summaryrefslogtreecommitdiffstats
path: root/js/src/vm/Time.cpp
blob: 41ca68f8ee16d097f0d027a3c2a7df4c83ab4917 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* PR time code. */

#include "vm/Time.h"

#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"

#ifdef SOLARIS
#  define _REENTRANT 1
#endif
#include <string.h>
#include <time.h>

#include "jstypes.h"

#ifdef XP_WIN
#  include <windef.h>
#  include <winbase.h>
#  include <crtdbg.h>   /* for _CrtSetReportMode */
#  include <mmsystem.h> /* for timeBegin/EndPeriod */
#  include <stdlib.h>   /* for _set_invalid_parameter_handler */
#endif

#ifdef XP_UNIX

#  ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
extern int gettimeofday(struct timeval* tv);
#  endif

#  include <sys/time.h>

#endif /* XP_UNIX */

using mozilla::DebugOnly;

#if defined(XP_UNIX)
int64_t PRMJ_Now() {
  struct timeval tv;

#  ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
  gettimeofday(&tv);
#  else
  gettimeofday(&tv, 0);
#  endif /* _SVID_GETTOD */

  return int64_t(tv.tv_sec) * PRMJ_USEC_PER_SEC + int64_t(tv.tv_usec);
}

#else

// Returns the number of microseconds since the Unix epoch.
static double FileTimeToUnixMicroseconds(const FILETIME& ft) {
  // Get the time in 100ns intervals.
  int64_t t = (int64_t(ft.dwHighDateTime) << 32) | int64_t(ft.dwLowDateTime);

  // The Windows epoch is around 1600. The Unix epoch is around 1970.
  // Subtract the difference.
  static const int64_t TimeToEpochIn100ns = 0x19DB1DED53E8000;
  t -= TimeToEpochIn100ns;

  // Divide by 10 to convert to microseconds.
  return double(t) * 0.1;
}

struct CalibrationData {
  double freq;         /* The performance counter frequency */
  double offset;       /* The low res 'epoch' */
  double timer_offset; /* The high res 'epoch' */

  bool calibrated;

  CRITICAL_SECTION data_lock;
};

static CalibrationData calibration = {0};

static void NowCalibrate() {
  MOZ_ASSERT(calibration.freq > 0);

  // By wrapping a timeBegin/EndPeriod pair of calls around this loop,
  // the loop seems to take much less time (1 ms vs 15ms) on Vista.
  timeBeginPeriod(1);
  FILETIME ft, ftStart;
  GetSystemTimeAsFileTime(&ftStart);
  do {
    GetSystemTimeAsFileTime(&ft);
  } while (memcmp(&ftStart, &ft, sizeof(ft)) == 0);
  timeEndPeriod(1);

  LARGE_INTEGER now;
  QueryPerformanceCounter(&now);

  calibration.offset = FileTimeToUnixMicroseconds(ft);
  calibration.timer_offset = double(now.QuadPart);
  calibration.calibrated = true;
}

static const unsigned DataLockSpinCount = 4096;

static void(WINAPI* pGetSystemTimePreciseAsFileTime)(LPFILETIME) = nullptr;

void PRMJ_NowInit() {
  memset(&calibration, 0, sizeof(calibration));

  // According to the documentation, QueryPerformanceFrequency will never
  // return false or return a non-zero frequency on systems that run
  // Windows XP or later. Also, the frequency is fixed so we only have to
  // query it once.
  LARGE_INTEGER liFreq;
  DebugOnly<BOOL> res = QueryPerformanceFrequency(&liFreq);
  MOZ_ASSERT(res);
  calibration.freq = double(liFreq.QuadPart);
  MOZ_ASSERT(calibration.freq > 0.0);

  InitializeCriticalSectionAndSpinCount(&calibration.data_lock,
                                        DataLockSpinCount);

  // Windows 8 has a new API function we can use.
  if (HMODULE h = GetModuleHandle("kernel32.dll")) {
    pGetSystemTimePreciseAsFileTime = (void(WINAPI*)(LPFILETIME))GetProcAddress(
        h, "GetSystemTimePreciseAsFileTime");
  }
}

void PRMJ_NowShutdown() { DeleteCriticalSection(&calibration.data_lock); }

#  define MUTEX_LOCK(m) EnterCriticalSection(m)
#  define MUTEX_UNLOCK(m) LeaveCriticalSection(m)
#  define MUTEX_SETSPINCOUNT(m, c) SetCriticalSectionSpinCount((m), (c))

// Please see bug 363258 for why the win32 timing code is so complex.
static int64_t PRMJ_Now() {
  if (pGetSystemTimePreciseAsFileTime) {
    // Windows 8 has a new API function that does all the work.
    FILETIME ft;
    pGetSystemTimePreciseAsFileTime(&ft);
    return int64_t(FileTimeToUnixMicroseconds(ft));
  }

  bool calibrated = false;
  bool needsCalibration = !calibration.calibrated;
  double cachedOffset = 0.0;
  while (true) {
    if (needsCalibration) {
      MUTEX_LOCK(&calibration.data_lock);

      // Recalibrate only if no one else did before us.
      if (calibration.offset == cachedOffset) {
        // Since calibration can take a while, make any other
        // threads immediately wait.
        MUTEX_SETSPINCOUNT(&calibration.data_lock, 0);

        NowCalibrate();

        calibrated = true;

        // Restore spin count.
        MUTEX_SETSPINCOUNT(&calibration.data_lock, DataLockSpinCount);
      }

      MUTEX_UNLOCK(&calibration.data_lock);
    }

    // Calculate a low resolution time.
    FILETIME ft;
    GetSystemTimeAsFileTime(&ft);
    double lowresTime = FileTimeToUnixMicroseconds(ft);

    // Grab high resolution time.
    LARGE_INTEGER now;
    QueryPerformanceCounter(&now);
    double highresTimerValue = double(now.QuadPart);

    MUTEX_LOCK(&calibration.data_lock);
    double highresTime = calibration.offset +
                         PRMJ_USEC_PER_SEC *
                             (highresTimerValue - calibration.timer_offset) /
                             calibration.freq;
    cachedOffset = calibration.offset;
    MUTEX_UNLOCK(&calibration.data_lock);

    // Assume the NT kernel ticks every 15.6 ms. Unfortunately there's no
    // good way to determine this (NtQueryTimerResolution is an undocumented
    // API), but 15.6 ms seems to be the max possible value. Hardcoding 15.6
    // means we'll recalibrate if the highres and lowres timers diverge by
    // more than 30 ms.
    static const double KernelTickInMicroseconds = 15625.25;

    // Check for clock skew.
    double diff = lowresTime - highresTime;

    // For some reason that I have not determined, the skew can be
    // up to twice a kernel tick. This does not seem to happen by
    // itself, but I have only seen it triggered by another program
    // doing some kind of file I/O. The symptoms are a negative diff
    // followed by an equally large positive diff.
    if (mozilla::Abs(diff) <= 2 * KernelTickInMicroseconds) {
      // No detectable clock skew.
      return int64_t(highresTime);
    }

    if (calibrated) {
      // If we already calibrated once this instance, and the
      // clock is still skewed, then either the processor(s) are
      // wildly changing clockspeed or the system is so busy that
      // we get switched out for long periods of time. In either
      // case, it would be infeasible to make use of high
      // resolution results for anything, so let's resort to old
      // behavior for this call. It's possible that in the
      // future, the user will want the high resolution timer, so
      // we don't disable it entirely.
      return int64_t(lowresTime);
    }

    // It is possible that when we recalibrate, we will return a
    // value less than what we have returned before; this is
    // unavoidable. We cannot tell the different between a
    // faulty QueryPerformanceCounter implementation and user
    // changes to the operating system time. Since we must
    // respect user changes to the operating system time, we
    // cannot maintain the invariant that Date.now() never
    // decreases; the old implementation has this behavior as
    // well.
    needsCalibration = true;
  }
}
#endif

#if !JS_HAS_INTL_API
#  ifdef XP_WIN
static void PRMJ_InvalidParameterHandler(const wchar_t* expression,
                                         const wchar_t* function,
                                         const wchar_t* file, unsigned int line,
                                         uintptr_t pReserved) {
  /* empty */
}
#  endif

/* Format a time value into a buffer. Same semantics as strftime() */
size_t PRMJ_FormatTime(char* buf, size_t buflen, const char* fmt,
                       const PRMJTime* prtm, int timeZoneYear,
                       int offsetInSeconds) {
  size_t result = 0;
#  if defined(XP_UNIX) || defined(XP_WIN)
  struct tm a;
#    ifdef XP_WIN
  _invalid_parameter_handler oldHandler;
#      ifndef __MINGW32__
  int oldReportMode;
#      endif  // __MINGW32__
#    endif    // XP_WIN

  memset(&a, 0, sizeof(struct tm));

  a.tm_sec = prtm->tm_sec;
  a.tm_min = prtm->tm_min;
  a.tm_hour = prtm->tm_hour;
  a.tm_mday = prtm->tm_mday;
  a.tm_mon = prtm->tm_mon;
  a.tm_wday = prtm->tm_wday;

  /*
   * On systems where |struct tm| has members tm_gmtoff and tm_zone, we
   * must fill in those values, or else strftime will return wrong results
   * (e.g., bug 511726, bug 554338).
   */
#    if defined(HAVE_LOCALTIME_R) && defined(HAVE_TM_ZONE_TM_GMTOFF)
  char emptyTimeZoneId[] = "";
  {
    /*
     * Fill out |td| to the time represented by |prtm|, leaving the
     * timezone fields zeroed out. localtime_r will then fill in the
     * timezone fields for that local time according to the system's
     * timezone parameters. Use |timeZoneYear| for the year to ensure the
     * time zone name matches the time zone offset used by the caller.
     */
    struct tm td;
    memset(&td, 0, sizeof(td));
    td.tm_sec = prtm->tm_sec;
    td.tm_min = prtm->tm_min;
    td.tm_hour = prtm->tm_hour;
    td.tm_mday = prtm->tm_mday;
    td.tm_mon = prtm->tm_mon;
    td.tm_wday = prtm->tm_wday;
    td.tm_year = timeZoneYear - 1900;
    td.tm_yday = prtm->tm_yday;
    td.tm_isdst = prtm->tm_isdst;

    time_t t = mktime(&td);

    // If either mktime or localtime_r failed, fill in the fallback time
    // zone offset |offsetInSeconds| and set the time zone identifier to
    // the empty string.
    if (t != static_cast<time_t>(-1) && localtime_r(&t, &td)) {
      a.tm_gmtoff = td.tm_gmtoff;
      a.tm_zone = td.tm_zone;
    } else {
      a.tm_gmtoff = offsetInSeconds;
      a.tm_zone = emptyTimeZoneId;
    }
  }
#    endif

  /*
   * Years before 1900 and after 9999 cause strftime() to abort on Windows.
   * To avoid that we replace it with FAKE_YEAR_BASE + year % 100 and then
   * replace matching substrings in the strftime() result with the real year.
   * Note that FAKE_YEAR_BASE should be a multiple of 100 to make 2-digit
   * year formats (%y) work correctly (since we won't find the fake year
   * in that case).
   */
  constexpr int FAKE_YEAR_BASE = 9900;
  int fake_tm_year = 0;
  if (prtm->tm_year < 1900 || prtm->tm_year > 9999) {
    fake_tm_year = FAKE_YEAR_BASE + prtm->tm_year % 100;
    a.tm_year = fake_tm_year - 1900;
  } else {
    a.tm_year = prtm->tm_year - 1900;
  }
  a.tm_yday = prtm->tm_yday;
  a.tm_isdst = prtm->tm_isdst;

  /*
   * Even with the above, SunOS 4 seems to detonate if tm_zone and tm_gmtoff
   * are null.  This doesn't quite work, though - the timezone is off by
   * tzoff + dst.  (And mktime seems to return -1 for the exact dst
   * changeover time.)
   */

#    ifdef XP_WIN
  oldHandler = _set_invalid_parameter_handler(PRMJ_InvalidParameterHandler);
#      ifndef __MINGW32__
  /*
   * MinGW doesn't have _CrtSetReportMode and defines it to be a no-op.
   * We ifdef it off to avoid warnings about unused variables
   */
  oldReportMode = _CrtSetReportMode(_CRT_ASSERT, 0);
#      endif  // __MINGW32__
#    endif    // XP_WIN

  result = strftime(buf, buflen, fmt, &a);

#    ifdef XP_WIN
  _set_invalid_parameter_handler(oldHandler);
#      ifndef __MINGW32__
  _CrtSetReportMode(_CRT_ASSERT, oldReportMode);
#      endif  // __MINGW32__
#    endif    // XP_WIN

  if (fake_tm_year && result) {
    char real_year[16];
    char fake_year[16];
    size_t real_year_len;
    size_t fake_year_len;
    char* p;

    sprintf(real_year, "%d", prtm->tm_year);
    real_year_len = strlen(real_year);
    sprintf(fake_year, "%d", fake_tm_year);
    fake_year_len = strlen(fake_year);

    /* Replace the fake year in the result with the real year. */
    for (p = buf; (p = strstr(p, fake_year)); p += real_year_len) {
      size_t new_result = result + real_year_len - fake_year_len;
      if (new_result >= buflen) {
        return 0;
      }
      memmove(p + real_year_len, p + fake_year_len, strlen(p + fake_year_len));
      memcpy(p, real_year, real_year_len);
      result = new_result;
      *(buf + result) = '\0';
    }
  }
#  endif
  return result;
}
#endif /* !JS_HAS_INTL_API */