summaryrefslogtreecommitdiffstats
path: root/js/src/jit/riscv64/extension/base-riscv-i.cc
blob: 2ee8877eb13660ecd20420201a324008a08bd89d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "jit/riscv64/extension/base-riscv-i.h"
#include "jit/riscv64/constant/Constant-riscv64.h"
#include "jit/riscv64/Assembler-riscv64.h"
#include "jit/riscv64/Architecture-riscv64.h"
namespace js {
namespace jit {

void AssemblerRISCVI::lui(Register rd, int32_t imm20) {
  GenInstrU(LUI, rd, imm20);
}

void AssemblerRISCVI::auipc(Register rd, int32_t imm20) {
  GenInstrU(AUIPC, rd, imm20);
}

// Jumps

void AssemblerRISCVI::jal(Register rd, int32_t imm21) {
  GenInstrJ(JAL, rd, imm21);
}

void AssemblerRISCVI::jalr(Register rd, Register rs1, int16_t imm12) {
  GenInstrI(0b000, JALR, rd, rs1, imm12);
}

// Branches

void AssemblerRISCVI::beq(Register rs1, Register rs2, int16_t imm13) {
  GenInstrBranchCC_rri(0b000, rs1, rs2, imm13);
}

void AssemblerRISCVI::bne(Register rs1, Register rs2, int16_t imm13) {
  GenInstrBranchCC_rri(0b001, rs1, rs2, imm13);
}

void AssemblerRISCVI::blt(Register rs1, Register rs2, int16_t imm13) {
  GenInstrBranchCC_rri(0b100, rs1, rs2, imm13);
}

void AssemblerRISCVI::bge(Register rs1, Register rs2, int16_t imm13) {
  GenInstrBranchCC_rri(0b101, rs1, rs2, imm13);
}

void AssemblerRISCVI::bltu(Register rs1, Register rs2, int16_t imm13) {
  GenInstrBranchCC_rri(0b110, rs1, rs2, imm13);
}

void AssemblerRISCVI::bgeu(Register rs1, Register rs2, int16_t imm13) {
  GenInstrBranchCC_rri(0b111, rs1, rs2, imm13);
}

// Loads

void AssemblerRISCVI::lb(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b000, rd, rs1, imm12);
}

void AssemblerRISCVI::lh(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b001, rd, rs1, imm12);
}

void AssemblerRISCVI::lw(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b010, rd, rs1, imm12);
}

void AssemblerRISCVI::lbu(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b100, rd, rs1, imm12);
}

void AssemblerRISCVI::lhu(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b101, rd, rs1, imm12);
}

// Stores

void AssemblerRISCVI::sb(Register source, Register base, int16_t imm12) {
  GenInstrStore_rri(0b000, base, source, imm12);
}

void AssemblerRISCVI::sh(Register source, Register base, int16_t imm12) {
  GenInstrStore_rri(0b001, base, source, imm12);
}

void AssemblerRISCVI::sw(Register source, Register base, int16_t imm12) {
  GenInstrStore_rri(0b010, base, source, imm12);
}

// Arithmetic with immediate

void AssemblerRISCVI::addi(Register rd, Register rs1, int16_t imm12) {
  GenInstrALU_ri(0b000, rd, rs1, imm12);
}

void AssemblerRISCVI::slti(Register rd, Register rs1, int16_t imm12) {
  GenInstrALU_ri(0b010, rd, rs1, imm12);
}

void AssemblerRISCVI::sltiu(Register rd, Register rs1, int16_t imm12) {
  GenInstrALU_ri(0b011, rd, rs1, imm12);
}

void AssemblerRISCVI::xori(Register rd, Register rs1, int16_t imm12) {
  GenInstrALU_ri(0b100, rd, rs1, imm12);
}

void AssemblerRISCVI::ori(Register rd, Register rs1, int16_t imm12) {
  GenInstrALU_ri(0b110, rd, rs1, imm12);
}

void AssemblerRISCVI::andi(Register rd, Register rs1, int16_t imm12) {
  GenInstrALU_ri(0b111, rd, rs1, imm12);
}

void AssemblerRISCVI::slli(Register rd, Register rs1, uint8_t shamt) {
  GenInstrShift_ri(0, 0b001, rd, rs1, shamt & 0x3f);
}

void AssemblerRISCVI::srli(Register rd, Register rs1, uint8_t shamt) {
  GenInstrShift_ri(0, 0b101, rd, rs1, shamt & 0x3f);
}

void AssemblerRISCVI::srai(Register rd, Register rs1, uint8_t shamt) {
  GenInstrShift_ri(1, 0b101, rd, rs1, shamt & 0x3f);
}

// Arithmetic

void AssemblerRISCVI::add(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b000, rd, rs1, rs2);
}

void AssemblerRISCVI::sub(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0100000, 0b000, rd, rs1, rs2);
}

void AssemblerRISCVI::sll(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b001, rd, rs1, rs2);
}

void AssemblerRISCVI::slt(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b010, rd, rs1, rs2);
}

void AssemblerRISCVI::sltu(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b011, rd, rs1, rs2);
}

void AssemblerRISCVI::xor_(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b100, rd, rs1, rs2);
}

void AssemblerRISCVI::srl(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b101, rd, rs1, rs2);
}

void AssemblerRISCVI::sra(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0100000, 0b101, rd, rs1, rs2);
}

void AssemblerRISCVI::or_(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b110, rd, rs1, rs2);
}

void AssemblerRISCVI::and_(Register rd, Register rs1, Register rs2) {
  GenInstrALU_rr(0b0000000, 0b111, rd, rs1, rs2);
}

// Memory fences

void AssemblerRISCVI::fence(uint8_t pred, uint8_t succ) {
  MOZ_ASSERT(is_uint4(pred) && is_uint4(succ));
  uint16_t imm12 = succ | (pred << 4) | (0b0000 << 8);
  GenInstrI(0b000, MISC_MEM, ToRegister(0UL), ToRegister(0UL), imm12);
}

void AssemblerRISCVI::fence_tso() {
  uint16_t imm12 = (0b0011) | (0b0011 << 4) | (0b1000 << 8);
  GenInstrI(0b000, MISC_MEM, ToRegister(0UL), ToRegister(0UL), imm12);
}

// Environment call / break

void AssemblerRISCVI::ecall() {
  GenInstrI(0b000, SYSTEM, ToRegister(0UL), ToRegister(0UL), 0);
}

void AssemblerRISCVI::ebreak() {
  GenInstrI(0b000, SYSTEM, ToRegister(0UL), ToRegister(0UL), 1);
}

// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
// instruction (i.e., it should always trap, if your implementation has invalid
// instruction traps).
void AssemblerRISCVI::unimp() {
  GenInstrI(0b001, SYSTEM, ToRegister(0), ToRegister(0), 0b110000000000);
}

bool AssemblerRISCVI::IsBranch(Instr instr) {
  return (instr & kBaseOpcodeMask) == BRANCH;
}

bool AssemblerRISCVI::IsJump(Instr instr) {
  int Op = instr & kBaseOpcodeMask;
  return Op == JAL || Op == JALR;
}

bool AssemblerRISCVI::IsNop(Instr instr) { return instr == kNopByte; }

bool AssemblerRISCVI::IsJal(Instr instr) {
  return (instr & kBaseOpcodeMask) == JAL;
}

bool AssemblerRISCVI::IsJalr(Instr instr) {
  return (instr & kBaseOpcodeMask) == JALR;
}

bool AssemblerRISCVI::IsLui(Instr instr) {
  return (instr & kBaseOpcodeMask) == LUI;
}
bool AssemblerRISCVI::IsAuipc(Instr instr) {
  return (instr & kBaseOpcodeMask) == AUIPC;
}
bool AssemblerRISCVI::IsAddi(Instr instr) {
  return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ADDI;
}
bool AssemblerRISCVI::IsOri(Instr instr) {
  return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ORI;
}
bool AssemblerRISCVI::IsSlli(Instr instr) {
  return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_SLLI;
}

int AssemblerRISCVI::JumpOffset(Instr instr) {
  int32_t imm21 = ((instr & 0x7fe00000) >> 20) | ((instr & 0x100000) >> 9) |
                  (instr & 0xff000) | ((instr & 0x80000000) >> 11);
  imm21 = imm21 << 11 >> 11;
  return imm21;
}

int AssemblerRISCVI::JalrOffset(Instr instr) {
  MOZ_ASSERT(IsJalr(instr));
  int32_t imm12 = static_cast<int32_t>(instr & kImm12Mask) >> 20;
  return imm12;
}

int AssemblerRISCVI::AuipcOffset(Instr instr) {
  MOZ_ASSERT(IsAuipc(instr));
  int32_t imm20 = static_cast<int32_t>(instr & kImm20Mask);
  return imm20;
}

bool AssemblerRISCVI::IsLw(Instr instr) {
  return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_LW;
}

int AssemblerRISCVI::LoadOffset(Instr instr) {
#if JS_CODEGEN_RISCV64
  MOZ_ASSERT(IsLd(instr));
#elif V8_TARGET_ARCH_RISCV32
  MOZ_ASSERT(IsLw(instr));
#endif
  int32_t imm12 = static_cast<int32_t>(instr & kImm12Mask) >> 20;
  return imm12;
}

#ifdef JS_CODEGEN_RISCV64

bool AssemblerRISCVI::IsAddiw(Instr instr) {
  return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ADDIW;
}

bool AssemblerRISCVI::IsLd(Instr instr) {
  return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_LD;
}

void AssemblerRISCVI::lwu(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b110, rd, rs1, imm12);
}

void AssemblerRISCVI::ld(Register rd, Register rs1, int16_t imm12) {
  GenInstrLoad_ri(0b011, rd, rs1, imm12);
}

void AssemblerRISCVI::sd(Register source, Register base, int16_t imm12) {
  GenInstrStore_rri(0b011, base, source, imm12);
}

void AssemblerRISCVI::addiw(Register rd, Register rs1, int16_t imm12) {
  GenInstrI(0b000, OP_IMM_32, rd, rs1, imm12);
}

void AssemblerRISCVI::slliw(Register rd, Register rs1, uint8_t shamt) {
  GenInstrShiftW_ri(0, 0b001, rd, rs1, shamt & 0x1f);
}

void AssemblerRISCVI::srliw(Register rd, Register rs1, uint8_t shamt) {
  GenInstrShiftW_ri(0, 0b101, rd, rs1, shamt & 0x1f);
}

void AssemblerRISCVI::sraiw(Register rd, Register rs1, uint8_t shamt) {
  GenInstrShiftW_ri(1, 0b101, rd, rs1, shamt & 0x1f);
}

void AssemblerRISCVI::addw(Register rd, Register rs1, Register rs2) {
  GenInstrALUW_rr(0b0000000, 0b000, rd, rs1, rs2);
}

void AssemblerRISCVI::subw(Register rd, Register rs1, Register rs2) {
  GenInstrALUW_rr(0b0100000, 0b000, rd, rs1, rs2);
}

void AssemblerRISCVI::sllw(Register rd, Register rs1, Register rs2) {
  GenInstrALUW_rr(0b0000000, 0b001, rd, rs1, rs2);
}

void AssemblerRISCVI::srlw(Register rd, Register rs1, Register rs2) {
  GenInstrALUW_rr(0b0000000, 0b101, rd, rs1, rs2);
}

void AssemblerRISCVI::sraw(Register rd, Register rs1, Register rs2) {
  GenInstrALUW_rr(0b0100000, 0b101, rd, rs1, rs2);
}

#endif

int AssemblerRISCVI::BranchOffset(Instr instr) {
  // | imm[12] | imm[10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode |
  //  31          25                      11          7
  int32_t imm13 = ((instr & 0xf00) >> 7) | ((instr & 0x7e000000) >> 20) |
                  ((instr & 0x80) << 4) | ((instr & 0x80000000) >> 19);
  imm13 = imm13 << 19 >> 19;
  return imm13;
}

int AssemblerRISCVI::BrachlongOffset(Instr auipc, Instr instr_I) {
  MOZ_ASSERT(reinterpret_cast<Instruction*>(&instr_I)->InstructionType() ==
             InstructionBase::kIType);
  MOZ_ASSERT(IsAuipc(auipc));
  MOZ_ASSERT(((auipc & kRdFieldMask) >> kRdShift) ==
             ((instr_I & kRs1FieldMask) >> kRs1Shift));
  int32_t imm_auipc = AuipcOffset(auipc);
  int32_t imm12 = static_cast<int32_t>(instr_I & kImm12Mask) >> 20;
  int32_t offset = imm12 + imm_auipc;
  return offset;
}

}  // namespace jit
}  // namespace js