summaryrefslogtreecommitdiffstats
path: root/js/src/ctypes/libffi/src/riscv/ffi.c
blob: c910858896ae60d38da2b992c4790932767a5e20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/* -----------------------------------------------------------------------
   ffi.c - Copyright (c) 2015 Michael Knyszek <mknyszek@berkeley.edu>
                         2015 Andrew Waterman <waterman@cs.berkeley.edu>
                         2018 Stef O'Rear <sorear2@gmail.com>
   Based on MIPS N32/64 port

   RISC-V Foreign Function Interface

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   DEALINGS IN THE SOFTWARE.
   ----------------------------------------------------------------------- */

#include <ffi.h>
#include <ffi_common.h>

#include <stdlib.h>
#include <stdint.h>

#if __riscv_float_abi_double
#define ABI_FLEN 64
#define ABI_FLOAT double
#elif __riscv_float_abi_single
#define ABI_FLEN 32
#define ABI_FLOAT float
#endif

#define NARGREG 8
#define STKALIGN 16
#define MAXCOPYARG (2 * sizeof(double))

typedef struct call_context
{
#if ABI_FLEN
    ABI_FLOAT fa[8];
#endif
    size_t a[8];
    /* used by the assembly code to in-place construct its own stack frame */
    char frame[16];
} call_context;

typedef struct call_builder
{
    call_context *aregs;
    int used_integer;
    int used_float;
    size_t *used_stack;
} call_builder;

/* integer (not pointer) less than ABI XLEN */
/* FFI_TYPE_INT does not appear to be used */
#if __SIZEOF_POINTER__ == 8
#define IS_INT(type) ((type) >= FFI_TYPE_UINT8 && (type) <= FFI_TYPE_SINT64)
#else
#define IS_INT(type) ((type) >= FFI_TYPE_UINT8 && (type) <= FFI_TYPE_SINT32)
#endif

#if ABI_FLEN
typedef struct {
    char as_elements, type1, offset2, type2;
} float_struct_info;

#if ABI_FLEN >= 64
#define IS_FLOAT(type) ((type) >= FFI_TYPE_FLOAT && (type) <= FFI_TYPE_DOUBLE)
#else
#define IS_FLOAT(type) ((type) == FFI_TYPE_FLOAT)
#endif

static ffi_type **flatten_struct(ffi_type *in, ffi_type **out, ffi_type **out_end) {
    int i;
    if (out == out_end) return out;
    if (in->type != FFI_TYPE_STRUCT) {
        *(out++) = in;
    } else {
        for (i = 0; in->elements[i]; i++)
            out = flatten_struct(in->elements[i], out, out_end);
    }
    return out;
}

/* Structs with at most two fields after flattening, one of which is of
   floating point type, are passed in multiple registers if sufficient
   registers are available. */
static float_struct_info struct_passed_as_elements(call_builder *cb, ffi_type *top) {
    float_struct_info ret = {0, 0, 0, 0};
    ffi_type *fields[3];
    int num_floats, num_ints;
    int num_fields = flatten_struct(top, fields, fields + 3) - fields;

    if (num_fields == 1) {
        if (IS_FLOAT(fields[0]->type)) {
            ret.as_elements = 1;
            ret.type1 = fields[0]->type;
        }
    } else if (num_fields == 2) {
        num_floats = IS_FLOAT(fields[0]->type) + IS_FLOAT(fields[1]->type);
        num_ints = IS_INT(fields[0]->type) + IS_INT(fields[1]->type);
        if (num_floats == 0 || num_floats + num_ints != 2)
            return ret;
        if (cb->used_float + num_floats > NARGREG || cb->used_integer + (2 - num_floats) > NARGREG)
            return ret;
        if (!IS_FLOAT(fields[0]->type) && !IS_FLOAT(fields[1]->type))
            return ret;

        ret.type1 = fields[0]->type;
        ret.type2 = fields[1]->type;
        ret.offset2 = FFI_ALIGN(fields[0]->size, fields[1]->alignment);
        ret.as_elements = 1;
    }

    return ret;
}
#endif

/* allocates a single register, float register, or XLEN-sized stack slot to a datum */
static void marshal_atom(call_builder *cb, int type, void *data) {
    size_t value = 0;
    switch (type) {
        case FFI_TYPE_UINT8: value = *(uint8_t *)data; break;
        case FFI_TYPE_SINT8: value = *(int8_t *)data; break;
        case FFI_TYPE_UINT16: value = *(uint16_t *)data; break;
        case FFI_TYPE_SINT16: value = *(int16_t *)data; break;
        /* 32-bit quantities are always sign-extended in the ABI */
        case FFI_TYPE_UINT32: value = *(int32_t *)data; break;
        case FFI_TYPE_SINT32: value = *(int32_t *)data; break;
#if __SIZEOF_POINTER__ == 8
        case FFI_TYPE_UINT64: value = *(uint64_t *)data; break;
        case FFI_TYPE_SINT64: value = *(int64_t *)data; break;
#endif
        case FFI_TYPE_POINTER: value = *(size_t *)data; break;

        /* float values may be recoded in an implementation-defined way
           by hardware conforming to 2.1 or earlier, so use asm to
           reinterpret floats as doubles */
#if ABI_FLEN >= 32
        case FFI_TYPE_FLOAT:
            asm("" : "=f"(cb->aregs->fa[cb->used_float++]) : "0"(*(float *)data));
            return;
#endif
#if ABI_FLEN >= 64
        case FFI_TYPE_DOUBLE:
            asm("" : "=f"(cb->aregs->fa[cb->used_float++]) : "0"(*(double *)data));
            return;
#endif
        default: FFI_ASSERT(0); break;
    }

    if (cb->used_integer == NARGREG) {
        *cb->used_stack++ = value;
    } else {
        cb->aregs->a[cb->used_integer++] = value;
    }
}

static void unmarshal_atom(call_builder *cb, int type, void *data) {
    size_t value;
    switch (type) {
#if ABI_FLEN >= 32
        case FFI_TYPE_FLOAT:
            asm("" : "=f"(*(float *)data) : "0"(cb->aregs->fa[cb->used_float++]));
            return;
#endif
#if ABI_FLEN >= 64
        case FFI_TYPE_DOUBLE:
            asm("" : "=f"(*(double *)data) : "0"(cb->aregs->fa[cb->used_float++]));
            return;
#endif
    }

    if (cb->used_integer == NARGREG) {
        value = *cb->used_stack++;
    } else {
        value = cb->aregs->a[cb->used_integer++];
    }

    switch (type) {
        case FFI_TYPE_UINT8: *(uint8_t *)data = value; break;
        case FFI_TYPE_SINT8: *(uint8_t *)data = value; break;
        case FFI_TYPE_UINT16: *(uint16_t *)data = value; break;
        case FFI_TYPE_SINT16: *(uint16_t *)data = value; break;
        case FFI_TYPE_UINT32: *(uint32_t *)data = value; break;
        case FFI_TYPE_SINT32: *(uint32_t *)data = value; break;
#if __SIZEOF_POINTER__ == 8
        case FFI_TYPE_UINT64: *(uint64_t *)data = value; break;
        case FFI_TYPE_SINT64: *(uint64_t *)data = value; break;
#endif
        case FFI_TYPE_POINTER: *(size_t *)data = value; break;
        default: FFI_ASSERT(0); break;
    }
}

/* adds an argument to a call, or a not by reference return value */
static void marshal(call_builder *cb, ffi_type *type, int var, void *data) {
    size_t realign[2];

#if ABI_FLEN
    if (!var && type->type == FFI_TYPE_STRUCT) {
        float_struct_info fsi = struct_passed_as_elements(cb, type);
        if (fsi.as_elements) {
            marshal_atom(cb, fsi.type1, data);
            if (fsi.offset2)
                marshal_atom(cb, fsi.type2, ((char*)data) + fsi.offset2);
            return;
        }
    }

    if (!var && cb->used_float < NARGREG && IS_FLOAT(type->type)) {
        marshal_atom(cb, type->type, data);
        return;
    }
#endif

    if (type->size > 2 * __SIZEOF_POINTER__) {
        /* pass by reference */
        marshal_atom(cb, FFI_TYPE_POINTER, &data);
    } else if (IS_INT(type->type) || type->type == FFI_TYPE_POINTER) {
        marshal_atom(cb, type->type, data);
    } else {
        /* overlong integers, soft-float floats, and structs without special
           float handling are treated identically from this point on */

        /* variadics are aligned even in registers */
        if (type->alignment > __SIZEOF_POINTER__) {
            if (var)
                cb->used_integer = FFI_ALIGN(cb->used_integer, 2);
            cb->used_stack = (size_t *)FFI_ALIGN(cb->used_stack, 2*__SIZEOF_POINTER__);
        }

        memcpy(realign, data, type->size);
        if (type->size > 0)
            marshal_atom(cb, FFI_TYPE_POINTER, realign);
        if (type->size > __SIZEOF_POINTER__)
            marshal_atom(cb, FFI_TYPE_POINTER, realign + 1);
    }
}

/* for arguments passed by reference returns the pointer, otherwise the arg is copied (up to MAXCOPYARG bytes) */
static void *unmarshal(call_builder *cb, ffi_type *type, int var, void *data) {
    size_t realign[2];
    void *pointer;

#if ABI_FLEN
    if (!var && type->type == FFI_TYPE_STRUCT) {
        float_struct_info fsi = struct_passed_as_elements(cb, type);
        if (fsi.as_elements) {
            unmarshal_atom(cb, fsi.type1, data);
            if (fsi.offset2)
                unmarshal_atom(cb, fsi.type2, ((char*)data) + fsi.offset2);
            return data;
        }
    }

    if (!var && cb->used_float < NARGREG && IS_FLOAT(type->type)) {
        unmarshal_atom(cb, type->type, data);
        return data;
    }
#endif

    if (type->size > 2 * __SIZEOF_POINTER__) {
        /* pass by reference */
        unmarshal_atom(cb, FFI_TYPE_POINTER, (char*)&pointer);
        return pointer;
    } else if (IS_INT(type->type) || type->type == FFI_TYPE_POINTER) {
        unmarshal_atom(cb, type->type, data);
        return data;
    } else {
        /* overlong integers, soft-float floats, and structs without special
           float handling are treated identically from this point on */

        /* variadics are aligned even in registers */
        if (type->alignment > __SIZEOF_POINTER__) {
            if (var)
                cb->used_integer = FFI_ALIGN(cb->used_integer, 2);
            cb->used_stack = (size_t *)FFI_ALIGN(cb->used_stack, 2*__SIZEOF_POINTER__);
        }

        if (type->size > 0)
            unmarshal_atom(cb, FFI_TYPE_POINTER, realign);
        if (type->size > __SIZEOF_POINTER__)
            unmarshal_atom(cb, FFI_TYPE_POINTER, realign + 1);
        memcpy(data, realign, type->size);
        return data;
    }
}

static int passed_by_ref(call_builder *cb, ffi_type *type, int var) {
#if ABI_FLEN
    if (!var && type->type == FFI_TYPE_STRUCT) {
        float_struct_info fsi = struct_passed_as_elements(cb, type);
        if (fsi.as_elements) return 0;
    }
#endif

    return type->size > 2 * __SIZEOF_POINTER__;
}

/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif) {
    cif->riscv_nfixedargs = cif->nargs;
    return FFI_OK;
}

/* Perform machine dependent cif processing when we have a variadic function */

ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif, unsigned int nfixedargs, unsigned int ntotalargs) {
    cif->riscv_nfixedargs = nfixedargs;
    return FFI_OK;
}

/* Low level routine for calling functions */
extern void ffi_call_asm (void *stack, struct call_context *regs,
			  void (*fn) (void), void *closure) FFI_HIDDEN;

static void
ffi_call_int (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue,
	      void *closure)
{
    /* this is a conservative estimate, assuming a complex return value and
       that all remaining arguments are long long / __int128 */
    size_t arg_bytes = cif->nargs <= 3 ? 0 :
        FFI_ALIGN(2 * sizeof(size_t) * (cif->nargs - 3), STKALIGN);
    size_t rval_bytes = 0;
    if (rvalue == NULL && cif->rtype->size > 2*__SIZEOF_POINTER__)
        rval_bytes = FFI_ALIGN(cif->rtype->size, STKALIGN);
    size_t alloc_size = arg_bytes + rval_bytes + sizeof(call_context);

    /* the assembly code will deallocate all stack data at lower addresses
       than the argument region, so we need to allocate the frame and the
       return value after the arguments in a single allocation */
    size_t alloc_base;
    /* Argument region must be 16-byte aligned */
    if (_Alignof(max_align_t) >= STKALIGN) {
        /* since sizeof long double is normally 16, the compiler will
           guarantee alloca alignment to at least that much */
        alloc_base = (size_t)alloca(alloc_size);
    } else {
        alloc_base = FFI_ALIGN(alloca(alloc_size + STKALIGN - 1), STKALIGN);
    }

    if (rval_bytes)
        rvalue = (void*)(alloc_base + arg_bytes);

    call_builder cb;
    cb.used_float = cb.used_integer = 0;
    cb.aregs = (call_context*)(alloc_base + arg_bytes + rval_bytes);
    cb.used_stack = (void*)alloc_base;

    int return_by_ref = passed_by_ref(&cb, cif->rtype, 0);
    if (return_by_ref)
        marshal(&cb, &ffi_type_pointer, 0, &rvalue);

    int i;
    for (i = 0; i < cif->nargs; i++)
        marshal(&cb, cif->arg_types[i], i >= cif->riscv_nfixedargs, avalue[i]);

    ffi_call_asm ((void *) alloc_base, cb.aregs, fn, closure);

    cb.used_float = cb.used_integer = 0;
    if (!return_by_ref && rvalue)
        unmarshal(&cb, cif->rtype, 0, rvalue);
}

void
ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
  ffi_call_int(cif, fn, rvalue, avalue, NULL);
}

void
ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue,
	     void **avalue, void *closure)
{
  ffi_call_int(cif, fn, rvalue, avalue, closure);
}

extern void ffi_closure_asm(void) FFI_HIDDEN;

ffi_status ffi_prep_closure_loc(ffi_closure *closure, ffi_cif *cif, void (*fun)(ffi_cif*,void*,void**,void*), void *user_data, void *codeloc)
{
    uint32_t *tramp = (uint32_t *) &closure->tramp[0];
    uint64_t fn = (uint64_t) (uintptr_t) ffi_closure_asm;

    if (cif->abi <= FFI_FIRST_ABI || cif->abi >= FFI_LAST_ABI)
        return FFI_BAD_ABI;

    /* we will call ffi_closure_inner with codeloc, not closure, but as long
       as the memory is readable it should work */

    tramp[0] = 0x00000317; /* auipc t1, 0 (i.e. t0 <- codeloc) */
#if __SIZEOF_POINTER__ == 8
    tramp[1] = 0x01033383; /* ld t2, 16(t1) */
#else
    tramp[1] = 0x01032383; /* lw t2, 16(t1) */
#endif
    tramp[2] = 0x00038067; /* jr t2 */
    tramp[3] = 0x00000013; /* nop */
    tramp[4] = fn;
    tramp[5] = fn >> 32;

    closure->cif = cif;
    closure->fun = fun;
    closure->user_data = user_data;

    __builtin___clear_cache(codeloc, codeloc + FFI_TRAMPOLINE_SIZE);

    return FFI_OK;
}

extern void ffi_go_closure_asm (void) FFI_HIDDEN;

ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif,
		     void (*fun) (ffi_cif *, void *, void **, void *))
{
  if (cif->abi <= FFI_FIRST_ABI || cif->abi >= FFI_LAST_ABI)
    return FFI_BAD_ABI;

  closure->tramp = (void *) ffi_go_closure_asm;
  closure->cif = cif;
  closure->fun = fun;

  return FFI_OK;
}

/* Called by the assembly code with aregs pointing to saved argument registers
   and stack pointing to the stacked arguments.  Return values passed in
   registers will be reloaded from aregs. */
void FFI_HIDDEN
ffi_closure_inner (ffi_cif *cif,
		   void (*fun) (ffi_cif *, void *, void **, void *),
		   void *user_data,
		   size_t *stack, call_context *aregs)
{
    void **avalue = alloca(cif->nargs * sizeof(void*));
    /* storage for arguments which will be copied by unmarshal().  We could
       theoretically avoid the copies in many cases and use at most 128 bytes
       of memory, but allocating disjoint storage for each argument is
       simpler. */
    char *astorage = alloca(cif->nargs * MAXCOPYARG);
    void *rvalue;
    call_builder cb;
    int return_by_ref;
    int i;

    cb.aregs = aregs;
    cb.used_integer = cb.used_float = 0;
    cb.used_stack = stack;

    return_by_ref = passed_by_ref(&cb, cif->rtype, 0);
    if (return_by_ref)
        unmarshal(&cb, &ffi_type_pointer, 0, &rvalue);
    else
        rvalue = alloca(cif->rtype->size);

    for (i = 0; i < cif->nargs; i++)
        avalue[i] = unmarshal(&cb, cif->arg_types[i],
            i >= cif->riscv_nfixedargs, astorage + i*MAXCOPYARG);

    fun (cif, rvalue, avalue, user_data);

    if (!return_by_ref && cif->rtype->type != FFI_TYPE_VOID) {
        cb.used_integer = cb.used_float = 0;
        marshal(&cb, cif->rtype, 0, rvalue);
    }
}