summaryrefslogtreecommitdiffstats
path: root/js/src/gc/Scheduling.cpp
blob: ec03c85f8d59a876c350bed09d52f054727aca4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/Scheduling.h"

#include "mozilla/CheckedInt.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/TimeStamp.h"

#include <algorithm>
#include <cmath>

#include "gc/Memory.h"
#include "gc/Nursery.h"
#include "gc/RelocationOverlay.h"
#include "gc/ZoneAllocator.h"
#include "util/DifferentialTesting.h"
#include "vm/MutexIDs.h"

using namespace js;
using namespace js::gc;

using mozilla::CheckedInt;
using mozilla::Maybe;
using mozilla::Nothing;
using mozilla::Some;
using mozilla::TimeDuration;
using mozilla::TimeStamp;

/*
 * We may start to collect a zone before its trigger threshold is reached if
 * GCRuntime::maybeGC() is called for that zone or we start collecting other
 * zones. These eager threshold factors are not configurable.
 */
static constexpr double HighFrequencyEagerAllocTriggerFactor = 0.85;
static constexpr double LowFrequencyEagerAllocTriggerFactor = 0.9;

/*
 * Don't allow heap growth factors to be set so low that eager collections could
 * reduce the trigger threshold.
 */
static constexpr double MinHeapGrowthFactor =
    1.0f / std::min(HighFrequencyEagerAllocTriggerFactor,
                    LowFrequencyEagerAllocTriggerFactor);

// Limit various parameters to reasonable levels to catch errors.
static constexpr double MaxHeapGrowthFactor = 100;
static constexpr size_t MaxNurseryBytesParam = 128 * 1024 * 1024;

namespace {

// Helper classes to marshal GC parameter values to/from uint32_t.

template <typename T>
struct ConvertGeneric {
  static uint32_t toUint32(T value) {
    static_assert(std::is_arithmetic_v<T>);
    if constexpr (std::is_signed_v<T>) {
      MOZ_ASSERT(value >= 0);
    }
    if constexpr (!std::is_same_v<T, bool> &&
                  std::numeric_limits<T>::max() >
                      std::numeric_limits<uint32_t>::max()) {
      MOZ_ASSERT(value <= UINT32_MAX);
    }
    return uint32_t(value);
  }
  static Maybe<T> fromUint32(uint32_t param) {
    // Currently we use explicit conversion and don't range check.
    return Some(T(param));
  }
};

using ConvertBool = ConvertGeneric<bool>;
using ConvertSize = ConvertGeneric<size_t>;
using ConvertDouble = ConvertGeneric<double>;

struct ConvertTimes100 {
  static uint32_t toUint32(double value) { return uint32_t(value * 100.0); }
  static Maybe<double> fromUint32(uint32_t param) {
    return Some(double(param) / 100.0);
  }
};

struct ConvertNurseryBytes : ConvertSize {
  static Maybe<size_t> fromUint32(uint32_t param) {
    return Some(Nursery::roundSize(param));
  }
};

struct ConvertKB {
  static uint32_t toUint32(size_t value) { return value / 1024; }
  static Maybe<size_t> fromUint32(uint32_t param) {
    // Parameters which represent heap sizes in bytes are restricted to values
    // which can be represented on 32 bit platforms.
    CheckedInt<uint32_t> size = CheckedInt<uint32_t>(param) * 1024;
    return size.isValid() ? Some(size_t(size.value())) : Nothing();
  }
};

struct ConvertMB {
  static uint32_t toUint32(size_t value) { return value / (1024 * 1024); }
  static Maybe<size_t> fromUint32(uint32_t param) {
    // Parameters which represent heap sizes in bytes are restricted to values
    // which can be represented on 32 bit platforms.
    CheckedInt<uint32_t> size = CheckedInt<uint32_t>(param) * 1024 * 1024;
    return size.isValid() ? Some(size_t(size.value())) : Nothing();
  }
};

struct ConvertMillis {
  static uint32_t toUint32(TimeDuration value) {
    return uint32_t(value.ToMilliseconds());
  }
  static Maybe<TimeDuration> fromUint32(uint32_t param) {
    return Some(TimeDuration::FromMilliseconds(param));
  }
};

struct ConvertSeconds {
  static uint32_t toUint32(TimeDuration value) {
    return uint32_t(value.ToSeconds());
  }
  static Maybe<TimeDuration> fromUint32(uint32_t param) {
    return Some(TimeDuration::FromSeconds(param));
  }
};

}  // anonymous namespace

// Helper functions to check GC parameter values

template <typename T>
static bool NoCheck(T value) {
  return true;
}

template <typename T>
static bool CheckNonZero(T value) {
  return value != 0;
}

static bool CheckNurserySize(size_t bytes) {
  return bytes >= SystemPageSize() && bytes <= MaxNurseryBytesParam;
}

static bool CheckHeapGrowth(double growth) {
  return growth >= MinHeapGrowthFactor && growth <= MaxHeapGrowthFactor;
}

static bool CheckIncrementalLimit(double factor) {
  return factor >= 1.0 && factor <= MaxHeapGrowthFactor;
}

static bool CheckNonZeroUnitRange(double value) {
  return value > 0.0 && value <= 100.0;
}

GCSchedulingTunables::GCSchedulingTunables() {
#define INIT_TUNABLE_FIELD(key, type, name, convert, check, default) \
  name##_ = default;                                                 \
  MOZ_ASSERT(check(name##_));
  FOR_EACH_GC_TUNABLE(INIT_TUNABLE_FIELD)
#undef INIT_TUNABLE_FIELD

  checkInvariants();
}

uint32_t GCSchedulingTunables::getParameter(JSGCParamKey key) {
  switch (key) {
#define GET_TUNABLE_FIELD(key, type, name, convert, check, default) \
  case key:                                                         \
    return convert::toUint32(name##_);
    FOR_EACH_GC_TUNABLE(GET_TUNABLE_FIELD)
#undef GET_TUNABLE_FIELD

    default:
      MOZ_CRASH("Unknown parameter key");
  }
}

bool GCSchedulingTunables::setParameter(JSGCParamKey key, uint32_t value) {
  auto guard = mozilla::MakeScopeExit([this] { checkInvariants(); });

  switch (key) {
#define SET_TUNABLE_FIELD(key, type, name, convert, check, default) \
  case key: {                                                       \
    Maybe<type> converted = convert::fromUint32(value);             \
    if (!converted || !check(converted.value())) {                  \
      return false;                                                 \
    }                                                               \
    name##_ = converted.value();                                    \
    break;                                                          \
  }
    FOR_EACH_GC_TUNABLE(SET_TUNABLE_FIELD)
#undef SET_TUNABLE_FIELD

    default:
      MOZ_CRASH("Unknown GC parameter.");
  }

  maintainInvariantsAfterUpdate(key);
  return true;
}

void GCSchedulingTunables::resetParameter(JSGCParamKey key) {
  auto guard = mozilla::MakeScopeExit([this] { checkInvariants(); });

  switch (key) {
#define RESET_TUNABLE_FIELD(key, type, name, convert, check, default) \
  case key:                                                           \
    name##_ = default;                                                \
    MOZ_ASSERT(check(name##_));                                       \
    break;
    FOR_EACH_GC_TUNABLE(RESET_TUNABLE_FIELD)
#undef RESET_TUNABLE_FIELD

    default:
      MOZ_CRASH("Unknown GC parameter.");
  }

  maintainInvariantsAfterUpdate(key);
}

void GCSchedulingTunables::maintainInvariantsAfterUpdate(JSGCParamKey updated) {
  switch (updated) {
    case JSGC_MIN_NURSERY_BYTES:
      if (gcMaxNurseryBytes_ < gcMinNurseryBytes_) {
        gcMaxNurseryBytes_ = gcMinNurseryBytes_;
      }
      break;
    case JSGC_MAX_NURSERY_BYTES:
      if (gcMinNurseryBytes_ > gcMaxNurseryBytes_) {
        gcMinNurseryBytes_ = gcMaxNurseryBytes_;
      }
      break;
    case JSGC_SMALL_HEAP_SIZE_MAX:
      if (smallHeapSizeMaxBytes_ >= largeHeapSizeMinBytes_) {
        largeHeapSizeMinBytes_ = smallHeapSizeMaxBytes_ + 1;
      }
      break;
    case JSGC_LARGE_HEAP_SIZE_MIN:
      if (largeHeapSizeMinBytes_ <= smallHeapSizeMaxBytes_) {
        smallHeapSizeMaxBytes_ = largeHeapSizeMinBytes_ - 1;
      }
      break;
    case JSGC_HIGH_FREQUENCY_SMALL_HEAP_GROWTH:
      if (highFrequencySmallHeapGrowth_ < highFrequencyLargeHeapGrowth_) {
        highFrequencyLargeHeapGrowth_ = highFrequencySmallHeapGrowth_;
      }
      break;
    case JSGC_HIGH_FREQUENCY_LARGE_HEAP_GROWTH:
      if (highFrequencyLargeHeapGrowth_ > highFrequencySmallHeapGrowth_) {
        highFrequencySmallHeapGrowth_ = highFrequencyLargeHeapGrowth_;
      }
      break;
    default:
      break;
  }
}

void GCSchedulingTunables::checkInvariants() {
  MOZ_ASSERT(gcMinNurseryBytes_ == Nursery::roundSize(gcMinNurseryBytes_));
  MOZ_ASSERT(gcMaxNurseryBytes_ == Nursery::roundSize(gcMaxNurseryBytes_));
  MOZ_ASSERT(gcMinNurseryBytes_ <= gcMaxNurseryBytes_);
  MOZ_ASSERT(gcMinNurseryBytes_ >= SystemPageSize());
  MOZ_ASSERT(gcMaxNurseryBytes_ <= MaxNurseryBytesParam);

  MOZ_ASSERT(largeHeapSizeMinBytes_ > smallHeapSizeMaxBytes_);

  MOZ_ASSERT(lowFrequencyHeapGrowth_ >= MinHeapGrowthFactor);
  MOZ_ASSERT(lowFrequencyHeapGrowth_ <= MaxHeapGrowthFactor);

  MOZ_ASSERT(highFrequencySmallHeapGrowth_ >= MinHeapGrowthFactor);
  MOZ_ASSERT(highFrequencySmallHeapGrowth_ <= MaxHeapGrowthFactor);
  MOZ_ASSERT(highFrequencyLargeHeapGrowth_ <= highFrequencySmallHeapGrowth_);
  MOZ_ASSERT(highFrequencyLargeHeapGrowth_ >= MinHeapGrowthFactor);
  MOZ_ASSERT(highFrequencySmallHeapGrowth_ <= MaxHeapGrowthFactor);
}

void GCSchedulingState::updateHighFrequencyMode(
    const mozilla::TimeStamp& lastGCTime, const mozilla::TimeStamp& currentTime,
    const GCSchedulingTunables& tunables) {
  if (js::SupportDifferentialTesting()) {
    return;
  }

  inHighFrequencyGCMode_ =
      !lastGCTime.IsNull() &&
      lastGCTime + tunables.highFrequencyThreshold() > currentTime;
}

void GCSchedulingState::updateHighFrequencyModeForReason(JS::GCReason reason) {
  // These reason indicate that the embedding isn't triggering GC slices often
  // enough and allocation rate is high.
  if (reason == JS::GCReason::ALLOC_TRIGGER ||
      reason == JS::GCReason::TOO_MUCH_MALLOC) {
    inHighFrequencyGCMode_ = true;
  }
}

static constexpr size_t BytesPerMB = 1024 * 1024;
static constexpr double CollectionRateSmoothingFactor = 0.5;
static constexpr double AllocationRateSmoothingFactor = 0.5;

static double ExponentialMovingAverage(double prevAverage, double newData,
                                       double smoothingFactor) {
  MOZ_ASSERT(smoothingFactor > 0.0 && smoothingFactor <= 1.0);
  return smoothingFactor * newData + (1.0 - smoothingFactor) * prevAverage;
}

void js::ZoneAllocator::updateCollectionRate(
    mozilla::TimeDuration mainThreadGCTime, size_t initialBytesForAllZones) {
  MOZ_ASSERT(initialBytesForAllZones != 0);
  MOZ_ASSERT(gcHeapSize.initialBytes() <= initialBytesForAllZones);

  double zoneFraction =
      double(gcHeapSize.initialBytes()) / double(initialBytesForAllZones);
  double zoneDuration = mainThreadGCTime.ToSeconds() * zoneFraction +
                        perZoneGCTime.ref().ToSeconds();
  double collectionRate =
      double(gcHeapSize.initialBytes()) / (zoneDuration * BytesPerMB);

  if (!smoothedCollectionRate.ref()) {
    smoothedCollectionRate = Some(collectionRate);
  } else {
    double prevRate = smoothedCollectionRate.ref().value();
    smoothedCollectionRate = Some(ExponentialMovingAverage(
        prevRate, collectionRate, CollectionRateSmoothingFactor));
  }
}

void js::ZoneAllocator::updateAllocationRate(TimeDuration mutatorTime) {
  // To get the total size allocated since the last collection we have to
  // take account of how much memory got freed in the meantime.
  size_t freedBytes = gcHeapSize.freedBytes();

  size_t sizeIncludingFreedBytes = gcHeapSize.bytes() + freedBytes;

  MOZ_ASSERT(prevGCHeapSize <= sizeIncludingFreedBytes);
  size_t allocatedBytes = sizeIncludingFreedBytes - prevGCHeapSize;

  double allocationRate =
      double(allocatedBytes) / (mutatorTime.ToSeconds() * BytesPerMB);

  if (!smoothedAllocationRate.ref()) {
    smoothedAllocationRate = Some(allocationRate);
  } else {
    double prevRate = smoothedAllocationRate.ref().value();
    smoothedAllocationRate = Some(ExponentialMovingAverage(
        prevRate, allocationRate, AllocationRateSmoothingFactor));
  }

  gcHeapSize.clearFreedBytes();
  prevGCHeapSize = gcHeapSize.bytes();
}

// GC thresholds may exceed the range of size_t on 32-bit platforms, so these
// are calculated using 64-bit integers and clamped.
static inline size_t ToClampedSize(uint64_t bytes) {
  return std::min(bytes, uint64_t(SIZE_MAX));
}

void HeapThreshold::setIncrementalLimitFromStartBytes(
    size_t retainedBytes, const GCSchedulingTunables& tunables) {
  // Calculate the incremental limit for a heap based on its size and start
  // threshold.
  //
  // This effectively classifies the heap size into small, medium or large, and
  // uses the small heap incremental limit paramer, the large heap incremental
  // limit parameter or an interpolation between them.
  //
  // The incremental limit is always set greater than the start threshold by at
  // least the maximum nursery size to reduce the chance that tenuring a full
  // nursery will send us straight into non-incremental collection.

  MOZ_ASSERT(tunables.smallHeapIncrementalLimit() >=
             tunables.largeHeapIncrementalLimit());

  double factor = LinearInterpolate(
      retainedBytes, tunables.smallHeapSizeMaxBytes(),
      tunables.smallHeapIncrementalLimit(), tunables.largeHeapSizeMinBytes(),
      tunables.largeHeapIncrementalLimit());

  uint64_t bytes =
      std::max(uint64_t(double(startBytes_) * factor),
               uint64_t(startBytes_) + tunables.gcMaxNurseryBytes());
  incrementalLimitBytes_ = ToClampedSize(bytes);
  MOZ_ASSERT(incrementalLimitBytes_ >= startBytes_);

  // Maintain the invariant that the slice threshold is always less than the
  // incremental limit when adjusting GC parameters.
  if (hasSliceThreshold() && sliceBytes() > incrementalLimitBytes()) {
    sliceBytes_ = incrementalLimitBytes();
  }
}

double HeapThreshold::eagerAllocTrigger(bool highFrequencyGC) const {
  double eagerTriggerFactor = highFrequencyGC
                                  ? HighFrequencyEagerAllocTriggerFactor
                                  : LowFrequencyEagerAllocTriggerFactor;
  return eagerTriggerFactor * startBytes();
}

void HeapThreshold::setSliceThreshold(ZoneAllocator* zone,
                                      const HeapSize& heapSize,
                                      const GCSchedulingTunables& tunables,
                                      bool waitingOnBGTask) {
  // Set the allocation threshold at which to trigger the a GC slice in an
  // ongoing incremental collection. This is used to ensure progress in
  // allocation heavy code that may not return to the main event loop.
  //
  // The threshold is based on the JSGC_ZONE_ALLOC_DELAY_KB parameter, but this
  // is reduced to increase the slice frequency as we approach the incremental
  // limit, in the hope that we never reach it. If collector is waiting for a
  // background task to complete, don't trigger any slices until we reach the
  // urgent threshold.

  size_t bytesRemaining = incrementalBytesRemaining(heapSize);
  bool isUrgent = bytesRemaining < tunables.urgentThresholdBytes();

  size_t delayBeforeNextSlice = tunables.zoneAllocDelayBytes();
  if (isUrgent) {
    double fractionRemaining =
        double(bytesRemaining) / double(tunables.urgentThresholdBytes());
    delayBeforeNextSlice =
        size_t(double(delayBeforeNextSlice) * fractionRemaining);
    MOZ_ASSERT(delayBeforeNextSlice <= tunables.zoneAllocDelayBytes());
  } else if (waitingOnBGTask) {
    delayBeforeNextSlice = bytesRemaining - tunables.urgentThresholdBytes();
  }

  sliceBytes_ = ToClampedSize(
      std::min(uint64_t(heapSize.bytes()) + uint64_t(delayBeforeNextSlice),
               uint64_t(incrementalLimitBytes_)));
}

size_t HeapThreshold::incrementalBytesRemaining(
    const HeapSize& heapSize) const {
  if (heapSize.bytes() >= incrementalLimitBytes_) {
    return 0;
  }

  return incrementalLimitBytes_ - heapSize.bytes();
}

/* static */
double HeapThreshold::computeZoneHeapGrowthFactorForHeapSize(
    size_t lastBytes, const GCSchedulingTunables& tunables,
    const GCSchedulingState& state) {
  // For small zones, our collection heuristics do not matter much: favor
  // something simple in this case.
  if (lastBytes < 1 * 1024 * 1024) {
    return tunables.lowFrequencyHeapGrowth();
  }

  // The heap growth factor depends on the heap size after a GC and the GC
  // frequency. If GC's are not triggering in rapid succession, use a lower
  // threshold so that we will collect garbage sooner.
  if (!state.inHighFrequencyGCMode()) {
    return tunables.lowFrequencyHeapGrowth();
  }

  // For high frequency GCs we let the heap grow depending on whether we
  // classify the heap as small, medium or large. There are parameters for small
  // and large heap sizes and linear interpolation is used between them for
  // medium sized heaps.

  MOZ_ASSERT(tunables.smallHeapSizeMaxBytes() <=
             tunables.largeHeapSizeMinBytes());
  MOZ_ASSERT(tunables.highFrequencyLargeHeapGrowth() <=
             tunables.highFrequencySmallHeapGrowth());

  return LinearInterpolate(lastBytes, tunables.smallHeapSizeMaxBytes(),
                           tunables.highFrequencySmallHeapGrowth(),
                           tunables.largeHeapSizeMinBytes(),
                           tunables.highFrequencyLargeHeapGrowth());
}

/* static */
size_t GCHeapThreshold::computeZoneTriggerBytes(
    double growthFactor, size_t lastBytes,
    const GCSchedulingTunables& tunables) {
  size_t base = std::max(lastBytes, tunables.gcZoneAllocThresholdBase());
  double trigger = double(base) * growthFactor;
  double triggerMax =
      double(tunables.gcMaxBytes()) / tunables.largeHeapIncrementalLimit();
  return ToClampedSize(std::min(triggerMax, trigger));
}

// Parameters for balanced heap limits computation.

// The W0 parameter. How much memory can be traversed in the minimum collection
// time.
static constexpr double BalancedHeapBaseMB = 5.0;

// The minimum heap limit. Do not constrain the heap to any less than this size.
static constexpr double MinBalancedHeapLimitMB = 10.0;

// The minimum amount of additional space to allow beyond the retained size.
static constexpr double MinBalancedHeadroomMB = 3.0;

// The maximum factor by which to expand the heap beyond the retained size.
static constexpr double MaxHeapGrowth = 3.0;

// The default allocation rate in MB/s allocated by the mutator to use before we
// have an estimate. Used to set the heap limit for zones that have not yet been
// collected.
static constexpr double DefaultAllocationRate = 0.0;

// The s0 parameter. The default collection rate in MB/s to use before we have
// an estimate. Used to set the heap limit for zones that have not yet been
// collected.
static constexpr double DefaultCollectionRate = 200.0;

double GCHeapThreshold::computeBalancedHeapLimit(
    size_t lastBytes, double allocationRate, double collectionRate,
    const GCSchedulingTunables& tunables) {
  MOZ_ASSERT(tunables.balancedHeapLimitsEnabled());

  // Optimal heap limits as described in https://arxiv.org/abs/2204.10455

  double W = double(lastBytes) / BytesPerMB;  // Retained size / MB.
  double W0 = BalancedHeapBaseMB;
  double d = tunables.heapGrowthFactor();  // Rearranged constant 'c'.
  double g = allocationRate;
  double s = collectionRate;
  double f = d * sqrt((W + W0) * (g / s));
  double M = W + std::min(f, MaxHeapGrowth * W);
  M = std::max({MinBalancedHeapLimitMB, W + MinBalancedHeadroomMB, M});

  return M * double(BytesPerMB);
}

void GCHeapThreshold::updateStartThreshold(
    size_t lastBytes, mozilla::Maybe<double> allocationRate,
    mozilla::Maybe<double> collectionRate, const GCSchedulingTunables& tunables,
    const GCSchedulingState& state, bool isAtomsZone) {
  if (!tunables.balancedHeapLimitsEnabled()) {
    double growthFactor =
        computeZoneHeapGrowthFactorForHeapSize(lastBytes, tunables, state);

    startBytes_ = computeZoneTriggerBytes(growthFactor, lastBytes, tunables);
  } else {
    double threshold = computeBalancedHeapLimit(
        lastBytes, allocationRate.valueOr(DefaultAllocationRate),
        collectionRate.valueOr(DefaultCollectionRate), tunables);

    double triggerMax =
        double(tunables.gcMaxBytes()) / tunables.largeHeapIncrementalLimit();

    startBytes_ = ToClampedSize(uint64_t(std::min(triggerMax, threshold)));
  }

  setIncrementalLimitFromStartBytes(lastBytes, tunables);
}

/* static */
size_t MallocHeapThreshold::computeZoneTriggerBytes(double growthFactor,
                                                    size_t lastBytes,
                                                    size_t baseBytes) {
  return ToClampedSize(double(std::max(lastBytes, baseBytes)) * growthFactor);
}

void MallocHeapThreshold::updateStartThreshold(
    size_t lastBytes, const GCSchedulingTunables& tunables,
    const GCSchedulingState& state) {
  double growthFactor =
      computeZoneHeapGrowthFactorForHeapSize(lastBytes, tunables, state);

  startBytes_ = computeZoneTriggerBytes(growthFactor, lastBytes,
                                        tunables.mallocThresholdBase());

  setIncrementalLimitFromStartBytes(lastBytes, tunables);
}

#ifdef DEBUG

static const char* MemoryUseName(MemoryUse use) {
  switch (use) {
#  define DEFINE_CASE(Name) \
    case MemoryUse::Name:   \
      return #Name;
    JS_FOR_EACH_MEMORY_USE(DEFINE_CASE)
#  undef DEFINE_CASE
  }

  MOZ_CRASH("Unknown memory use");
}

MemoryTracker::MemoryTracker() : mutex(mutexid::MemoryTracker) {}

void MemoryTracker::checkEmptyOnDestroy() {
  bool ok = true;

  if (!gcMap.empty()) {
    ok = false;
    fprintf(stderr, "Missing calls to JS::RemoveAssociatedMemory:\n");
    for (auto r = gcMap.all(); !r.empty(); r.popFront()) {
      fprintf(stderr, "  %p 0x%zx %s\n", r.front().key().ptr(),
              r.front().value(), MemoryUseName(r.front().key().use()));
    }
  }

  if (!nonGCMap.empty()) {
    ok = false;
    fprintf(stderr, "Missing calls to Zone::decNonGCMemory:\n");
    for (auto r = nonGCMap.all(); !r.empty(); r.popFront()) {
      fprintf(stderr, "  %p 0x%zx\n", r.front().key().ptr(), r.front().value());
    }
  }

  MOZ_ASSERT(ok);
}

/* static */
inline bool MemoryTracker::isGCMemoryUse(MemoryUse use) {
  // Most memory uses are for memory associated with GC things but some are for
  // memory associated with non-GC thing pointers.
  return !isNonGCMemoryUse(use);
}

/* static */
inline bool MemoryTracker::isNonGCMemoryUse(MemoryUse use) {
  return use == MemoryUse::TrackedAllocPolicy;
}

/* static */
inline bool MemoryTracker::allowMultipleAssociations(MemoryUse use) {
  // For most uses only one association is possible for each GC thing. Allow a
  // one-to-many relationship only where necessary.
  return isNonGCMemoryUse(use) || use == MemoryUse::RegExpSharedBytecode ||
         use == MemoryUse::BreakpointSite || use == MemoryUse::Breakpoint ||
         use == MemoryUse::ForOfPICStub || use == MemoryUse::ICUObject;
}

void MemoryTracker::trackGCMemory(Cell* cell, size_t nbytes, MemoryUse use) {
  MOZ_ASSERT(cell->isTenured());
  MOZ_ASSERT(isGCMemoryUse(use));

  LockGuard<Mutex> lock(mutex);

  Key<Cell> key{cell, use};
  AutoEnterOOMUnsafeRegion oomUnsafe;
  auto ptr = gcMap.lookupForAdd(key);
  if (ptr) {
    if (!allowMultipleAssociations(use)) {
      MOZ_CRASH_UNSAFE_PRINTF("Association already present: %p 0x%zx %s", cell,
                              nbytes, MemoryUseName(use));
    }
    ptr->value() += nbytes;
    return;
  }

  if (!gcMap.add(ptr, key, nbytes)) {
    oomUnsafe.crash("MemoryTracker::trackGCMemory");
  }
}

void MemoryTracker::untrackGCMemory(Cell* cell, size_t nbytes, MemoryUse use) {
  MOZ_ASSERT(cell->isTenured());

  LockGuard<Mutex> lock(mutex);

  Key<Cell> key{cell, use};
  auto ptr = gcMap.lookup(key);
  if (!ptr) {
    MOZ_CRASH_UNSAFE_PRINTF("Association not found: %p 0x%zx %s", cell, nbytes,
                            MemoryUseName(use));
  }

  if (!allowMultipleAssociations(use) && ptr->value() != nbytes) {
    MOZ_CRASH_UNSAFE_PRINTF(
        "Association for %p %s has different size: "
        "expected 0x%zx but got 0x%zx",
        cell, MemoryUseName(use), ptr->value(), nbytes);
  }

  if (nbytes > ptr->value()) {
    MOZ_CRASH_UNSAFE_PRINTF(
        "Association for %p %s size is too large: "
        "expected at most 0x%zx but got 0x%zx",
        cell, MemoryUseName(use), ptr->value(), nbytes);
  }

  ptr->value() -= nbytes;

  if (ptr->value() == 0) {
    gcMap.remove(ptr);
  }
}

void MemoryTracker::swapGCMemory(Cell* a, Cell* b, MemoryUse use) {
  Key<Cell> ka{a, use};
  Key<Cell> kb{b, use};

  LockGuard<Mutex> lock(mutex);

  size_t sa = getAndRemoveEntry(ka, lock);
  size_t sb = getAndRemoveEntry(kb, lock);

  AutoEnterOOMUnsafeRegion oomUnsafe;

  if ((sa && b->isTenured() && !gcMap.put(kb, sa)) ||
      (sb && a->isTenured() && !gcMap.put(ka, sb))) {
    oomUnsafe.crash("MemoryTracker::swapGCMemory");
  }
}

size_t MemoryTracker::getAndRemoveEntry(const Key<Cell>& key,
                                        LockGuard<Mutex>& lock) {
  auto ptr = gcMap.lookup(key);
  if (!ptr) {
    return 0;
  }

  size_t size = ptr->value();
  gcMap.remove(ptr);
  return size;
}

void MemoryTracker::registerNonGCMemory(void* mem, MemoryUse use) {
  LockGuard<Mutex> lock(mutex);

  Key<void> key{mem, use};
  auto ptr = nonGCMap.lookupForAdd(key);
  if (ptr) {
    MOZ_CRASH_UNSAFE_PRINTF("%s assocaition %p already registered",
                            MemoryUseName(use), mem);
  }

  AutoEnterOOMUnsafeRegion oomUnsafe;
  if (!nonGCMap.add(ptr, key, 0)) {
    oomUnsafe.crash("MemoryTracker::registerNonGCMemory");
  }
}

void MemoryTracker::unregisterNonGCMemory(void* mem, MemoryUse use) {
  LockGuard<Mutex> lock(mutex);

  Key<void> key{mem, use};
  auto ptr = nonGCMap.lookup(key);
  if (!ptr) {
    MOZ_CRASH_UNSAFE_PRINTF("%s association %p not found", MemoryUseName(use),
                            mem);
  }

  if (ptr->value() != 0) {
    MOZ_CRASH_UNSAFE_PRINTF(
        "%s association %p still has 0x%zx bytes associated",
        MemoryUseName(use), mem, ptr->value());
  }

  nonGCMap.remove(ptr);
}

void MemoryTracker::moveNonGCMemory(void* dst, void* src, MemoryUse use) {
  LockGuard<Mutex> lock(mutex);

  Key<void> srcKey{src, use};
  auto srcPtr = nonGCMap.lookup(srcKey);
  if (!srcPtr) {
    MOZ_CRASH_UNSAFE_PRINTF("%s association %p not found", MemoryUseName(use),
                            src);
  }

  size_t nbytes = srcPtr->value();
  nonGCMap.remove(srcPtr);

  Key<void> dstKey{dst, use};
  auto dstPtr = nonGCMap.lookupForAdd(dstKey);
  if (dstPtr) {
    MOZ_CRASH_UNSAFE_PRINTF("%s %p already registered", MemoryUseName(use),
                            dst);
  }

  AutoEnterOOMUnsafeRegion oomUnsafe;
  if (!nonGCMap.add(dstPtr, dstKey, nbytes)) {
    oomUnsafe.crash("MemoryTracker::moveNonGCMemory");
  }
}

void MemoryTracker::incNonGCMemory(void* mem, size_t nbytes, MemoryUse use) {
  MOZ_ASSERT(isNonGCMemoryUse(use));

  LockGuard<Mutex> lock(mutex);

  Key<void> key{mem, use};
  auto ptr = nonGCMap.lookup(key);
  if (!ptr) {
    MOZ_CRASH_UNSAFE_PRINTF("%s allocation %p not found", MemoryUseName(use),
                            mem);
  }

  ptr->value() += nbytes;
}

void MemoryTracker::decNonGCMemory(void* mem, size_t nbytes, MemoryUse use) {
  MOZ_ASSERT(isNonGCMemoryUse(use));

  LockGuard<Mutex> lock(mutex);

  Key<void> key{mem, use};
  auto ptr = nonGCMap.lookup(key);
  if (!ptr) {
    MOZ_CRASH_UNSAFE_PRINTF("%s allocation %p not found", MemoryUseName(use),
                            mem);
  }

  size_t& value = ptr->value();
  if (nbytes > value) {
    MOZ_CRASH_UNSAFE_PRINTF(
        "%s allocation %p is too large: "
        "expected at most 0x%zx but got 0x%zx bytes",
        MemoryUseName(use), mem, value, nbytes);
  }

  value -= nbytes;
}

void MemoryTracker::fixupAfterMovingGC() {
  // Update the table after we move GC things. We don't use StableCellHasher
  // because that would create a difference between debug and release builds.
  for (GCMap::Enum e(gcMap); !e.empty(); e.popFront()) {
    const auto& key = e.front().key();
    Cell* cell = key.ptr();
    if (cell->isForwarded()) {
      cell = gc::RelocationOverlay::fromCell(cell)->forwardingAddress();
      e.rekeyFront(Key<Cell>{cell, key.use()});
    }
  }
}

template <typename Ptr>
inline MemoryTracker::Key<Ptr>::Key(Ptr* ptr, MemoryUse use)
    : ptr_(uint64_t(ptr)), use_(uint64_t(use)) {
#  ifdef JS_64BIT
  static_assert(sizeof(Key) == 8,
                "MemoryTracker::Key should be packed into 8 bytes");
#  endif
  MOZ_ASSERT(this->ptr() == ptr);
  MOZ_ASSERT(this->use() == use);
}

template <typename Ptr>
inline Ptr* MemoryTracker::Key<Ptr>::ptr() const {
  return reinterpret_cast<Ptr*>(ptr_);
}
template <typename Ptr>
inline MemoryUse MemoryTracker::Key<Ptr>::use() const {
  return static_cast<MemoryUse>(use_);
}

template <typename Ptr>
inline HashNumber MemoryTracker::Hasher<Ptr>::hash(const Lookup& l) {
  return mozilla::HashGeneric(DefaultHasher<Ptr*>::hash(l.ptr()),
                              DefaultHasher<unsigned>::hash(unsigned(l.use())));
}

template <typename Ptr>
inline bool MemoryTracker::Hasher<Ptr>::match(const KeyT& k, const Lookup& l) {
  return k.ptr() == l.ptr() && k.use() == l.use();
}

template <typename Ptr>
inline void MemoryTracker::Hasher<Ptr>::rekey(KeyT& k, const KeyT& newKey) {
  k = newKey;
}

#endif  // DEBUG