summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/number_rounding.cpp
blob: e6bb509ffd75a409faa03ea471bb97b84d2f61de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html

#include "unicode/utypes.h"

#if !UCONFIG_NO_FORMATTING

#include "charstr.h"
#include "uassert.h"
#include "unicode/numberformatter.h"
#include "number_types.h"
#include "number_decimalquantity.h"
#include "double-conversion.h"
#include "number_roundingutils.h"
#include "number_skeletons.h"
#include "number_decnum.h"
#include "putilimp.h"
#include "string_segment.h"

using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;


using double_conversion::DoubleToStringConverter;
using icu::StringSegment;

void number::impl::parseIncrementOption(const StringSegment &segment,
                                        Precision &outPrecision,
                                        UErrorCode &status) {
    // Need to do char <-> char16_t conversion...
    U_ASSERT(U_SUCCESS(status));
    CharString buffer;
    SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);

    // Utilize DecimalQuantity/decNumber to parse this for us.
    DecimalQuantity dq;
    UErrorCode localStatus = U_ZERO_ERROR;
    dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus);
    if (U_FAILURE(localStatus) || dq.isNaN() || dq.isInfinite()) {
        // throw new SkeletonSyntaxException("Invalid rounding increment", segment, e);
        status = U_NUMBER_SKELETON_SYNTAX_ERROR;
        return;
    }
    // Now we break apart the number into a mantissa and exponent (magnitude).
    int32_t magnitude = dq.adjustToZeroScale();
    // setToDecNumber drops trailing zeros, so we search for the '.' manually.
    for (int32_t i=0; i<buffer.length(); i++) {
        if (buffer[i] == '.') {
            int32_t newMagnitude = i - buffer.length() + 1;
            dq.adjustMagnitude(magnitude - newMagnitude);
            magnitude = newMagnitude;
            break;
        }
    }
    outPrecision = Precision::incrementExact(dq.toLong(), magnitude);
}

namespace {

int32_t getRoundingMagnitudeFraction(int maxFrac) {
    if (maxFrac == -1) {
        return INT32_MIN;
    }
    return -maxFrac;
}

int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) {
    if (maxSig == -1) {
        return INT32_MIN;
    }
    int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
    return magnitude - maxSig + 1;
}

int32_t getDisplayMagnitudeFraction(int minFrac) {
    if (minFrac == 0) {
        return INT32_MAX;
    }
    return -minFrac;
}

int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) {
    int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
    return magnitude - minSig + 1;
}

}


MultiplierProducer::~MultiplierProducer() = default;


Precision Precision::unlimited() {
    return Precision(RND_NONE, {});
}

FractionPrecision Precision::integer() {
    return constructFraction(0, 0);
}

FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) {
    if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) {
        return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

FractionPrecision Precision::minFraction(int32_t minFractionPlaces) {
    if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) {
        return constructFraction(minFractionPlaces, -1);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) {
    if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) {
        return constructFraction(0, maxFractionPlaces);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) {
    if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig &&
        minFractionPlaces <= maxFractionPlaces) {
        return constructFraction(minFractionPlaces, maxFractionPlaces);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) {
    if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) {
        return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision Precision::minSignificantDigits(int32_t minSignificantDigits) {
    if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
        return constructSignificant(minSignificantDigits, -1);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) {
    if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
        return constructSignificant(1, maxSignificantDigits);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) {
    if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig &&
        minSignificantDigits <= maxSignificantDigits) {
        return constructSignificant(minSignificantDigits, maxSignificantDigits);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision Precision::trailingZeroDisplay(UNumberTrailingZeroDisplay trailingZeroDisplay) const {
    Precision result(*this); // copy constructor
    result.fTrailingZeroDisplay = trailingZeroDisplay;
    return result;
}

IncrementPrecision Precision::increment(double roundingIncrement) {
    if (roundingIncrement > 0.0) {
        DecimalQuantity dq;
        dq.setToDouble(roundingIncrement);
        dq.roundToInfinity();
        int32_t magnitude = dq.adjustToZeroScale();
        return constructIncrement(dq.toLong(), magnitude);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

IncrementPrecision Precision::incrementExact(uint64_t mantissa, int16_t magnitude) {
    if (mantissa > 0.0) {
        return constructIncrement(mantissa, magnitude);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) {
    return constructCurrency(currencyUsage);
}

Precision FractionPrecision::withSignificantDigits(
        int32_t minSignificantDigits,
        int32_t maxSignificantDigits,
        UNumberRoundingPriority priority) const {
    if (fType == RND_ERROR) { return *this; } // no-op in error state
    if (minSignificantDigits >= 1 &&
            maxSignificantDigits >= minSignificantDigits &&
            maxSignificantDigits <= kMaxIntFracSig) {
        return constructFractionSignificant(
            *this,
            minSignificantDigits,
            maxSignificantDigits,
            priority,
            false);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const {
    if (fType == RND_ERROR) { return *this; } // no-op in error state
    if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
        return constructFractionSignificant(
            *this,
            1,
            minSignificantDigits,
            UNUM_ROUNDING_PRIORITY_RELAXED,
            true);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const {
    if (fType == RND_ERROR) { return *this; } // no-op in error state
    if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
        return constructFractionSignificant(*this,
            1,
            maxSignificantDigits,
            UNUM_ROUNDING_PRIORITY_STRICT,
            true);
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

// Private method on base class
Precision Precision::withCurrency(const CurrencyUnit &currency, UErrorCode &status) const {
    if (fType == RND_ERROR) { return *this; } // no-op in error state
    U_ASSERT(fType == RND_CURRENCY);
    const char16_t *isoCode = currency.getISOCurrency();
    double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status);
    int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage(
            isoCode, fUnion.currencyUsage, &status);
    Precision retval = (increment != 0.0)
        ? Precision::increment(increment)
        : static_cast<Precision>(Precision::fixedFraction(minMaxFrac));
    retval.fTrailingZeroDisplay = fTrailingZeroDisplay;
    return retval;
}

// Public method on CurrencyPrecision subclass
Precision CurrencyPrecision::withCurrency(const CurrencyUnit &currency) const {
    UErrorCode localStatus = U_ZERO_ERROR;
    Precision result = Precision::withCurrency(currency, localStatus);
    if (U_FAILURE(localStatus)) {
        return {localStatus};
    }
    return result;
}

Precision IncrementPrecision::withMinFraction(int32_t minFrac) const {
    if (fType == RND_ERROR) { return *this; } // no-op in error state
    if (minFrac >= 0 && minFrac <= kMaxIntFracSig) {
        IncrementPrecision copy = *this;
        copy.fUnion.increment.fMinFrac = minFrac;
        return copy;
    } else {
        return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
    }
}

FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) {
    FractionSignificantSettings settings;
    settings.fMinFrac = static_cast<digits_t>(minFrac);
    settings.fMaxFrac = static_cast<digits_t>(maxFrac);
    settings.fMinSig = -1;
    settings.fMaxSig = -1;
    PrecisionUnion union_;
    union_.fracSig = settings;
    return {RND_FRACTION, union_};
}

Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) {
    FractionSignificantSettings settings;
    settings.fMinFrac = -1;
    settings.fMaxFrac = -1;
    settings.fMinSig = static_cast<digits_t>(minSig);
    settings.fMaxSig = static_cast<digits_t>(maxSig);
    PrecisionUnion union_;
    union_.fracSig = settings;
    return {RND_SIGNIFICANT, union_};
}

Precision
Precision::constructFractionSignificant(
        const FractionPrecision &base,
        int32_t minSig,
        int32_t maxSig,
        UNumberRoundingPriority priority,
        bool retain) {
    FractionSignificantSettings settings = base.fUnion.fracSig;
    settings.fMinSig = static_cast<digits_t>(minSig);
    settings.fMaxSig = static_cast<digits_t>(maxSig);
    settings.fPriority = priority;
    settings.fRetain = retain;
    PrecisionUnion union_;
    union_.fracSig = settings;
    return {RND_FRACTION_SIGNIFICANT, union_};
}

IncrementPrecision Precision::constructIncrement(uint64_t increment, digits_t magnitude) {
    IncrementSettings settings;
    // Note: For number formatting, fIncrement is used for RND_INCREMENT but not
    // RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all
    // three when constructing a skeleton.
    settings.fIncrement = increment;
    settings.fIncrementMagnitude = magnitude;
    settings.fMinFrac = magnitude > 0 ? 0 : -magnitude;
    PrecisionUnion union_;
    union_.increment = settings;
    if (increment == 1) {
        // NOTE: In C++, we must return the correct value type with the correct union.
        // It would be invalid to return a RND_FRACTION here because the methods on the
        // IncrementPrecision type assume that the union is backed by increment data.
        return {RND_INCREMENT_ONE, union_};
    } else if (increment == 5) {
        return {RND_INCREMENT_FIVE, union_};
    } else {
        return {RND_INCREMENT, union_};
    }
}

CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) {
    PrecisionUnion union_;
    union_.currencyUsage = usage;
    return {RND_CURRENCY, union_};
}


RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode,
                           const CurrencyUnit& currency, UErrorCode& status)
        : fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) {
    if (precision.fType == Precision::RND_CURRENCY) {
        fPrecision = precision.withCurrency(currency, status);
    }
}

RoundingImpl RoundingImpl::passThrough() {
    return {};
}

bool RoundingImpl::isSignificantDigits() const {
    return fPrecision.fType == Precision::RND_SIGNIFICANT;
}

int32_t
RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer,
                                  UErrorCode &status) {
    // Do not call this method with zero, NaN, or infinity.
    U_ASSERT(!input.isZeroish());

    // Perform the first attempt at rounding.
    int magnitude = input.getMagnitude();
    int multiplier = producer.getMultiplier(magnitude);
    input.adjustMagnitude(multiplier);
    apply(input, status);

    // If the number rounded to zero, exit.
    if (input.isZeroish() || U_FAILURE(status)) {
        return multiplier;
    }

    // If the new magnitude after rounding is the same as it was before rounding, then we are done.
    // This case applies to most numbers.
    if (input.getMagnitude() == magnitude + multiplier) {
        return multiplier;
    }

    // If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000:
    // The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't,
    // we do not need to make any more adjustments.
    int _multiplier = producer.getMultiplier(magnitude + 1);
    if (multiplier == _multiplier) {
        return multiplier;
    }

    // We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000".
    // Fix the magnitude and re-apply the rounding strategy.
    input.adjustMagnitude(_multiplier - multiplier);
    apply(input, status);
    return _multiplier;
}

/** This is the method that contains the actual rounding logic. */
void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const {
    if (U_FAILURE(status)) {
        return;
    }
    if (fPassThrough) {
        return;
    }
    int32_t resolvedMinFraction = 0;
    switch (fPrecision.fType) {
        case Precision::RND_BOGUS:
        case Precision::RND_ERROR:
            // Errors should be caught before the apply() method is called
            status = U_INTERNAL_PROGRAM_ERROR;
            break;

        case Precision::RND_NONE:
            value.roundToInfinity();
            break;

        case Precision::RND_FRACTION:
            value.roundToMagnitude(
                    getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac),
                    fRoundingMode,
                    status);
            resolvedMinFraction =
                    uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac));
            break;

        case Precision::RND_SIGNIFICANT:
            value.roundToMagnitude(
                    getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig),
                    fRoundingMode,
                    status);
            resolvedMinFraction =
                    uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig));
            // Make sure that digits are displayed on zero.
            if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) {
                value.setMinInteger(1);
            }
            break;

        case Precision::RND_FRACTION_SIGNIFICANT: {
            // From ECMA-402:
            /*
            Let sResult be ToRawPrecision(...).
            Let fResult be ToRawFixed(...).
            If intlObj.[[RoundingType]] is morePrecision, then
                If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
                    Let result be sResult.
                Else,
                    Let result be fResult.
            Else,
                Assert: intlObj.[[RoundingType]] is lessPrecision.
                If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
                    Let result be fResult.
                Else,
                    Let result be sResult.
            */

            int32_t roundingMag1 = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac);
            int32_t roundingMag2 = getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig);
            int32_t roundingMag;
            if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) {
                roundingMag = uprv_min(roundingMag1, roundingMag2);
            } else {
                roundingMag = uprv_max(roundingMag1, roundingMag2);
            }
            if (!value.isZeroish()) {
                int32_t upperMag = value.getMagnitude();
                value.roundToMagnitude(roundingMag, fRoundingMode, status);
                if (!value.isZeroish() && value.getMagnitude() != upperMag && roundingMag1 == roundingMag2) {
                    // roundingMag2 needs to be the magnitude after rounding
                    roundingMag2 += 1;
                }
            }

            int32_t displayMag1 = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac);
            int32_t displayMag2 = getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig);
            int32_t displayMag;
            if (fPrecision.fUnion.fracSig.fRetain) {
                // withMinDigits + withMaxDigits
                displayMag = uprv_min(displayMag1, displayMag2);
            } else if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) {
                if (roundingMag2 <= roundingMag1) {
                    displayMag = displayMag2;
                } else {
                    displayMag = displayMag1;
                }
            } else {
                U_ASSERT(fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_STRICT);
                if (roundingMag2 <= roundingMag1) {
                    displayMag = displayMag1;
                } else {
                    displayMag = displayMag2;
                }
            }
            resolvedMinFraction = uprv_max(0, -displayMag);

            break;
        }

        case Precision::RND_INCREMENT:
            value.roundToIncrement(
                    fPrecision.fUnion.increment.fIncrement,
                    fPrecision.fUnion.increment.fIncrementMagnitude,
                    fRoundingMode,
                    status);
            resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
            break;

        case Precision::RND_INCREMENT_ONE:
            value.roundToMagnitude(
                    fPrecision.fUnion.increment.fIncrementMagnitude,
                    fRoundingMode,
                    status);
            resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
            break;

        case Precision::RND_INCREMENT_FIVE:
            value.roundToNickel(
                    fPrecision.fUnion.increment.fIncrementMagnitude,
                    fRoundingMode,
                    status);
            resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
            break;

        case Precision::RND_CURRENCY:
            // Call .withCurrency() before .apply()!
            UPRV_UNREACHABLE_EXIT;

        default:
            UPRV_UNREACHABLE_EXIT;
    }

    if (fPrecision.fTrailingZeroDisplay == UNUM_TRAILING_ZERO_AUTO ||
            // PLURAL_OPERAND_T returns fraction digits as an integer
            value.getPluralOperand(PLURAL_OPERAND_T) != 0) {
        value.setMinFraction(resolvedMinFraction);
    }
}

void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) {
    // This method is intended for the one specific purpose of helping print "00.000E0".
    // Question: Is it useful to look at trailingZeroDisplay here?
    U_ASSERT(isSignificantDigits());
    U_ASSERT(value.isZeroish());
    value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt);
}

#endif /* #if !UCONFIG_NO_FORMATTING */