaces from the cache
    // itself, only stopped tracking them, we should free it outside the lock.
    return cache.forget();
  }

  void PruneImage(const ImageKey aImageKey,
                  const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      return;  // No cached surfaces for this image, so nothing to do.
    }

    cache->Prune([this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
      StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
      // Individual surfaces must be freed outside the lock.
      mCachedSurfacesDiscard.AppendElement(aSurface);
    });

    MaybeRemoveEmptyCache(aImageKey, cache);
  }

  bool InvalidateImage(const ImageKey aImageKey,
                       const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      return false;  // No cached surfaces for this image, so nothing to do.
    }

    bool rv = cache->Invalidate(
        [this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
          StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
          // Individual surfaces must be freed outside the lock.
          mCachedSurfacesDiscard.AppendElement(aSurface);
        });

    MaybeRemoveEmptyCache(aImageKey, cache);
    return rv;
  }

  void DiscardAll(const StaticMutexAutoLock& aAutoLock) {
    // Remove in order of cost because mCosts is an array and the other data
    // structures are all hash tables. Note that locked surfaces are not
    // removed, since they aren't present in mCosts.
    while (!mCosts.IsEmpty()) {
      Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
             aAutoLock);
    }
  }

  void DiscardForMemoryPressure(const StaticMutexAutoLock& aAutoLock) {
    // Compute our discardable cost. Since locked surfaces aren't discardable,
    // we exclude them.
    const Cost discardableCost = (mMaxCost - mAvailableCost) - mLockedCost;
    MOZ_ASSERT(discardableCost <= mMaxCost, "Discardable cost doesn't add up");

    // Our target is to raise our available cost by (1 / mDiscardFactor) of our
    // discardable cost - in other words, we want to end up with about
    // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
    // cache after we're done.
    const Cost targetCost = mAvailableCost + (discardableCost / mDiscardFactor);

    if (targetCost > mMaxCost - mLockedCost) {
      MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
      DiscardAll(aAutoLock);
      return;
    }

    // Discard surfaces until we've reduced our cost to our target cost.
    while (mAvailableCost < targetCost) {
      MOZ_ASSERT(!mCosts.IsEmpty(), "Removed everything and still not done");
      Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
             aAutoLock);
    }
  }

  void TakeDiscard(nsTArray<RefPtr<CachedSurface>>& aDiscard,
                   const StaticMutexAutoLock& aAutoLock) {
    MOZ_ASSERT(aDiscard.IsEmpty());
    aDiscard = std::move(mCachedSurfacesDiscard);
  }

  already_AddRefed<CachedSurface> GetSurfaceForResetAnimation(
      const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
      const StaticMutexAutoLock& aAutoLock) {
    RefPtr<CachedSurface> surface;

    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      // No cached surfaces for this image.
      return surface.forget();
    }

    surface = cache->Lookup(aSurfaceKey, /* aForAccess = */ false);
    return surface.forget();
  }

  void LockSurface(NotNull<CachedSurface*> aSurface,
                   const StaticMutexAutoLock& aAutoLock) {
    if (aSurface->IsPlaceholder() || aSurface->IsLocked()) {
      return;
    }

    StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);

    // Lock the surface. This can fail.
    aSurface->SetLocked(true);
    DebugOnly<bool> tracked = StartTracking(aSurface, aAutoLock);
    MOZ_ASSERT(tracked);
  }

  size_t ShallowSizeOfIncludingThis(
      MallocSizeOf aMallocSizeOf, const StaticMutexAutoLock& aAutoLock) const {
    size_t bytes =
        aMallocSizeOf(this) + mCosts.ShallowSizeOfExcludingThis(aMallocSizeOf) +
        mImageCaches.ShallowSizeOfExcludingThis(aMallocSizeOf) +
        mCachedSurfacesDiscard.ShallowSizeOfExcludingThis(aMallocSizeOf) +
        mExpirationTracker.ShallowSizeOfExcludingThis(aMallocSizeOf);
    for (const auto& data : mImageCaches.Values()) {
      bytes += data->ShallowSizeOfIncludingThis(aMallocSizeOf);
    }
    return bytes;
  }

  NS_IMETHOD
  CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
                 bool aAnonymize) override {
    StaticMutexAutoLock lock(sInstanceMutex);

    uint32_t lockedImageCount = 0;
    uint32_t totalSurfaceCount = 0;
    uint32_t lockedSurfaceCount = 0;
    for (const auto& cache : mImageCaches.Values()) {
      totalSurfaceCount += cache->Count();
      if (cache->IsLocked()) {
        ++lockedImageCount;
      }
      for (const auto& value : cache->Values()) {
        if (value->IsLocked()) {
          ++lockedSurfaceCount;
        }
      }
    }

    // clang-format off
    // We have explicit memory reporting for the surface cache which is more
    // accurate than the cost metrics we report here, but these metrics are
    // still useful to report, since they control the cache's behavior.
    MOZ_COLLECT_REPORT(
      "explicit/images/cache/overhead", KIND_HEAP, UNITS_BYTES,
      ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf, lock),
"Memory used by the surface cache data structures, excluding surface data.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-estimated-total",
      KIND_OTHER, UNITS_BYTES, (mMaxCost - mAvailableCost),
"Estimated total memory used by the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-estimated-locked",
      KIND_OTHER, UNITS_BYTES, mLockedCost,
"Estimated memory used by locked surfaces in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-tracked-cost-count",
      KIND_OTHER, UNITS_COUNT, mCosts.Length(),
"Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-tracked-expiry-count",
      KIND_OTHER, UNITS_COUNT, mExpirationTracker.Length(lock),
"Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-image-count",
      KIND_OTHER, UNITS_COUNT, mImageCaches.Count(),
"Total number of images in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-locked-image-count",
      KIND_OTHER, UNITS_COUNT, lockedImageCount,
"Total number of locked images in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-image-surface-count",
      KIND_OTHER, UNITS_COUNT, totalSurfaceCount,
"Total number of surfaces in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-locked-surfaces-count",
      KIND_OTHER, UNITS_COUNT, lockedSurfaceCount,
"Total number of locked surfaces in the imagelib surface cache.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-overflow-count",
      KIND_OTHER, UNITS_COUNT, mOverflowCount,
"Count of how many times the surface cache has hit its capacity and been "
"unable to insert a new surface.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-tracking-failure-count",
      KIND_OTHER, UNITS_COUNT, mTrackingFailureCount,
"Count of how many times the surface cache has failed to begin tracking a "
"given surface.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-already-present-count",
      KIND_OTHER, UNITS_COUNT, mAlreadyPresentCount,
"Count of how many times the surface cache has failed to insert a surface "
"because it is already present.");

    MOZ_COLLECT_REPORT(
      "imagelib-surface-cache-table-failure-count",
      KIND_OTHER, UNITS_COUNT, mTableFailureCount,
"Count of how many times the surface cache has failed to insert a surface "
"because a hash table could not accept an entry.");
    // clang-format on

    return NS_OK;
  }

  void CollectSizeOfSurfaces(const ImageKey aImageKey,
                             nsTArray<SurfaceMemoryCounter>& aCounters,
                             MallocSizeOf aMallocSizeOf,
                             const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      return;  // No surfaces for this image.
    }

    // Report all surfaces in the per-image cache.
    cache->CollectSizeOfSurfaces(
        aCounters, aMallocSizeOf,
        [this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
          StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
          // Individual surfaces must be freed outside the lock.
          mCachedSurfacesDiscard.AppendElement(aSurface);
        });

    MaybeRemoveEmptyCache(aImageKey, cache);
  }

  void ReleaseImageOnMainThread(already_AddRefed<image::Image>&& aImage,
                                const StaticMutexAutoLock& aAutoLock) {
    RefPtr<image::Image> image = aImage;
    if (!image) {
      return;
    }

    bool needsDispatch = mReleasingImagesOnMainThread.IsEmpty();
    mReleasingImagesOnMainThread.AppendElement(image);

    if (!needsDispatch ||
        AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdownFinal)) {
      // Either there is already a ongoing task for ClearReleasingImages() or
      // it's too late in shutdown to dispatch.
      return;
    }

    NS_DispatchToMainThread(NS_NewRunnableFunction(
        "SurfaceCacheImpl::ReleaseImageOnMainThread",
        []() -> void { SurfaceCache::ClearReleasingImages(); }));
  }

  void TakeReleasingImages(nsTArray<RefPtr<image::Image>>& aImage,
                           const StaticMutexAutoLock& aAutoLock) {
    MOZ_ASSERT(NS_IsMainThread());
    aImage.SwapElements(mReleasingImagesOnMainThread);
  }

 private:
  already_AddRefed<ImageSurfaceCache> GetImageCache(const ImageKey aImageKey) {
    RefPtr<ImageSurfaceCache> imageCache;
    mImageCaches.Get(aImageKey, getter_AddRefs(imageCache));
    return imageCache.forget();
  }

  void MaybeRemoveEmptyCache(const ImageKey aImageKey,
                             ImageSurfaceCache* aCache) {
    // Remove the per-image cache if it's unneeded now. Keep it if the image is
    // locked, since the per-image cache is where we store that state. Note that
    // we don't push it into mImageCachesDiscard because all of its surfaces
    // have been removed, so it is safe to free while holding the lock.
    if (aCache->IsEmpty() && !aCache->IsLocked()) {
      mImageCaches.Remove(aImageKey);
    }
  }

  // This is similar to CanHold() except that it takes into account the costs of
  // locked surfaces. It's used internally in Insert(), but it's not exposed
  // publicly because we permit multithreaded access to the surface cache, which
  // means that the result would be meaningless: another thread could insert a
  // surface or lock an image at any time.
  bool CanHoldAfterDiscarding(const Cost aCost) const {
    return aCost <= mMaxCost - mLockedCost;
  }

  bool MarkUsed(NotNull<CachedSurface*> aSurface,
                NotNull<ImageSurfaceCache*> aCache,
                const StaticMutexAutoLock& aAutoLock) {
    if (aCache->IsLocked()) {
      LockSurface(aSurface, aAutoLock);
      return true;
    }

    nsresult rv = mExpirationTracker.MarkUsedLocked(aSurface, aAutoLock);
    if (NS_WARN_IF(NS_FAILED(rv))) {
      // If mark used fails, it is because it failed to reinsert the surface
      // after removing it from the tracker. Thus we need to update our
      // own accounting but otherwise expect it to be untracked.
      StopTracking(aSurface, /* aIsTracked */ false, aAutoLock);
      return false;
    }
    return true;
  }

  void DoUnlockSurfaces(NotNull<ImageSurfaceCache*> aCache, bool aStaticOnly,
                        const StaticMutexAutoLock& aAutoLock) {
    AutoTArray<NotNull<CachedSurface*>, 8> discard;

    // Unlock all the surfaces the per-image cache is holding.
    for (const auto& value : aCache->Values()) {
      NotNull<CachedSurface*> surface = WrapNotNull(value);
      if (surface->IsPlaceholder() || !surface->IsLocked()) {
        continue;
      }
      if (aStaticOnly &&
          surface->GetSurfaceKey().Playback() != PlaybackType::eStatic) {
        continue;
      }
      StopTracking(surface, /* aIsTracked */ true, aAutoLock);
      surface->SetLocked(false);
      if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
        discard.AppendElement(surface);
      }
    }

    // Discard any that we failed to track.
    for (auto iter = discard.begin(); iter != discard.end(); ++iter) {
      Remove(*iter, /* aStopTracking */ false, aAutoLock);
    }
  }

  void RemoveEntry(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
                   const StaticMutexAutoLock& aAutoLock) {
    RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
    if (!cache) {
      return;  // No cached surfaces for this image.
    }

    RefPtr<CachedSurface> surface =
        cache->Lookup(aSurfaceKey, /* aForAccess = */ false);
    if (!surface) {
      return;  // Lookup in the per-image cache missed.
    }

    Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
  }

  class SurfaceTracker final
      : public ExpirationTrackerImpl<CachedSurface, 2, StaticMutex,
                                     StaticMutexAutoLock> {
   public:
    explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS)
        : ExpirationTrackerImpl<CachedSurface, 2, StaticMutex,
                                StaticMutexAutoLock>(
              aSurfaceCacheExpirationTimeMS, "SurfaceTracker") {}

   protected:
    void NotifyExpiredLocked(CachedSurface* aSurface,
                             const StaticMutexAutoLock& aAutoLock) override {
      sInstance->Remove(WrapNotNull(aSurface), /* aStopTracking */ true,
                        aAutoLock);
    }

    void NotifyHandlerEndLocked(const StaticMutexAutoLock& aAutoLock) override {
      sInstance->TakeDiscard(mDiscard, aAutoLock);
    }

    void NotifyHandlerEnd() override {
      nsTArray<RefPtr<CachedSurface>> discard(std::move(mDiscard));
    }

    StaticMutex& GetMutex() override { return sInstanceMutex; }

    nsTArray<RefPtr<CachedSurface>> mDiscard;
  };

  class MemoryPressureObserver final : public nsIObserver {
   public:
    NS_DECL_ISUPPORTS

    NS_IMETHOD Observe(nsISupports*, const char* aTopic,
                       const char16_t*) override {
      nsTArray<RefPtr<CachedSurface>> discard;
      {
        StaticMutexAutoLock lock(sInstanceMutex);
        if (sInstance && strcmp(aTopic, "memory-pressure") == 0) {
          sInstance->DiscardForMemoryPressure(lock);
          sInstance->TakeDiscard(discard, lock);
        }
      }
      return NS_OK;
    }

   private:
    virtual ~MemoryPressureObserver() {}
  };

  nsTArray<CostEntry> mCosts;
  nsRefPtrHashtable<nsPtrHashKey<Image>, ImageSurfaceCache> mImageCaches;
  nsTArray<RefPtr<CachedSurface>> mCachedSurfacesDiscard;
  SurfaceTracker mExpirationTracker;
  RefPtr<MemoryPressureObserver> mMemoryPressureObserver;
  nsTArray<RefPtr<image::Image>> mReleasingImagesOnMainThread;
  const uint32_t mDiscardFactor;
  const Cost mMaxCost;
  Cost mAvailableCost;
  Cost mLockedCost;
  size_t mOverflowCount;
  size_t mAlreadyPresentCount;
  size_t mTableFailureCount;
  size_t mTrackingFailureCount;
};

NS_IMPL_ISUPPORTS(SurfaceCacheImpl, nsIMemoryReporter)
NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver, nsIObserver)

///////////////////////////////////////////////////////////////////////////////
// Public API
///////////////////////////////////////////////////////////////////////////////

/* static */
void SurfaceCache::Initialize() {
  // Initialize preferences.
  MOZ_ASSERT(NS_IsMainThread());
  MOZ_ASSERT(!sInstance, "Shouldn't initialize more than once");

  // See StaticPrefs for the default values of these preferences.

  // Length of time before an unused surface is removed from the cache, in
  // milliseconds.
  uint32_t surfaceCacheExpirationTimeMS =
      StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();

  // What fraction of the memory used by the surface cache we should discard
  // when we get a memory pressure notification. This value is interpreted as
  // 1/N, so 1 means to discard everything, 2 means to discard about half of the
  // memory we're using, and so forth. We clamp it to avoid division by zero.
  uint32_t surfaceCacheDiscardFactor =
      max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);

  // Maximum size of the surface cache, in kilobytes.
  uint64_t surfaceCacheMaxSizeKB =
      StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();

  if (sizeof(uintptr_t) <= 4) {
    // Limit surface cache to 1 GB if our address space is 32 bit.
    surfaceCacheMaxSizeKB = 1024 * 1024;
  }

  // A knob determining the actual size of the surface cache. Currently the
  // cache is (size of main memory) / (surface cache size factor) KB
  // or (surface cache max size) KB, whichever is smaller. The formula
  // may change in the future, though.
  // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
  // The smallest machines we are likely to run this code on have 256MB
  // of memory, which would yield a 64MB cache on this setting.
  // We clamp this value to avoid division by zero.
  uint32_t surfaceCacheSizeFactor =
      max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);

  // Compute the size of the surface cache.
  uint64_t memorySize = PR_GetPhysicalMemorySize();
  if (memorySize == 0) {
#if !defined(__DragonFly__)
    MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
#endif
    memorySize = 256 * 1024 * 1024;  // Fall back to 256MB.
  }
  uint64_t proposedSize = memorySize / surfaceCacheSizeFactor;
  uint64_t surfaceCacheSizeBytes =
      min(proposedSize, surfaceCacheMaxSizeKB * 1024);
  uint32_t finalSurfaceCacheSizeBytes =
      min(surfaceCacheSizeBytes, uint64_t(UINT32_MAX));

  // Create the surface cache singleton with the requested settings.  Note that
  // the size is a limit that the cache may not grow beyond, but we do not
  // actually allocate any storage for surfaces at this time.
  sInstance = new SurfaceCacheImpl(surfaceCacheExpirationTimeMS,
                                   surfaceCacheDiscardFactor,
                                   finalSurfaceCacheSizeBytes);
  sInstance->InitMemoryReporter();
}

/* static */
void SurfaceCache::Shutdown() {
  RefPtr<SurfaceCacheImpl> cache;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    MOZ_ASSERT(NS_IsMainThread());
    MOZ_ASSERT(sInstance, "No singleton - was Shutdown() called twice?");
    cache = sInstance.forget();
  }
}

/* static */
LookupResult SurfaceCache::Lookup(const ImageKey aImageKey,
                                  const SurfaceKey& aSurfaceKey,
                                  bool aMarkUsed) {
  nsTArray<RefPtr<CachedSurface>> discard;
  LookupResult rv(MatchType::NOT_FOUND);

  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (!sInstance) {
      return rv;
    }

    rv = sInstance->Lookup(aImageKey, aSurfaceKey, lock, aMarkUsed);
    sInstance->TakeDiscard(discard, lock);
  }

  return rv;
}

/* static */
LookupResult SurfaceCache::LookupBestMatch(const ImageKey aImageKey,
                                           const SurfaceKey& aSurfaceKey,
                                           bool aMarkUsed) {
  nsTArray<RefPtr<CachedSurface>> discard;
  LookupResult rv(MatchType::NOT_FOUND);

  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (!sInstance) {
      return rv;
    }

    rv = sInstance->LookupBestMatch(aImageKey, aSurfaceKey, lock, aMarkUsed);
    sInstance->TakeDiscard(discard, lock);
  }

  return rv;
}

/* static */
InsertOutcome SurfaceCache::Insert(NotNull<ISurfaceProvider*> aProvider) {
  nsTArray<RefPtr<CachedSurface>> discard;
  InsertOutcome rv(InsertOutcome::FAILURE);

  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (!sInstance) {
      return rv;
    }

    rv = sInstance->Insert(aProvider, /* aSetAvailable = */ false, lock);
    sInstance->TakeDiscard(discard, lock);
  }

  return rv;
}

/* static */
bool SurfaceCache::CanHold(const IntSize& aSize,
                           uint32_t aBytesPerPixel /* = 4 */) {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (!sInstance) {
    return false;
  }

  Cost cost = ComputeCost(aSize, aBytesPerPixel);
  return sInstance->CanHold(cost);
}

/* static */
bool SurfaceCache::CanHold(size_t aSize) {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (!sInstance) {
    return false;
  }

  return sInstance->CanHold(aSize);
}

/* static */
void SurfaceCache::SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider) {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (!sInstance) {
    return;
  }

  sInstance->SurfaceAvailable(aProvider, lock);
}

/* static */
void SurfaceCache::LockImage(const ImageKey aImageKey) {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (sInstance) {
    return sInstance->LockImage(aImageKey);
  }
}

/* static */
void SurfaceCache::UnlockImage(const ImageKey aImageKey) {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (sInstance) {
    return sInstance->UnlockImage(aImageKey, lock);
  }
}

/* static */
void SurfaceCache::UnlockEntries(const ImageKey aImageKey) {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (sInstance) {
    return sInstance->UnlockEntries(aImageKey, lock);
  }
}

/* static */
void SurfaceCache::RemoveImage(const ImageKey aImageKey) {
  RefPtr<ImageSurfaceCache> discard;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (sInstance) {
      discard = sInstance->RemoveImage(aImageKey, lock);
    }
  }
}

/* static */
void SurfaceCache::PruneImage(const ImageKey aImageKey) {
  nsTArray<RefPtr<CachedSurface>> discard;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (sInstance) {
      sInstance->PruneImage(aImageKey, lock);
      sInstance->TakeDiscard(discard, lock);
    }
  }
}

/* static */
bool SurfaceCache::InvalidateImage(const ImageKey aImageKey) {
  nsTArray<RefPtr<CachedSurface>> discard;
  bool rv = false;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (sInstance) {
      rv = sInstance->InvalidateImage(aImageKey, lock);
      sInstance->TakeDiscard(discard, lock);
    }
  }
  return rv;
}

/* static */
void SurfaceCache::DiscardAll() {
  nsTArray<RefPtr<CachedSurface>> discard;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (sInstance) {
      sInstance->DiscardAll(lock);
      sInstance->TakeDiscard(discard, lock);
    }
  }
}

/* static */
void SurfaceCache::ResetAnimation(const ImageKey aImageKey,
                                  const SurfaceKey& aSurfaceKey) {
  RefPtr<CachedSurface> surface;
  nsTArray<RefPtr<CachedSurface>> discard;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (!sInstance) {
      return;
    }

    surface =
        sInstance->GetSurfaceForResetAnimation(aImageKey, aSurfaceKey, lock);
    sInstance->TakeDiscard(discard, lock);
  }

  // Calling Reset will acquire the AnimationSurfaceProvider::mFramesMutex
  // mutex. In other places we acquire the mFramesMutex then call into the
  // surface cache (acquiring the surface cache mutex), so that determines a
  // lock order which we must obey by calling Reset after releasing the surface
  // cache mutex.
  if (surface) {
    DrawableSurface drawableSurface =
        surface->GetDrawableSurfaceEvenIfPlaceholder();
    if (drawableSurface) {
      MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
                 "ResetAnimation() not returning an exact match?");

      drawableSurface.Reset();
    }
  }
}

/* static */
void SurfaceCache::CollectSizeOfSurfaces(
    const ImageKey aImageKey, nsTArray<SurfaceMemoryCounter>& aCounters,
    MallocSizeOf aMallocSizeOf) {
  nsTArray<RefPtr<CachedSurface>> discard;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (!sInstance) {
      return;
    }

    sInstance->CollectSizeOfSurfaces(aImageKey, aCounters, aMallocSizeOf, lock);
    sInstance->TakeDiscard(discard, lock);
  }
}

/* static */
size_t SurfaceCache::MaximumCapacity() {
  StaticMutexAutoLock lock(sInstanceMutex);
  if (!sInstance) {
    return 0;
  }

  return sInstance->MaximumCapacity();
}

/* static */
bool SurfaceCache::IsLegalSize(const IntSize& aSize) {
  // reject over-wide or over-tall images
  const int32_t k64KLimit = 0x0000FFFF;
  if (MOZ_UNLIKELY(aSize.width > k64KLimit || aSize.height > k64KLimit)) {
    NS_WARNING("image too big");
    return false;
  }

  // protect against invalid sizes
  if (MOZ_UNLIKELY(aSize.height <= 0 || aSize.width <= 0)) {
    return false;
  }

  // check to make sure we don't overflow a 32-bit
  CheckedInt32 requiredBytes =
      CheckedInt32(aSize.width) * CheckedInt32(aSize.height) * 4;
  if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
    NS_WARNING("width or height too large");
    return false;
  }
  return true;
}

IntSize SurfaceCache::ClampVectorSize(const IntSize& aSize) {
  // If we exceed the maximum, we need to scale the size downwards to fit.
  // It shouldn't get here if it is significantly larger because
  // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
  // a rasterized version of a surface greater than 4x the maximum.
  int32_t maxSizeKB =
      StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
  if (maxSizeKB <= 0) {
    return aSize;
  }

  int64_t proposedKB = int64_t(aSize.width) * aSize.height / 256;
  if (maxSizeKB >= proposedKB) {
    return aSize;
  }

  double scale = sqrt(double(maxSizeKB) / proposedKB);
  return IntSize(int32_t(scale * aSize.width), int32_t(scale * aSize.height));
}

IntSize SurfaceCache::ClampSize(ImageKey aImageKey, const IntSize& aSize) {
  if (aImageKey->GetType() != imgIContainer::TYPE_VECTOR) {
    return aSize;
  }

  return ClampVectorSize(aSize);
}

/* static */
void SurfaceCache::ReleaseImageOnMainThread(
    already_AddRefed<image::Image> aImage, bool aAlwaysProxy) {
  if (NS_IsMainThread() && !aAlwaysProxy) {
    RefPtr<image::Image> image = std::move(aImage);
    return;
  }

  // Don't try to dispatch the release after shutdown, we'll just leak the
  // runnable.
  if (AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdownFinal)) {
    return;
  }

  StaticMutexAutoLock lock(sInstanceMutex);
  if (sInstance) {
    sInstance->ReleaseImageOnMainThread(std::move(aImage), lock);
  } else {
    NS_ReleaseOnMainThread("SurfaceCache::ReleaseImageOnMainThread",
                           std::move(aImage), /* aAlwaysProxy */ true);
  }
}

/* static */
void SurfaceCache::ClearReleasingImages() {
  MOZ_ASSERT(NS_IsMainThread());

  nsTArray<RefPtr<image::Image>> images;
  {
    StaticMutexAutoLock lock(sInstanceMutex);
    if (sInstance) {
      sInstance->TakeReleasingImages(images, lock);
    }
  }
}

}  // namespace image
}  // namespace mozilla