summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/utrie2_builder.cpp
blob: 1254e8cba682f83f44746bf23cf0ef1cbbec0663 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
*   Copyright (C) 2001-2014, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
******************************************************************************
*   file name:  utrie2_builder.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2008sep26 (split off from utrie2.c)
*   created by: Markus W. Scherer
*
*   This is a common implementation of a Unicode trie.
*   It is a kind of compressed, serializable table of 16- or 32-bit values associated with
*   Unicode code points (0..0x10ffff).
*   This is the second common version of a Unicode trie (hence the name UTrie2).
*   See utrie2.h for a comparison.
*
*   This file contains only the builder code.
*   See utrie2.c for the runtime and enumeration code.
*/
// #define UTRIE2_DEBUG
#ifdef UTRIE2_DEBUG
#   include <stdio.h>
#endif
// #define UCPTRIE_DEBUG

#include "unicode/utypes.h"
#ifdef UCPTRIE_DEBUG
#include "unicode/ucptrie.h"
#include "unicode/umutablecptrie.h"
#include "ucptrie_impl.h"
#endif
#include "cmemory.h"
#include "utrie2.h"
#include "utrie2_impl.h"

#include "utrie.h"  // for utrie2_fromUTrie()

/* Implementation notes ----------------------------------------------------- */

/*
 * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values
 * have been chosen to minimize trie sizes overall.
 * Most of the code is flexible enough to work with a range of values,
 * within certain limits.
 *
 * Exception: Support for separate values for lead surrogate code _units_
 * vs. code _points_ was added after the constants were fixed,
 * and has not been tested nor particularly designed for different constant values.
 * (Especially the utrie2_enum() code that jumps to the special LSCP index-2
 * part and back.)
 *
 * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data
 * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH
 * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction
 * remapping) stops working.
 *
 * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate()
 * assumes that a single index-2 block is used for 0x400 code points
 * corresponding to one lead surrogate.
 *
 * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains
 * more than one Unicode plane, and the split of the index-2 table into a BMP
 * part and a supplementary part, with a gap in between, would not work.
 *
 * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because
 * there is data with more than 64k distinct values,
 * for example for Unihan collation with a separate collation weight per
 * Han character.
 */

/* Building a trie ----------------------------------------------------------*/

enum {
    /** The null index-2 block, following the gap in the index-2 table. */
    UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH,

    /** The start of allocated index-2 blocks. */
    UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH,

    /**
     * The null data block.
     * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller,
     * to work with 6-bit trail bytes from 2-byte UTF-8.
     */
    UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET,

    /** The start of allocated data blocks. */
    UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40,

    /**
     * The start of data blocks for U+0800 and above.
     * Below, compaction uses a block length of 64 for 2-byte UTF-8.
     * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH.
     * Data values for 0x780 code points beyond ASCII.
     */
    UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780
};

/* Start with allocation of 16k data entries. */
#define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14)

/* Grow about 8x each time. */
#define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17)

static int32_t
allocIndex2Block(UNewTrie2 *trie);

U_CAPI UTrie2 * U_EXPORT2
utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) {
    UTrie2 *trie;
    UNewTrie2 *newTrie;
    uint32_t *data;
    int32_t i, j;

    if(U_FAILURE(*pErrorCode)) {
        return nullptr;
    }

    trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2));
    newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2));
    data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4);
    if(trie==nullptr || newTrie==nullptr || data==nullptr) {
        uprv_free(trie);
        uprv_free(newTrie);
        uprv_free(data);
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return 0;
    }

    uprv_memset(trie, 0, sizeof(UTrie2));
    trie->initialValue=initialValue;
    trie->errorValue=errorValue;
    trie->highStart=0x110000;
    trie->newTrie=newTrie;
#ifdef UTRIE2_DEBUG
    trie->name="open";
#endif

    newTrie->data=data;
#ifdef UCPTRIE_DEBUG
    newTrie->t3=umutablecptrie_open(initialValue, errorValue, pErrorCode);
#endif
    newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH;
    newTrie->initialValue=initialValue;
    newTrie->errorValue=errorValue;
    newTrie->highStart=0x110000;
    newTrie->firstFreeBlock=0;  /* no free block in the list */
    newTrie->isCompacted=false;

    /*
     * preallocate and reset
     * - ASCII
     * - the bad-UTF-8-data block
     * - the null data block
     */
    for(i=0; i<0x80; ++i) {
        newTrie->data[i]=initialValue;
    }
    for(; i<0xc0; ++i) {
        newTrie->data[i]=errorValue;
    }
    for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) {
        newTrie->data[i]=initialValue;
    }
    newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET;
    newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET;

    /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */
    for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
        newTrie->index2[i]=j;
        newTrie->map[i]=1;
    }
    /* reference counts for the bad-UTF-8-data block */
    for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
        newTrie->map[i]=0;
    }
    /*
     * Reference counts for the null data block: all blocks except for the ASCII blocks.
     * Plus 1 so that we don't drop this block during compaction.
     * Plus as many as needed for lead surrogate code points.
     */
    /* i==newTrie->dataNullOffset */
    newTrie->map[i++]=
        (0x110000>>UTRIE2_SHIFT_2)-
        (0x80>>UTRIE2_SHIFT_2)+
        1+
        UTRIE2_LSCP_INDEX_2_LENGTH;
    j+=UTRIE2_DATA_BLOCK_LENGTH;
    for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
        newTrie->map[i]=0;
    }

    /*
     * set the remaining indexes in the BMP index-2 block
     * to the null data block
     */
    for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) {
        newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET;
    }

    /*
     * Fill the index gap with impossible values so that compaction
     * does not overlap other index-2 blocks with the gap.
     */
    for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) {
        newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1;
    }

    /* set the indexes in the null index-2 block */
    for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) {
        newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET;
    }
    newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET;
    newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET;

    /* set the index-1 indexes for the linear index-2 block */
    for(i=0, j=0;
        i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH;
        ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH
    ) {
        newTrie->index1[i]=j;
    }

    /* set the remaining index-1 indexes to the null index-2 block */
    for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) {
        newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET;
    }

    /*
     * Preallocate and reset data for U+0080..U+07ff,
     * for 2-byte UTF-8 which will be compacted in 64-blocks
     * even if UTRIE2_DATA_BLOCK_LENGTH is smaller.
     */
    for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) {
        utrie2_set32(trie, i, initialValue, pErrorCode);
    }

    return trie;
}

static UNewTrie2 *
cloneBuilder(const UNewTrie2 *other) {
    UNewTrie2 *trie;

    trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2));
    if(trie==nullptr) {
        return nullptr;
    }

    trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4);
    if(trie->data==nullptr) {
        uprv_free(trie);
        return nullptr;
    }
#ifdef UCPTRIE_DEBUG
    if(other->t3==nullptr) {
        trie->t3=nullptr;
    } else {
        UErrorCode errorCode=U_ZERO_ERROR;
        trie->t3=umutablecptrie_clone(other->t3, &errorCode);
    }
#endif
    trie->dataCapacity=other->dataCapacity;

    /* clone data */
    uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1));
    uprv_memcpy(trie->index2, other->index2, (size_t)other->index2Length*4);
    trie->index2NullOffset=other->index2NullOffset;
    trie->index2Length=other->index2Length;

    uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
    trie->dataNullOffset=other->dataNullOffset;
    trie->dataLength=other->dataLength;

    /* reference counters */
    if(other->isCompacted) {
        trie->firstFreeBlock=0;
    } else {
        uprv_memcpy(trie->map, other->map, ((size_t)other->dataLength>>UTRIE2_SHIFT_2)*4);
        trie->firstFreeBlock=other->firstFreeBlock;
    }

    trie->initialValue=other->initialValue;
    trie->errorValue=other->errorValue;
    trie->highStart=other->highStart;
    trie->isCompacted=other->isCompacted;

    return trie;
}

U_CAPI UTrie2 * U_EXPORT2
utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) {
    UTrie2 *trie;

    if(U_FAILURE(*pErrorCode)) {
        return nullptr;
    }
    if(other==nullptr || (other->memory==nullptr && other->newTrie==nullptr)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }

    trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2));
    if(trie==nullptr) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return nullptr;
    }
    uprv_memcpy(trie, other, sizeof(UTrie2));

    if(other->memory!=nullptr) {
        trie->memory=uprv_malloc(other->length);
        if(trie->memory!=nullptr) {
            trie->isMemoryOwned=true;
            uprv_memcpy(trie->memory, other->memory, other->length);

            /* make the clone's pointers point to its own memory */
            trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory);
            if(other->data16!=nullptr) {
                trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory);
            }
            if(other->data32!=nullptr) {
                trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory);
            }
        }
    } else /* other->newTrie!=nullptr */ {
        trie->newTrie=cloneBuilder(other->newTrie);
    }

    if(trie->memory==nullptr && trie->newTrie==nullptr) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        uprv_free(trie);
        trie=nullptr;
    }
    return trie;
}

typedef struct NewTrieAndStatus {
    UTrie2 *trie;
    UErrorCode errorCode;
    UBool exclusiveLimit;  /* rather than inclusive range end */
} NewTrieAndStatus;

static UBool U_CALLCONV
copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
    NewTrieAndStatus *nt=(NewTrieAndStatus *)context;
    if(value!=nt->trie->initialValue) {
        if(nt->exclusiveLimit) {
            --end;
        }
        if(start==end) {
            utrie2_set32(nt->trie, start, value, &nt->errorCode);
        } else {
            utrie2_setRange32(nt->trie, start, end, value, true, &nt->errorCode);
        }
        return U_SUCCESS(nt->errorCode);
    } else {
        return true;
    }
}

#ifdef UTRIE2_DEBUG
static long countInitial(const UTrie2 *trie) {
    uint32_t initialValue=trie->initialValue;
    int32_t length=trie->dataLength;
    long count=0;
    if(trie->data16!=nullptr) {
        for(int32_t i=0; i<length; ++i) {
            if(trie->data16[i]==initialValue) { ++count; }
        }
    } else {
        for(int32_t i=0; i<length; ++i) {
            if(trie->data32[i]==initialValue) { ++count; }
        }
    }
    return count;
}

static void
utrie_printLengths(const UTrie *trie) {
    long indexLength=trie->indexLength;
    long dataLength=(long)trie->dataLength;
    long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=nullptr ? 4 : 2);
    printf("**UTrieLengths** index:%6ld  data:%6ld  serialized:%6ld\n",
           indexLength, dataLength, totalLength);
}

static void
utrie2_printLengths(const UTrie2 *trie, const char *which) {
    long indexLength=trie->indexLength;
    long dataLength=(long)trie->dataLength;
    long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=nullptr ? 4 : 2);
    printf("**UTrie2Lengths(%s %s)** index:%6ld  data:%6ld  countInitial:%6ld  serialized:%6ld\n",
           which, trie->name, indexLength, dataLength, countInitial(trie), totalLength);
}
#endif

U_CAPI UTrie2 * U_EXPORT2
utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) {
    NewTrieAndStatus context;
    char16_t lead;

    if(U_FAILURE(*pErrorCode)) {
        return nullptr;
    }
    if(other==nullptr || (other->memory==nullptr && other->newTrie==nullptr)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }
    if(other->newTrie!=nullptr && !other->newTrie->isCompacted) {
        return utrie2_clone(other, pErrorCode);  /* clone an unfrozen trie */
    }

    /* Clone the frozen trie by enumerating it and building a new one. */
    context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        return nullptr;
    }
    context.exclusiveLimit=false;
    context.errorCode=*pErrorCode;
    utrie2_enum(other, nullptr, copyEnumRange, &context);
    *pErrorCode=context.errorCode;
    for(lead=0xd800; lead<0xdc00; ++lead) {
        uint32_t value;
        if(other->data32==nullptr) {
            value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead);
        } else {
            value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead);
        }
        if(value!=other->initialValue) {
            utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode);
        }
    }
    if(U_FAILURE(*pErrorCode)) {
        utrie2_close(context.trie);
        context.trie=nullptr;
    }
    return context.trie;
}

/* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */
U_CAPI UTrie2 * U_EXPORT2
utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) {
    NewTrieAndStatus context;
    char16_t lead;

    if(U_FAILURE(*pErrorCode)) {
        return nullptr;
    }
    if(trie1==nullptr) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }
    context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        return nullptr;
    }
    context.exclusiveLimit=true;
    context.errorCode=*pErrorCode;
    utrie_enum(trie1, nullptr, copyEnumRange, &context);
    *pErrorCode=context.errorCode;
    for(lead=0xd800; lead<0xdc00; ++lead) {
        uint32_t value;
        if(trie1->data32==nullptr) {
            value=UTRIE_GET16_FROM_LEAD(trie1, lead);
        } else {
            value=UTRIE_GET32_FROM_LEAD(trie1, lead);
        }
        if(value!=trie1->initialValue) {
            utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode);
        }
    }
    if(U_SUCCESS(*pErrorCode)) {
        utrie2_freeze(context.trie,
                      trie1->data32!=nullptr ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS,
                      pErrorCode);
    }
#ifdef UTRIE2_DEBUG
    if(U_SUCCESS(*pErrorCode)) {
        utrie_printLengths(trie1);
        utrie2_printLengths(context.trie, "fromUTrie");
    }
#endif
    if(U_FAILURE(*pErrorCode)) {
        utrie2_close(context.trie);
        context.trie=nullptr;
    }
    return context.trie;
}

static inline UBool
isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
    int32_t i2, block;

    if(U_IS_LEAD(c) && forLSCP) {
        i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+
            (c>>UTRIE2_SHIFT_2);
    } else {
        i2=trie->index1[c>>UTRIE2_SHIFT_1]+
            ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK);
    }
    block=trie->index2[i2];
    return (UBool)(block==trie->dataNullOffset);
}

static int32_t
allocIndex2Block(UNewTrie2 *trie) {
    int32_t newBlock, newTop;

    newBlock=trie->index2Length;
    newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH;
    if(newTop>UPRV_LENGTHOF(trie->index2)) {
        /*
         * Should never occur.
         * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect,
         * or the code writes more values than should be possible.
         */
        return -1;
    }
    trie->index2Length=newTop;
    uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4);
    return newBlock;
}

static int32_t
getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
    int32_t i1, i2;

    if(U_IS_LEAD(c) && forLSCP) {
        return UTRIE2_LSCP_INDEX_2_OFFSET;
    }

    i1=c>>UTRIE2_SHIFT_1;
    i2=trie->index1[i1];
    if(i2==trie->index2NullOffset) {
        i2=allocIndex2Block(trie);
        if(i2<0) {
            return -1;  /* program error */
        }
        trie->index1[i1]=i2;
    }
    return i2;
}

static int32_t
allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) {
    int32_t newBlock, newTop;

    if(trie->firstFreeBlock!=0) {
        /* get the first free block */
        newBlock=trie->firstFreeBlock;
        trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2];
    } else {
        /* get a new block from the high end */
        newBlock=trie->dataLength;
        newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH;
        if(newTop>trie->dataCapacity) {
            /* out of memory in the data array */
            int32_t capacity;
            uint32_t *data;

            if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) {
                capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH;
            } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) {
                capacity=UNEWTRIE2_MAX_DATA_LENGTH;
            } else {
                /*
                 * Should never occur.
                 * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect,
                 * or the code writes more values than should be possible.
                 */
                return -1;
            }
            data=(uint32_t *)uprv_malloc(capacity*4);
            if(data==nullptr) {
                return -1;
            }
            uprv_memcpy(data, trie->data, (size_t)trie->dataLength*4);
            uprv_free(trie->data);
            trie->data=data;
            trie->dataCapacity=capacity;
        }
        trie->dataLength=newTop;
    }
    uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4);
    trie->map[newBlock>>UTRIE2_SHIFT_2]=0;
    return newBlock;
}

/* call when the block's reference counter reaches 0 */
static void
releaseDataBlock(UNewTrie2 *trie, int32_t block) {
    /* put this block at the front of the free-block chain */
    trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock;
    trie->firstFreeBlock=block;
}

static inline UBool
isWritableBlock(UNewTrie2 *trie, int32_t block) {
    return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]);
}

static inline void
setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) {
    int32_t oldBlock;
    ++trie->map[block>>UTRIE2_SHIFT_2];  /* increment first, in case block==oldBlock! */
    oldBlock=trie->index2[i2];
    if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) {
        releaseDataBlock(trie, oldBlock);
    }
    trie->index2[i2]=block;
}

/**
 * No error checking for illegal arguments.
 *
 * @return -1 if no new data block available (out of memory in data array)
 * @internal
 */
static int32_t
getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
    int32_t i2, oldBlock, newBlock;

    i2=getIndex2Block(trie, c, forLSCP);
    if(i2<0) {
        return -1;  /* program error */
    }

    i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK;
    oldBlock=trie->index2[i2];
    if(isWritableBlock(trie, oldBlock)) {
        return oldBlock;
    }

    /* allocate a new data block */
    newBlock=allocDataBlock(trie, oldBlock);
    if(newBlock<0) {
        /* out of memory in the data array */
        return -1;
    }
    setIndex2Entry(trie, i2, newBlock);
    return newBlock;
}

/**
 * @return true if the value was successfully set
 */
static void
set32(UNewTrie2 *trie,
      UChar32 c, UBool forLSCP, uint32_t value,
      UErrorCode *pErrorCode) {
    int32_t block;

    if(trie==nullptr || trie->isCompacted) {
        *pErrorCode=U_NO_WRITE_PERMISSION;
        return;
    }
#ifdef UCPTRIE_DEBUG
    umutablecptrie_set(trie->t3, c, value, pErrorCode);
#endif

    block=getDataBlock(trie, c, forLSCP);
    if(block<0) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return;
    }

    trie->data[block+(c&UTRIE2_DATA_MASK)]=value;
}

U_CAPI void U_EXPORT2
utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) {
    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if((uint32_t)c>0x10ffff) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    set32(trie->newTrie, c, true, value, pErrorCode);
}

U_CAPI void U_EXPORT2
utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie,
                                     UChar32 c, uint32_t value,
                                     UErrorCode *pErrorCode) {
    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if(!U_IS_LEAD(c)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    set32(trie->newTrie, c, false, value, pErrorCode);
}

static void
writeBlock(uint32_t *block, uint32_t value) {
    uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH;
    while(block<limit) {
        *block++=value;
    }
}

/**
 * initialValue is ignored if overwrite=true
 * @internal
 */
static void
fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
          uint32_t value, uint32_t initialValue, UBool overwrite) {
    uint32_t *pLimit;

    pLimit=block+limit;
    block+=start;
    if(overwrite) {
        while(block<pLimit) {
            *block++=value;
        }
    } else {
        while(block<pLimit) {
            if(*block==initialValue) {
                *block=value;
            }
            ++block;
        }
    }
}

U_CAPI void U_EXPORT2
utrie2_setRange32(UTrie2 *trie,
                  UChar32 start, UChar32 end,
                  uint32_t value, UBool overwrite,
                  UErrorCode *pErrorCode) {
    /*
     * repeat value in [start..end]
     * mark index values for repeat-data blocks by setting bit 31 of the index values
     * fill around existing values if any, if(overwrite)
     */
    UNewTrie2 *newTrie;
    int32_t block, rest, repeatBlock;
    UChar32 limit;

    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    newTrie=trie->newTrie;
    if(newTrie==nullptr || newTrie->isCompacted) {
        *pErrorCode=U_NO_WRITE_PERMISSION;
        return;
    }
#ifdef UCPTRIE_DEBUG
    umutablecptrie_setRange(newTrie->t3, start, end, value, pErrorCode);
#endif
    if(!overwrite && value==newTrie->initialValue) {
        return; /* nothing to do */
    }

    limit=end+1;
    if(start&UTRIE2_DATA_MASK) {
        UChar32 nextStart;

        /* set partial block at [start..following block boundary[ */
        block=getDataBlock(newTrie, start, true);
        if(block<0) {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }

        nextStart=(start+UTRIE2_DATA_MASK)&~UTRIE2_DATA_MASK;
        if(nextStart<=limit) {
            fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH,
                      value, newTrie->initialValue, overwrite);
            start=nextStart;
        } else {
            fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK,
                      value, newTrie->initialValue, overwrite);
            return;
        }
    }

    /* number of positions in the last, partial block */
    rest=limit&UTRIE2_DATA_MASK;

    /* round down limit to a block boundary */
    limit&=~UTRIE2_DATA_MASK;

    /* iterate over all-value blocks */
    if(value==newTrie->initialValue) {
        repeatBlock=newTrie->dataNullOffset;
    } else {
        repeatBlock=-1;
    }

    while(start<limit) {
        int32_t i2;
        UBool setRepeatBlock=false;

        if(value==newTrie->initialValue && isInNullBlock(newTrie, start, true)) {
            start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */
            continue;
        }

        /* get index value */
        i2=getIndex2Block(newTrie, start, true);
        if(i2<0) {
            *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
            return;
        }
        i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK;
        block=newTrie->index2[i2];
        if(isWritableBlock(newTrie, block)) {
            /* already allocated */
            if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) {
                /*
                 * We overwrite all values, and it's not a
                 * protected (ASCII-linear or 2-byte UTF-8) block:
                 * replace with the repeatBlock.
                 */
                setRepeatBlock=true;
            } else {
                /* !overwrite, or protected block: just write the values into this block */
                fillBlock(newTrie->data+block,
                          0, UTRIE2_DATA_BLOCK_LENGTH,
                          value, newTrie->initialValue, overwrite);
            }
        } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) {
            /*
             * Set the repeatBlock instead of the null block or previous repeat block:
             *
             * If !isWritableBlock() then all entries in the block have the same value
             * because it's the null block or a range block (the repeatBlock from a previous
             * call to utrie2_setRange32()).
             * No other blocks are used multiple times before compacting.
             *
             * The null block is the only non-writable block with the initialValue because
             * of the repeatBlock initialization above. (If value==initialValue, then
             * the repeatBlock will be the null data block.)
             *
             * We set our repeatBlock if the desired value differs from the block's value,
             * and if we overwrite any data or if the data is all initial values
             * (which is the same as the block being the null block, see above).
             */
            setRepeatBlock=true;
        }
        if(setRepeatBlock) {
            if(repeatBlock>=0) {
                setIndex2Entry(newTrie, i2, repeatBlock);
            } else {
                /* create and set and fill the repeatBlock */
                repeatBlock=getDataBlock(newTrie, start, true);
                if(repeatBlock<0) {
                    *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
                    return;
                }
                writeBlock(newTrie->data+repeatBlock, value);
            }
        }

        start+=UTRIE2_DATA_BLOCK_LENGTH;
    }

    if(rest>0) {
        /* set partial block at [last block boundary..limit[ */
        block=getDataBlock(newTrie, start, true);
        if(block<0) {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }

        fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite);
    }

    return;
}

/* compaction --------------------------------------------------------------- */

static inline UBool
equal_int32(const int32_t *s, const int32_t *t, int32_t length) {
    while(length>0 && *s==*t) {
        ++s;
        ++t;
        --length;
    }
    return (UBool)(length==0);
}

static inline UBool
equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
    while(length>0 && *s==*t) {
        ++s;
        ++t;
        --length;
    }
    return (UBool)(length==0);
}

static int32_t
findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) {
    int32_t block;

    /* ensure that we do not even partially get past index2Length */
    index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH;

    for(block=0; block<=index2Length; ++block) {
        if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) {
            return block;
        }
    }
    return -1;
}

static int32_t
findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) {
    int32_t block;

    /* ensure that we do not even partially get past dataLength */
    dataLength-=blockLength;

    for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) {
        if(equal_uint32(data+block, data+otherBlock, blockLength)) {
            return block;
        }
    }
    return -1;
}

/*
 * Find the start of the last range in the trie by enumerating backward.
 * Indexes for supplementary code points higher than this will be omitted.
 */
static UChar32
findHighStart(UNewTrie2 *trie, uint32_t highValue) {
    const uint32_t *data32;

    uint32_t value, initialValue;
    UChar32 c, prev;
    int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock;

    data32=trie->data;
    initialValue=trie->initialValue;

    index2NullOffset=trie->index2NullOffset;
    nullBlock=trie->dataNullOffset;

    /* set variables for previous range */
    if(highValue==initialValue) {
        prevI2Block=index2NullOffset;
        prevBlock=nullBlock;
    } else {
        prevI2Block=-1;
        prevBlock=-1;
    }
    prev=0x110000;

    /* enumerate index-2 blocks */
    i1=UNEWTRIE2_INDEX_1_LENGTH;
    c=prev;
    while(c>0) {
        i2Block=trie->index1[--i1];
        if(i2Block==prevI2Block) {
            /* the index-2 block is the same as the previous one, and filled with highValue */
            c-=UTRIE2_CP_PER_INDEX_1_ENTRY;
            continue;
        }
        prevI2Block=i2Block;
        if(i2Block==index2NullOffset) {
            /* this is the null index-2 block */
            if(highValue!=initialValue) {
                return c;
            }
            c-=UTRIE2_CP_PER_INDEX_1_ENTRY;
        } else {
            /* enumerate data blocks for one index-2 block */
            for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) {
                block=trie->index2[i2Block+ --i2];
                if(block==prevBlock) {
                    /* the block is the same as the previous one, and filled with highValue */
                    c-=UTRIE2_DATA_BLOCK_LENGTH;
                    continue;
                }
                prevBlock=block;
                if(block==nullBlock) {
                    /* this is the null data block */
                    if(highValue!=initialValue) {
                        return c;
                    }
                    c-=UTRIE2_DATA_BLOCK_LENGTH;
                } else {
                    for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) {
                        value=data32[block+ --j];
                        if(value!=highValue) {
                            return c;
                        }
                        --c;
                    }
                }
            }
        }
    }

    /* deliver last range */
    return 0;
}

/*
 * Compact a build-time trie.
 *
 * The compaction
 * - removes blocks that are identical with earlier ones
 * - overlaps adjacent blocks as much as possible (if overlap==true)
 * - moves blocks in steps of the data granularity
 * - moves and overlaps blocks that overlap with multiple values in the overlap region
 *
 * It does not
 * - try to move and overlap blocks that are not already adjacent
 */
static void
compactData(UNewTrie2 *trie) {
#ifdef UTRIE2_DEBUG
    int32_t countSame=0, sumOverlaps=0;
#endif

    int32_t start, newStart, movedStart;
    int32_t blockLength, overlap;
    int32_t i, mapIndex, blockCount;

    /* do not compact linear-ASCII data */
    newStart=UTRIE2_DATA_START_OFFSET;
    for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) {
        trie->map[i]=start;
    }

    /*
     * Start with a block length of 64 for 2-byte UTF-8,
     * then switch to UTRIE2_DATA_BLOCK_LENGTH.
     */
    blockLength=64;
    blockCount=blockLength>>UTRIE2_SHIFT_2;
    for(start=newStart; start<trie->dataLength;) {
        /*
         * start: index of first entry of current block
         * newStart: index where the current block is to be moved
         *           (right after current end of already-compacted data)
         */
        if(start==UNEWTRIE2_DATA_0800_OFFSET) {
            blockLength=UTRIE2_DATA_BLOCK_LENGTH;
            blockCount=1;
        }

        /* skip blocks that are not used */
        if(trie->map[start>>UTRIE2_SHIFT_2]<=0) {
            /* advance start to the next block */
            start+=blockLength;

            /* leave newStart with the previous block! */
            continue;
        }

        /* search for an identical block */
        if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength))
             >=0
        ) {
#ifdef UTRIE2_DEBUG
            ++countSame;
#endif
            /* found an identical block, set the other block's index value for the current block */
            for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
                trie->map[mapIndex++]=movedStart;
                movedStart+=UTRIE2_DATA_BLOCK_LENGTH;
            }

            /* advance start to the next block */
            start+=blockLength;

            /* leave newStart with the previous block! */
            continue;
        }

        /* see if the beginning of this block can be overlapped with the end of the previous block */
        /* look for maximum overlap (modulo granularity) with the previous, adjacent block */
        for(overlap=blockLength-UTRIE2_DATA_GRANULARITY;
            overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap);
            overlap-=UTRIE2_DATA_GRANULARITY) {}

#ifdef UTRIE2_DEBUG
            sumOverlaps+=overlap;
#endif
        if(overlap>0 || newStart<start) {
            /* some overlap, or just move the whole block */
            movedStart=newStart-overlap;
            for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
                trie->map[mapIndex++]=movedStart;
                movedStart+=UTRIE2_DATA_BLOCK_LENGTH;
            }

            /* move the non-overlapping indexes to their new positions */
            start+=overlap;
            for(i=blockLength-overlap; i>0; --i) {
                trie->data[newStart++]=trie->data[start++];
            }
        } else /* no overlap && newStart==start */ {
            for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
                trie->map[mapIndex++]=start;
                start+=UTRIE2_DATA_BLOCK_LENGTH;
            }
            newStart=start;
        }
    }

    /* now adjust the index-2 table */
    for(i=0; i<trie->index2Length; ++i) {
        if(i==UNEWTRIE2_INDEX_GAP_OFFSET) {
            /* Gap indexes are invalid (-1). Skip over the gap. */
            i+=UNEWTRIE2_INDEX_GAP_LENGTH;
        }
        trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2];
    }
    trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2];

    /* ensure dataLength alignment */
    while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) {
        trie->data[newStart++]=trie->initialValue;
    }

#ifdef UTRIE2_DEBUG
    /* we saved some space */
    printf("compacting UTrie2: count of 32-bit data words %lu->%lu  countSame=%ld  sumOverlaps=%ld\n",
            (long)trie->dataLength, (long)newStart, (long)countSame, (long)sumOverlaps);
#endif

    trie->dataLength=newStart;
}

static void
compactIndex2(UNewTrie2 *trie) {
    int32_t i, start, newStart, movedStart, overlap;

    /* do not compact linear-BMP index-2 blocks */
    newStart=UTRIE2_INDEX_2_BMP_LENGTH;
    for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) {
        trie->map[i]=start;
    }

    /* Reduce the index table gap to what will be needed at runtime. */
    newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1);

    for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) {
        /*
         * start: index of first entry of current block
         * newStart: index where the current block is to be moved
         *           (right after current end of already-compacted data)
         */

        /* search for an identical block */
        if( (movedStart=findSameIndex2Block(trie->index2, newStart, start))
             >=0
        ) {
            /* found an identical block, set the other block's index value for the current block */
            trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart;

            /* advance start to the next block */
            start+=UTRIE2_INDEX_2_BLOCK_LENGTH;

            /* leave newStart with the previous block! */
            continue;
        }

        /* see if the beginning of this block can be overlapped with the end of the previous block */
        /* look for maximum overlap with the previous, adjacent block */
        for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1;
            overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap);
            --overlap) {}

        if(overlap>0 || newStart<start) {
            /* some overlap, or just move the whole block */
            trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap;

            /* move the non-overlapping indexes to their new positions */
            start+=overlap;
            for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) {
                trie->index2[newStart++]=trie->index2[start++];
            }
        } else /* no overlap && newStart==start */ {
            trie->map[start>>UTRIE2_SHIFT_1_2]=start;
            start+=UTRIE2_INDEX_2_BLOCK_LENGTH;
            newStart=start;
        }
    }

    /* now adjust the index-1 table */
    for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) {
        trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2];
    }
    trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2];

    /*
     * Ensure data table alignment:
     * Needs to be granularity-aligned for 16-bit trie
     * (so that dataMove will be down-shiftable),
     * and 2-aligned for uint32_t data.
     */
    while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) {
        /* Arbitrary value: 0x3fffc not possible for real data. */
        trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT;
    }

#ifdef UTRIE2_DEBUG
    /* we saved some space */
    printf("compacting UTrie2: count of 16-bit index words %lu->%lu\n",
            (long)trie->index2Length, (long)newStart);
#endif

    trie->index2Length=newStart;
}

static void
compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) {
    UNewTrie2 *newTrie;
    UChar32 highStart, suppHighStart;
    uint32_t highValue;

    newTrie=trie->newTrie;

    /* find highStart and round it up */
    highValue=utrie2_get32(trie, 0x10ffff);
    highStart=findHighStart(newTrie, highValue);
    highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1);
    if(highStart==0x110000) {
        highValue=trie->errorValue;
    }

    /*
     * Set trie->highStart only after utrie2_get32(trie, highStart).
     * Otherwise utrie2_get32(trie, highStart) would try to read the highValue.
     */
    trie->highStart=newTrie->highStart=highStart;

#ifdef UTRIE2_DEBUG
    printf("UTrie2: highStart U+%06lx  highValue 0x%lx  initialValue 0x%lx\n",
            (long)highStart, (long)highValue, (long)trie->initialValue);
#endif

    if(highStart<0x110000) {
        /* Blank out [highStart..10ffff] to release associated data blocks. */
        suppHighStart= highStart<=0x10000 ? 0x10000 : highStart;
        utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, true, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            return;
        }
    }

    compactData(newTrie);
    if(highStart>0x10000) {
        compactIndex2(newTrie);
#ifdef UTRIE2_DEBUG
    } else {
        printf("UTrie2: highStart U+%04lx  count of 16-bit index words %lu->%lu\n",
                (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET);
#endif
    }

    /*
     * Store the highValue in the data array and round up the dataLength.
     * Must be done after compactData() because that assumes that dataLength
     * is a multiple of UTRIE2_DATA_BLOCK_LENGTH.
     */
    newTrie->data[newTrie->dataLength++]=highValue;
    while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) {
        newTrie->data[newTrie->dataLength++]=trie->initialValue;
    }

    newTrie->isCompacted=true;
}

/* serialization ------------------------------------------------------------ */

/**
 * Maximum length of the runtime index array.
 * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength.
 * (The actual maximum length is lower,
 * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.)
 */
#define UTRIE2_MAX_INDEX_LENGTH 0xffff

/**
 * Maximum length of the runtime data array.
 * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT,
 * and by uint16_t UTrie2Header.shiftedDataLength.
 */
#define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT)

/* Compact and internally serialize the trie. */
U_CAPI void U_EXPORT2
utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) {
    UNewTrie2 *newTrie;
    UTrie2Header *header;
    uint32_t *p;
    uint16_t *dest16;
    int32_t i, length;
    int32_t allIndexesLength;
    int32_t dataMove;  /* >0 if the data is moved to the end of the index array */
    UChar32 highStart;

    /* argument check */
    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if( trie==nullptr ||
        valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits
    ) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    newTrie=trie->newTrie;
    if(newTrie==nullptr) {
        /* already frozen */
        UTrie2ValueBits frozenValueBits=
            trie->data16!=nullptr ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS;
        if(valueBits!=frozenValueBits) {
            *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        }
        return;
    }

    /* compact if necessary */
    if(!newTrie->isCompacted) {
        compactTrie(trie, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            return;
        }
    }
    highStart=trie->highStart;

    if(highStart<=0x10000) {
        allIndexesLength=UTRIE2_INDEX_1_OFFSET;
    } else {
        allIndexesLength=newTrie->index2Length;
    }
    if(valueBits==UTRIE2_16_VALUE_BITS) {
        dataMove=allIndexesLength;
    } else {
        dataMove=0;
    }

    /* are indexLength and dataLength within limits? */
    if( /* for unshifted indexLength */
        allIndexesLength>UTRIE2_MAX_INDEX_LENGTH ||
        /* for unshifted dataNullOffset */
        (dataMove+newTrie->dataNullOffset)>0xffff ||
        /* for unshifted 2-byte UTF-8 index-2 values */
        (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff ||
        /* for shiftedDataLength */
        (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH
    ) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return;
    }

    /* calculate the total serialized length */
    length=sizeof(UTrie2Header)+allIndexesLength*2;
    if(valueBits==UTRIE2_16_VALUE_BITS) {
        length+=newTrie->dataLength*2;
    } else {
        length+=newTrie->dataLength*4;
    }

    trie->memory=uprv_malloc(length);
    if(trie->memory==nullptr) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    trie->length=length;
    trie->isMemoryOwned=true;

    trie->indexLength=allIndexesLength;
    trie->dataLength=newTrie->dataLength;
    if(highStart<=0x10000) {
        trie->index2NullOffset=0xffff;
    } else {
        trie->index2NullOffset=static_cast<uint16_t>(UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset);
    }
    trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset);
    trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY;

    /* set the header fields */
    header=(UTrie2Header *)trie->memory;

    header->signature=UTRIE2_SIG; /* "Tri2" */
    header->options=(uint16_t)valueBits;

    header->indexLength=(uint16_t)trie->indexLength;
    header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT);
    header->index2NullOffset=trie->index2NullOffset;
    header->dataNullOffset=trie->dataNullOffset;
    header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1);

    /* fill the index and data arrays */
    dest16=(uint16_t *)(header+1);
    trie->index=dest16;

    /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */
    p=(uint32_t *)newTrie->index2;
    for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) {
        *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT);
    }

    /* write UTF-8 2-byte index-2 values, not right-shifted */
    for(i=0; i<(0xc2-0xc0); ++i) {                                  /* C0..C1 */
        *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET);
    }
    for(; i<(0xe0-0xc0); ++i) {                                     /* C2..DF */
        *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]);
    }

    if(highStart>0x10000) {
        int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1;
        int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length;

        /* write 16-bit index-1 values for supplementary code points */
        p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH;
        for(i=index1Length; i>0; --i) {
            *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++);
        }

        /*
         * write the index-2 array values for supplementary code points,
         * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove
         */
        p=(uint32_t *)newTrie->index2+index2Offset;
        for(i=newTrie->index2Length-index2Offset; i>0; --i) {
            *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT);
        }
    }

    /* write the 16/32-bit data array */
    switch(valueBits) {
    case UTRIE2_16_VALUE_BITS:
        /* write 16-bit data values */
        trie->data16=dest16;
        trie->data32=nullptr;
        p=newTrie->data;
        for(i=newTrie->dataLength; i>0; --i) {
            *dest16++=(uint16_t)*p++;
        }
        break;
    case UTRIE2_32_VALUE_BITS:
        /* write 32-bit data values */
        trie->data16=nullptr;
        trie->data32=(uint32_t *)dest16;
        uprv_memcpy(dest16, newTrie->data, (size_t)newTrie->dataLength*4);
        break;
    default:
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }

#ifdef UTRIE2_DEBUG
    utrie2_printLengths(trie, "");
#endif

#ifdef UCPTRIE_DEBUG
    umutablecptrie_setName(newTrie->t3, trie->name);
    ucptrie_close(
        umutablecptrie_buildImmutable(
            newTrie->t3, UCPTRIE_TYPE_FAST, (UCPTrieValueWidth)valueBits, pErrorCode));
#endif
    /* Delete the UNewTrie2. */
    uprv_free(newTrie->data);
    uprv_free(newTrie);
    trie->newTrie=nullptr;
}