summaryrefslogtreecommitdiffstats
path: root/image/decoders/nsICODecoder.cpp
blob: ff37355429e8a195eeda54261696251fef2a723f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/* vim:set tw=80 expandtab softtabstop=2 ts=2 sw=2: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* This is a Cross-Platform ICO Decoder, which should work everywhere, including
 * Big-Endian machines like the PowerPC. */

#include "nsICODecoder.h"

#include <stdlib.h>

#include <utility>

#include "RasterImage.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/gfx/Swizzle.h"
#include "mozilla/UniquePtrExtensions.h"

using namespace mozilla::gfx;

namespace mozilla {
namespace image {

// Constants.
static const uint32_t ICOHEADERSIZE = 6;
static const uint32_t BITMAPINFOSIZE = bmp::InfoHeaderLength::WIN_ICO;

// ----------------------------------------
// Actual Data Processing
// ----------------------------------------

// Obtains the number of colors from the bits per pixel
uint16_t nsICODecoder::GetNumColors() {
  uint16_t numColors = 0;
  if (mBPP <= 8) {
    switch (mBPP) {
      case 1:
        numColors = 2;
        break;
      case 4:
        numColors = 16;
        break;
      case 8:
        numColors = 256;
        break;
      default:
        numColors = (uint16_t)-1;
    }
  }
  return numColors;
}

nsICODecoder::nsICODecoder(RasterImage* aImage)
    : Decoder(aImage),
      mLexer(Transition::To(ICOState::HEADER, ICOHEADERSIZE),
             Transition::TerminateSuccess()),
      mDirEntry(nullptr),
      mNumIcons(0),
      mCurrIcon(0),
      mBPP(0),
      mMaskRowSize(0),
      mCurrMaskLine(0),
      mIsCursor(false),
      mHasMaskAlpha(false) {}

nsresult nsICODecoder::FinishInternal() {
  // We shouldn't be called in error cases
  MOZ_ASSERT(!HasError(), "Shouldn't call FinishInternal after error!");

  return GetFinalStateFromContainedDecoder();
}

nsresult nsICODecoder::FinishWithErrorInternal() {
  // No need to assert !mInFrame here because this condition is enforced by
  // mContainedDecoder.
  return GetFinalStateFromContainedDecoder();
}

nsresult nsICODecoder::GetFinalStateFromContainedDecoder() {
  if (!mContainedDecoder) {
    return NS_OK;
  }

  // Let the contained decoder finish up if necessary.
  FlushContainedDecoder();

  // Make our state the same as the state of the contained decoder.
  mDecodeDone = mContainedDecoder->GetDecodeDone();
  mProgress |= mContainedDecoder->TakeProgress();
  mInvalidRect.UnionRect(mInvalidRect, mContainedDecoder->TakeInvalidRect());
  mCurrentFrame = mContainedDecoder->GetCurrentFrameRef();

  // Finalize the frame which we deferred to ensure we could modify the final
  // result (e.g. to apply the BMP mask).
  MOZ_ASSERT(!mContainedDecoder->GetFinalizeFrames());
  if (mCurrentFrame) {
    mCurrentFrame->FinalizeSurface();
  }

  // Propagate errors.
  nsresult rv =
      HasError() || mContainedDecoder->HasError() ? NS_ERROR_FAILURE : NS_OK;

  MOZ_ASSERT(NS_FAILED(rv) || !mCurrentFrame || mCurrentFrame->IsFinished());
  return rv;
}

LexerTransition<ICOState> nsICODecoder::ReadHeader(const char* aData) {
  // If the third byte is 1, this is an icon. If 2, a cursor.
  if ((aData[2] != 1) && (aData[2] != 2)) {
    return Transition::TerminateFailure();
  }
  mIsCursor = (aData[2] == 2);

  // The fifth and sixth bytes specify the number of resources in the file.
  mNumIcons = LittleEndian::readUint16(aData + 4);
  if (mNumIcons == 0) {
    return Transition::TerminateSuccess();  // Nothing to do.
  }

  // Downscale-during-decode can end up decoding different resources in the ICO
  // file depending on the target size. Since the resources are not necessarily
  // scaled versions of the same image, some may be transparent and some may not
  // be. We could be precise about transparency if we decoded the metadata of
  // every resource, but for now we don't and it's safest to assume that
  // transparency could be present.
  PostHasTransparency();

  return Transition::To(ICOState::DIR_ENTRY, ICODIRENTRYSIZE);
}

size_t nsICODecoder::FirstResourceOffset() const {
  MOZ_ASSERT(mNumIcons > 0,
             "Calling FirstResourceOffset before processing header");

  // The first resource starts right after the directory, which starts right
  // after the ICO header.
  return ICOHEADERSIZE + mNumIcons * ICODIRENTRYSIZE;
}

LexerTransition<ICOState> nsICODecoder::ReadDirEntry(const char* aData) {
  mCurrIcon++;

  // Ensure the resource has an offset past the ICO headers.
  uint32_t offset = LittleEndian::readUint32(aData + 12);
  if (offset >= FirstResourceOffset()) {
    // Read the directory entry.
    IconDirEntryEx e;
    e.mWidth = aData[0];
    e.mHeight = aData[1];
    e.mColorCount = aData[2];
    e.mReserved = aData[3];
    e.mPlanes = LittleEndian::readUint16(aData + 4);
    e.mBitCount = LittleEndian::readUint16(aData + 6);
    e.mBytesInRes = LittleEndian::readUint32(aData + 8);
    e.mImageOffset = offset;
    e.mSize = OrientedIntSize(e.mWidth, e.mHeight);

    // Only accept entries with sufficient resource data to actually contain
    // some image data.
    if (e.mBytesInRes > BITMAPINFOSIZE) {
      if (e.mWidth == 0 || e.mHeight == 0) {
        mUnsizedDirEntries.AppendElement(e);
      } else {
        mDirEntries.AppendElement(e);
      }
    }
  }

  if (mCurrIcon == mNumIcons) {
    if (mUnsizedDirEntries.IsEmpty()) {
      return Transition::To(ICOState::FINISHED_DIR_ENTRY, 0);
    }
    return Transition::To(ICOState::ITERATE_UNSIZED_DIR_ENTRY, 0);
  }

  return Transition::To(ICOState::DIR_ENTRY, ICODIRENTRYSIZE);
}

LexerTransition<ICOState> nsICODecoder::IterateUnsizedDirEntry() {
  MOZ_ASSERT(!mUnsizedDirEntries.IsEmpty());

  if (!mDirEntry) {
    // The first time we are here, there is no entry selected. We must prepare a
    // new iterator for the contained decoder to advance as it wills. Cloning at
    // this point ensures it will begin at the end of the dir entries.
    mReturnIterator = mLexer.Clone(*mIterator, SIZE_MAX);
    if (mReturnIterator.isNothing()) {
      // If we cannot read further than this point, then there is no resource
      // data to read.
      return Transition::TerminateFailure();
    }
  } else {
    // We have already selected an entry which means a metadata decoder has
    // finished. Verify the size is valid and if so, add to the discovered
    // resources.
    if (mDirEntry->mSize.width > 0 && mDirEntry->mSize.height > 0) {
      mDirEntries.AppendElement(*mDirEntry);
    }

    // Remove the entry from the unsized list either way.
    mDirEntry = nullptr;
    mUnsizedDirEntries.RemoveElementAt(0);

    // Our iterator is at an unknown point, so reset it to the point that we
    // saved.
    mIterator = mLexer.Clone(*mReturnIterator, SIZE_MAX);
    if (mIterator.isNothing()) {
      MOZ_ASSERT_UNREACHABLE("Cannot re-clone return iterator");
      return Transition::TerminateFailure();
    }
  }

  // There are no more unsized entries, so we can finally decide which entry to
  // select for decoding.
  if (mUnsizedDirEntries.IsEmpty()) {
    mReturnIterator.reset();
    return Transition::To(ICOState::FINISHED_DIR_ENTRY, 0);
  }

  // Move to the resource data to start metadata decoding.
  mDirEntry = &mUnsizedDirEntries[0];
  size_t offsetToResource = mDirEntry->mImageOffset - FirstResourceOffset();
  return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
                                  ICOState::SKIP_TO_RESOURCE, offsetToResource);
}

LexerTransition<ICOState> nsICODecoder::FinishDirEntry() {
  MOZ_ASSERT(!mDirEntry);

  if (mDirEntries.IsEmpty()) {
    return Transition::TerminateFailure();
  }

  // If an explicit output size was specified, we'll try to select the resource
  // that matches it best below.
  const Maybe<OrientedIntSize> desiredSize = ExplicitOutputSize();

  // Determine the biggest resource. We always use the biggest resource for the
  // intrinsic size, and if we don't have a specific desired size, we select it
  // as the best resource as well.
  int32_t bestDelta = INT32_MIN;
  IconDirEntryEx* biggestEntry = nullptr;

  for (size_t i = 0; i < mDirEntries.Length(); ++i) {
    IconDirEntryEx& e = mDirEntries[i];
    mImageMetadata.AddNativeSize(e.mSize);

    if (!biggestEntry ||
        (e.mBitCount >= biggestEntry->mBitCount &&
         e.mSize.width * e.mSize.height >=
             biggestEntry->mSize.width * biggestEntry->mSize.height)) {
      biggestEntry = &e;

      if (!desiredSize) {
        mDirEntry = &e;
      }
    }

    if (desiredSize) {
      // Calculate the delta between this resource's size and the desired size,
      // so we can see if it is better than our current-best option.  In the
      // case of several equally-good resources, we use the last one. "Better"
      // in this case is determined by |delta|, a measure of the difference in
      // size between the entry we've found and the desired size. We will choose
      // the smallest resource that is greater than or equal to the desired size
      // (i.e. we assume it's better to downscale a larger icon than to upscale
      // a smaller one).
      int32_t delta = std::min(e.mSize.width - desiredSize->width,
                               e.mSize.height - desiredSize->height);
      if (!mDirEntry || (e.mBitCount >= mDirEntry->mBitCount &&
                         ((bestDelta < 0 && delta >= bestDelta) ||
                          (delta >= 0 && delta <= bestDelta)))) {
        mDirEntry = &e;
        bestDelta = delta;
      }
    }
  }

  MOZ_ASSERT(mDirEntry);
  MOZ_ASSERT(biggestEntry);

  // If this is a cursor, set the hotspot. We use the hotspot from the biggest
  // resource since we also use that resource for the intrinsic size.
  if (mIsCursor) {
    mImageMetadata.SetHotspot(biggestEntry->mXHotspot, biggestEntry->mYHotspot);
  }

  // We always report the biggest resource's size as the intrinsic size; this
  // is necessary for downscale-during-decode to work since we won't even
  // attempt to *upscale* while decoding.
  PostSize(biggestEntry->mSize.width, biggestEntry->mSize.height);
  if (HasError()) {
    return Transition::TerminateFailure();
  }

  if (IsMetadataDecode()) {
    return Transition::TerminateSuccess();
  }

  if (mDirEntry->mSize == OutputSize()) {
    // If the resource we selected matches the output size perfectly, we don't
    // need to do any downscaling.
    MOZ_ASSERT_IF(desiredSize, mDirEntry->mSize == *desiredSize);
    MOZ_ASSERT_IF(!desiredSize, mDirEntry->mSize == Size());
  } else if (OutputSize().width < mDirEntry->mSize.width ||
             OutputSize().height < mDirEntry->mSize.height) {
    // Create a downscaler if we need to downscale.
    //
    // TODO(aosmond): This is the last user of Downscaler. We should switch this
    // to SurfacePipe as well so we can remove the code from tree.
    mDownscaler.emplace(OutputSize().ToUnknownSize());
  }

  size_t offsetToResource = mDirEntry->mImageOffset - FirstResourceOffset();
  return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
                                  ICOState::SKIP_TO_RESOURCE, offsetToResource);
}

LexerTransition<ICOState> nsICODecoder::SniffResource(const char* aData) {
  MOZ_ASSERT(mDirEntry);

  // We have BITMAPINFOSIZE bytes buffered at this point. We know an embedded
  // BMP will have at least that many bytes by definition. We can also infer
  // that any valid embedded PNG will contain that many bytes as well because:
  //    BITMAPINFOSIZE
  //      <
  //    signature (8 bytes) +
  //    IHDR (12 bytes header + 13 bytes data)
  //    IDAT (12 bytes header)

  // We use the first PNGSIGNATURESIZE bytes to determine whether this resource
  // is a PNG or a BMP.
  bool isPNG =
      !memcmp(aData, nsPNGDecoder::pngSignatureBytes, PNGSIGNATURESIZE);
  if (isPNG) {
    if (mDirEntry->mBytesInRes <= BITMAPINFOSIZE) {
      return Transition::TerminateFailure();
    }

    // Prepare a new iterator for the contained decoder to advance as it wills.
    // Cloning at the point ensures it will begin at the resource offset.
    Maybe<SourceBufferIterator> containedIterator =
        mLexer.Clone(*mIterator, mDirEntry->mBytesInRes);
    if (containedIterator.isNothing()) {
      return Transition::TerminateFailure();
    }

    // Create a PNG decoder which will do the rest of the work for us.
    bool metadataDecode = mReturnIterator.isSome();
    Maybe<OrientedIntSize> expectedSize =
        metadataDecode ? Nothing() : Some(mDirEntry->mSize);
    mContainedDecoder = DecoderFactory::CreateDecoderForICOResource(
        DecoderType::PNG, std::move(containedIterator.ref()), WrapNotNull(this),
        metadataDecode, expectedSize);

    // Read in the rest of the PNG unbuffered.
    size_t toRead = mDirEntry->mBytesInRes - BITMAPINFOSIZE;
    return Transition::ToUnbuffered(ICOState::FINISHED_RESOURCE,
                                    ICOState::READ_RESOURCE, toRead);
  }

  // Make sure we have a sane size for the bitmap information header.
  int32_t bihSize = LittleEndian::readUint32(aData);
  if (bihSize != static_cast<int32_t>(BITMAPINFOSIZE)) {
    return Transition::TerminateFailure();
  }

  // Read in the rest of the bitmap information header.
  return ReadBIH(aData);
}

LexerTransition<ICOState> nsICODecoder::ReadResource() {
  if (!FlushContainedDecoder()) {
    return Transition::TerminateFailure();
  }

  return Transition::ContinueUnbuffered(ICOState::READ_RESOURCE);
}

LexerTransition<ICOState> nsICODecoder::ReadBIH(const char* aData) {
  MOZ_ASSERT(mDirEntry);

  // Extract the BPP from the BIH header; it should be trusted over the one
  // we have from the ICO header which is usually set to 0.
  mBPP = LittleEndian::readUint16(aData + 14);

  // Check to make sure we have valid color settings.
  uint16_t numColors = GetNumColors();
  if (numColors == uint16_t(-1)) {
    return Transition::TerminateFailure();
  }

  // The color table is present only if BPP is <= 8.
  MOZ_ASSERT_IF(mBPP > 8, numColors == 0);

  // The ICO format when containing a BMP does not include the 14 byte
  // bitmap file header. So we create the BMP decoder via the constructor that
  // tells it to skip this, and pass in the required data (dataOffset) that
  // would have been present in the header.
  uint32_t dataOffset =
      bmp::FILE_HEADER_LENGTH + BITMAPINFOSIZE + 4 * numColors;

  // Prepare a new iterator for the contained decoder to advance as it wills.
  // Cloning at the point ensures it will begin at the resource offset.
  Maybe<SourceBufferIterator> containedIterator =
      mLexer.Clone(*mIterator, mDirEntry->mBytesInRes);
  if (containedIterator.isNothing()) {
    return Transition::TerminateFailure();
  }

  // Create a BMP decoder which will do most of the work for us; the exception
  // is the AND mask, which isn't present in standalone BMPs.
  bool metadataDecode = mReturnIterator.isSome();
  Maybe<OrientedIntSize> expectedSize =
      metadataDecode ? Nothing() : Some(mDirEntry->mSize);
  mContainedDecoder = DecoderFactory::CreateDecoderForICOResource(
      DecoderType::BMP, std::move(containedIterator.ref()), WrapNotNull(this),
      metadataDecode, expectedSize, Some(dataOffset));

  RefPtr<nsBMPDecoder> bmpDecoder =
      static_cast<nsBMPDecoder*>(mContainedDecoder.get());

  // Ensure the decoder has parsed at least the BMP's bitmap info header.
  if (!FlushContainedDecoder()) {
    return Transition::TerminateFailure();
  }

  // If this is a metadata decode, FinishResource will any necessary checks.
  if (mContainedDecoder->IsMetadataDecode()) {
    return Transition::To(ICOState::FINISHED_RESOURCE, 0);
  }

  // Do we have an AND mask on this BMP? If so, we need to read it after we read
  // the BMP data itself.
  uint32_t bmpDataLength = bmpDecoder->GetCompressedImageSize() + 4 * numColors;
  bool hasANDMask = (BITMAPINFOSIZE + bmpDataLength) < mDirEntry->mBytesInRes;
  ICOState afterBMPState =
      hasANDMask ? ICOState::PREPARE_FOR_MASK : ICOState::FINISHED_RESOURCE;

  // Read in the rest of the BMP unbuffered.
  return Transition::ToUnbuffered(afterBMPState, ICOState::READ_RESOURCE,
                                  bmpDataLength);
}

LexerTransition<ICOState> nsICODecoder::PrepareForMask() {
  MOZ_ASSERT(mDirEntry);
  MOZ_ASSERT(mContainedDecoder->GetDecodeDone());

  // We have received all of the data required by the BMP decoder so flushing
  // here guarantees the decode has finished.
  if (!FlushContainedDecoder()) {
    return Transition::TerminateFailure();
  }

  MOZ_ASSERT(mContainedDecoder->GetDecodeDone());

  RefPtr<nsBMPDecoder> bmpDecoder =
      static_cast<nsBMPDecoder*>(mContainedDecoder.get());

  uint16_t numColors = GetNumColors();
  MOZ_ASSERT(numColors != uint16_t(-1));

  // Determine the length of the AND mask.
  uint32_t bmpLengthWithHeader =
      BITMAPINFOSIZE + bmpDecoder->GetCompressedImageSize() + 4 * numColors;
  MOZ_ASSERT(bmpLengthWithHeader < mDirEntry->mBytesInRes);
  uint32_t maskLength = mDirEntry->mBytesInRes - bmpLengthWithHeader;

  // If the BMP provides its own transparency, we ignore the AND mask.
  if (bmpDecoder->HasTransparency()) {
    return Transition::ToUnbuffered(ICOState::FINISHED_RESOURCE,
                                    ICOState::SKIP_MASK, maskLength);
  }

  // Compute the row size for the mask.
  mMaskRowSize = ((mDirEntry->mSize.width + 31) / 32) * 4;  // + 31 to round up

  // If the expected size of the AND mask is larger than its actual size, then
  // we must have a truncated (and therefore corrupt) AND mask.
  uint32_t expectedLength = mMaskRowSize * mDirEntry->mSize.height;
  if (maskLength < expectedLength) {
    return Transition::TerminateFailure();
  }

  // If we're downscaling, the mask is the wrong size for the surface we've
  // produced, so we need to downscale the mask into a temporary buffer and then
  // combine the mask's alpha values with the color values from the image.
  if (mDownscaler) {
    MOZ_ASSERT(bmpDecoder->GetImageDataLength() ==
               mDownscaler->TargetSize().width *
                   mDownscaler->TargetSize().height * sizeof(uint32_t));
    mMaskBuffer =
        MakeUniqueFallible<uint8_t[]>(bmpDecoder->GetImageDataLength());
    if (NS_WARN_IF(!mMaskBuffer)) {
      return Transition::TerminateFailure();
    }
    nsresult rv = mDownscaler->BeginFrame(mDirEntry->mSize.ToUnknownSize(),
                                          Nothing(), mMaskBuffer.get(),
                                          /* aHasAlpha = */ true,
                                          /* aFlipVertically = */ true);
    if (NS_FAILED(rv)) {
      return Transition::TerminateFailure();
    }
  }

  mCurrMaskLine = mDirEntry->mSize.height;
  return Transition::To(ICOState::READ_MASK_ROW, mMaskRowSize);
}

LexerTransition<ICOState> nsICODecoder::ReadMaskRow(const char* aData) {
  MOZ_ASSERT(mDirEntry);

  mCurrMaskLine--;

  uint8_t sawTransparency = 0;

  // Get the mask row we're reading.
  const uint8_t* mask = reinterpret_cast<const uint8_t*>(aData);
  const uint8_t* maskRowEnd = mask + mMaskRowSize;

  // Get the corresponding row of the mask buffer (if we're downscaling) or the
  // decoded image data (if we're not).
  uint32_t* decoded = nullptr;
  if (mDownscaler) {
    // Initialize the row to all white and fully opaque.
    memset(mDownscaler->RowBuffer(), 0xFF,
           mDirEntry->mSize.width * sizeof(uint32_t));

    decoded = reinterpret_cast<uint32_t*>(mDownscaler->RowBuffer());
  } else {
    RefPtr<nsBMPDecoder> bmpDecoder =
        static_cast<nsBMPDecoder*>(mContainedDecoder.get());
    uint32_t* imageData = bmpDecoder->GetImageData();
    if (!imageData) {
      return Transition::TerminateFailure();
    }

    decoded = imageData + mCurrMaskLine * mDirEntry->mSize.width;
  }

  MOZ_ASSERT(decoded);
  uint32_t* decodedRowEnd = decoded + mDirEntry->mSize.width;

  // Iterate simultaneously through the AND mask and the image data.
  while (mask < maskRowEnd) {
    uint8_t idx = *mask++;
    sawTransparency |= idx;
    for (uint8_t bit = 0x80; bit && decoded < decodedRowEnd; bit >>= 1) {
      // Clear pixel completely for transparency.
      if (idx & bit) {
        *decoded = 0;
      }
      decoded++;
    }
  }

  if (mDownscaler) {
    mDownscaler->CommitRow();
  }

  // If any bits are set in sawTransparency, then we know at least one pixel was
  // transparent.
  if (sawTransparency) {
    mHasMaskAlpha = true;
  }

  if (mCurrMaskLine == 0) {
    return Transition::To(ICOState::FINISH_MASK, 0);
  }

  return Transition::To(ICOState::READ_MASK_ROW, mMaskRowSize);
}

LexerTransition<ICOState> nsICODecoder::FinishMask() {
  // If we're downscaling, we now have the appropriate alpha values in
  // mMaskBuffer. We just need to transfer them to the image.
  if (mDownscaler) {
    // Retrieve the image data.
    RefPtr<nsBMPDecoder> bmpDecoder =
        static_cast<nsBMPDecoder*>(mContainedDecoder.get());
    uint8_t* imageData = reinterpret_cast<uint8_t*>(bmpDecoder->GetImageData());
    if (!imageData) {
      return Transition::TerminateFailure();
    }

    // Iterate through the alpha values, copying from mask to image.
    MOZ_ASSERT(mMaskBuffer);
    MOZ_ASSERT(bmpDecoder->GetImageDataLength() > 0);
    for (size_t i = 3; i < bmpDecoder->GetImageDataLength(); i += 4) {
      imageData[i] = mMaskBuffer[i];
    }
    int32_t stride = mDownscaler->TargetSize().width * sizeof(uint32_t);
    DebugOnly<bool> ret =
        // We know the format is OS_RGBA because we always assume bmp's inside
        // ico's are transparent.
        PremultiplyData(imageData, stride, SurfaceFormat::OS_RGBA, imageData,
                        stride, SurfaceFormat::OS_RGBA,
                        mDownscaler->TargetSize());
    MOZ_ASSERT(ret);
  }

  return Transition::To(ICOState::FINISHED_RESOURCE, 0);
}

LexerTransition<ICOState> nsICODecoder::FinishResource() {
  MOZ_ASSERT(mDirEntry);

  // We have received all of the data required by the PNG/BMP decoder so
  // flushing here guarantees the decode has finished.
  if (!FlushContainedDecoder()) {
    return Transition::TerminateFailure();
  }

  MOZ_ASSERT(mContainedDecoder->GetDecodeDone());

  // If it is a metadata decode, all we were trying to get was the size
  // information missing from the dir entry.
  if (mContainedDecoder->IsMetadataDecode()) {
    if (mContainedDecoder->HasSize()) {
      mDirEntry->mSize = mContainedDecoder->Size();
    }
    return Transition::To(ICOState::ITERATE_UNSIZED_DIR_ENTRY, 0);
  }

  // Raymond Chen says that 32bpp only are valid PNG ICOs
  // http://blogs.msdn.com/b/oldnewthing/archive/2010/10/22/10079192.aspx
  if (!mContainedDecoder->IsValidICOResource()) {
    return Transition::TerminateFailure();
  }

  // This size from the resource should match that from the dir entry.
  MOZ_ASSERT_IF(mContainedDecoder->HasSize(),
                mContainedDecoder->Size() == mDirEntry->mSize);

  return Transition::TerminateSuccess();
}

LexerResult nsICODecoder::DoDecode(SourceBufferIterator& aIterator,
                                   IResumable* aOnResume) {
  MOZ_ASSERT(!HasError(), "Shouldn't call DoDecode after error!");

  return mLexer.Lex(
      aIterator, aOnResume,
      [=](ICOState aState, const char* aData, size_t aLength) {
        switch (aState) {
          case ICOState::HEADER:
            return ReadHeader(aData);
          case ICOState::DIR_ENTRY:
            return ReadDirEntry(aData);
          case ICOState::FINISHED_DIR_ENTRY:
            return FinishDirEntry();
          case ICOState::ITERATE_UNSIZED_DIR_ENTRY:
            return IterateUnsizedDirEntry();
          case ICOState::SKIP_TO_RESOURCE:
            return Transition::ContinueUnbuffered(ICOState::SKIP_TO_RESOURCE);
          case ICOState::FOUND_RESOURCE:
            return Transition::To(ICOState::SNIFF_RESOURCE, BITMAPINFOSIZE);
          case ICOState::SNIFF_RESOURCE:
            return SniffResource(aData);
          case ICOState::READ_RESOURCE:
            return ReadResource();
          case ICOState::PREPARE_FOR_MASK:
            return PrepareForMask();
          case ICOState::READ_MASK_ROW:
            return ReadMaskRow(aData);
          case ICOState::FINISH_MASK:
            return FinishMask();
          case ICOState::SKIP_MASK:
            return Transition::ContinueUnbuffered(ICOState::SKIP_MASK);
          case ICOState::FINISHED_RESOURCE:
            return FinishResource();
          default:
            MOZ_CRASH("Unknown ICOState");
        }
      });
}

bool nsICODecoder::FlushContainedDecoder() {
  MOZ_ASSERT(mContainedDecoder);

  bool succeeded = true;

  // If we run out of data, the ICO decoder will get resumed when there's more
  // data available, as usual, so we don't need the contained decoder to get
  // resumed too. To avoid that, we provide an IResumable which just does
  // nothing. All the caller needs to do is flush when there is new data.
  LexerResult result = mContainedDecoder->Decode();
  if (result == LexerResult(TerminalState::FAILURE)) {
    succeeded = false;
  }

  MOZ_ASSERT(result != LexerResult(Yield::OUTPUT_AVAILABLE),
             "Unexpected yield");

  // Make our state the same as the state of the contained decoder, and
  // propagate errors.
  mProgress |= mContainedDecoder->TakeProgress();
  mInvalidRect.UnionRect(mInvalidRect, mContainedDecoder->TakeInvalidRect());
  if (mContainedDecoder->HasError()) {
    succeeded = false;
  }

  return succeeded;
}

}  // namespace image
}  // namespace mozilla