summaryrefslogtreecommitdiffstats
path: root/js/src/wasm/WasmCompile.cpp
blob: 3471de1ad28e65b699be79380cbab8eb3117897b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 *
 * Copyright 2015 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmCompile.h"

#include "mozilla/Maybe.h"

#include <algorithm>

#ifndef __wasi__
#  include "jit/ProcessExecutableMemory.h"
#endif

#include "jit/FlushICache.h"
#include "util/Text.h"
#include "vm/HelperThreads.h"
#include "vm/Realm.h"
#include "wasm/WasmBaselineCompile.h"
#include "wasm/WasmGenerator.h"
#include "wasm/WasmIonCompile.h"
#include "wasm/WasmOpIter.h"
#include "wasm/WasmProcess.h"
#include "wasm/WasmSignalHandlers.h"
#include "wasm/WasmValidate.h"

using namespace js;
using namespace js::jit;
using namespace js::wasm;

uint32_t wasm::ObservedCPUFeatures() {
  enum Arch {
    X86 = 0x1,
    X64 = 0x2,
    ARM = 0x3,
    MIPS = 0x4,
    MIPS64 = 0x5,
    ARM64 = 0x6,
    LOONG64 = 0x7,
    RISCV64 = 0x8,
    ARCH_BITS = 3
  };

#if defined(JS_CODEGEN_X86)
  MOZ_ASSERT(uint32_t(jit::CPUInfo::GetFingerprint()) <=
             (UINT32_MAX >> ARCH_BITS));
  return X86 | (uint32_t(jit::CPUInfo::GetFingerprint()) << ARCH_BITS);
#elif defined(JS_CODEGEN_X64)
  MOZ_ASSERT(uint32_t(jit::CPUInfo::GetFingerprint()) <=
             (UINT32_MAX >> ARCH_BITS));
  return X64 | (uint32_t(jit::CPUInfo::GetFingerprint()) << ARCH_BITS);
#elif defined(JS_CODEGEN_ARM)
  MOZ_ASSERT(jit::GetARMFlags() <= (UINT32_MAX >> ARCH_BITS));
  return ARM | (jit::GetARMFlags() << ARCH_BITS);
#elif defined(JS_CODEGEN_ARM64)
  MOZ_ASSERT(jit::GetARM64Flags() <= (UINT32_MAX >> ARCH_BITS));
  return ARM64 | (jit::GetARM64Flags() << ARCH_BITS);
#elif defined(JS_CODEGEN_MIPS64)
  MOZ_ASSERT(jit::GetMIPSFlags() <= (UINT32_MAX >> ARCH_BITS));
  return MIPS64 | (jit::GetMIPSFlags() << ARCH_BITS);
#elif defined(JS_CODEGEN_LOONG64)
  MOZ_ASSERT(jit::GetLOONG64Flags() <= (UINT32_MAX >> ARCH_BITS));
  return LOONG64 | (jit::GetLOONG64Flags() << ARCH_BITS);
#elif defined(JS_CODEGEN_RISCV64)
  MOZ_ASSERT(jit::GetRISCV64Flags() <= (UINT32_MAX >> ARCH_BITS));
  return RISCV64 | (jit::GetRISCV64Flags() << ARCH_BITS);
#elif defined(JS_CODEGEN_NONE) || defined(JS_CODEGEN_WASM32)
  return 0;
#else
#  error "unknown architecture"
#endif
}

FeatureArgs FeatureArgs::build(JSContext* cx, const FeatureOptions& options) {
  FeatureArgs features;

#define WASM_FEATURE(NAME, LOWER_NAME, ...) \
  features.LOWER_NAME = wasm::NAME##Available(cx);
  JS_FOR_WASM_FEATURES(WASM_FEATURE, WASM_FEATURE, WASM_FEATURE);
#undef WASM_FEATURE

  features.sharedMemory =
      wasm::ThreadsAvailable(cx) ? Shareable::True : Shareable::False;

  features.simd = jit::JitSupportsWasmSimd();
  features.intrinsics = options.intrinsics;

  return features;
}

SharedCompileArgs CompileArgs::build(JSContext* cx,
                                     ScriptedCaller&& scriptedCaller,
                                     const FeatureOptions& options,
                                     CompileArgsError* error) {
  bool baseline = BaselineAvailable(cx);
  bool ion = IonAvailable(cx);

  // Debug information such as source view or debug traps will require
  // additional memory and permanently stay in baseline code, so we try to
  // only enable it when a developer actually cares: when the debugger tab
  // is open.
  bool debug = cx->realm() && cx->realm()->debuggerObservesWasm();

  bool forceTiering =
      cx->options().testWasmAwaitTier2() || JitOptions.wasmDelayTier2;

  // The <Compiler>Available() predicates should ensure no failure here, but
  // when we're fuzzing we allow inconsistent switches and the check may thus
  // fail.  Let it go to a run-time error instead of crashing.
  if (debug && ion) {
    *error = CompileArgsError::NoCompiler;
    return nullptr;
  }

  if (forceTiering && !(baseline && ion)) {
    // This can happen only in testing, and in this case we don't have a
    // proper way to signal the error, so just silently override the default,
    // instead of adding a skip-if directive to every test using debug/gc.
    forceTiering = false;
  }

  if (!(baseline || ion)) {
    *error = CompileArgsError::NoCompiler;
    return nullptr;
  }

  CompileArgs* target = cx->new_<CompileArgs>(std::move(scriptedCaller));
  if (!target) {
    *error = CompileArgsError::OutOfMemory;
    return nullptr;
  }

  target->baselineEnabled = baseline;
  target->ionEnabled = ion;
  target->debugEnabled = debug;
  target->forceTiering = forceTiering;
  target->features = FeatureArgs::build(cx, options);

  return target;
}

SharedCompileArgs CompileArgs::buildForAsmJS(ScriptedCaller&& scriptedCaller) {
  CompileArgs* target = js_new<CompileArgs>(std::move(scriptedCaller));
  if (!target) {
    return nullptr;
  }

  // AsmJS is deprecated and doesn't have mechanisms for experimental features,
  // so we don't need to initialize the FeatureArgs. It also only targets the
  // Ion backend and does not need WASM debug support since it is de-optimized
  // to JS in that case.
  target->ionEnabled = true;
  target->debugEnabled = false;

  return target;
}

SharedCompileArgs CompileArgs::buildAndReport(JSContext* cx,
                                              ScriptedCaller&& scriptedCaller,
                                              const FeatureOptions& options,
                                              bool reportOOM) {
  CompileArgsError error;
  SharedCompileArgs args =
      CompileArgs::build(cx, std::move(scriptedCaller), options, &error);
  if (args) {
    Log(cx, "available wasm compilers: tier1=%s tier2=%s",
        args->baselineEnabled ? "baseline" : "none",
        args->ionEnabled ? "ion" : "none");
    return args;
  }

  switch (error) {
    case CompileArgsError::NoCompiler: {
      JS_ReportErrorASCII(cx, "no WebAssembly compiler available");
      break;
    }
    case CompileArgsError::OutOfMemory: {
      // Most callers are required to return 'false' without reporting an OOM,
      // so we make reporting it optional here.
      if (reportOOM) {
        ReportOutOfMemory(cx);
      }
      break;
    }
  }
  return nullptr;
}

/*
 * [SMDOC] Tiered wasm compilation.
 *
 * "Tiered compilation" refers to the mechanism where we first compile the code
 * with a fast non-optimizing compiler so that we can start running the code
 * quickly, while in the background recompiling the code with the slower
 * optimizing compiler.  Code created by baseline is called "tier-1"; code
 * created by the optimizing compiler is called "tier-2".  When the tier-2 code
 * is ready, we "tier up" the code by creating paths from tier-1 code into their
 * tier-2 counterparts; this patching is performed as the program is running.
 *
 * ## Selecting the compilation mode
 *
 * When wasm bytecode arrives, we choose the compilation strategy based on
 * switches and on aspects of the code and the hardware.  If switches allow
 * tiered compilation to happen (the normal case), the following logic applies.
 *
 * If the code is sufficiently large that tiered compilation would be beneficial
 * but not so large that it might blow our compiled code budget and make
 * compilation fail, we choose tiered compilation.  Otherwise we go straight to
 * optimized code.
 *
 * The expected benefit of tiering is computed by TieringBeneficial(), below,
 * based on various estimated parameters of the hardware: ratios of object code
 * to byte code, speed of the system, number of cores.
 *
 * ## Mechanics of tiering up; patching
 *
 * Every time control enters a tier-1 function, the function prologue loads its
 * tiering pointer from the tiering jump table (see JumpTable in WasmCode.h) and
 * jumps to it.
 *
 * Initially, an entry in the tiering table points to the instruction inside the
 * tier-1 function that follows the jump instruction (hence the jump is an
 * expensive nop).  When the tier-2 compiler is finished, the table is patched
 * racily to point into the tier-2 function at the correct prologue location
 * (see loop near the end of Module::finishTier2()).  As tier-2 compilation is
 * performed at most once per Module, there is at most one such racy overwrite
 * per table element during the lifetime of the Module.
 *
 * The effect of the patching is to cause the tier-1 function to jump to its
 * tier-2 counterpart whenever the tier-1 function is called subsequently.  That
 * is, tier-1 code performs standard frame setup on behalf of whatever code it
 * jumps to, and the target code (tier-1 or tier-2) allocates its own frame in
 * whatever way it wants.
 *
 * The racy writing means that it is often nondeterministic whether tier-1 or
 * tier-2 code is reached by any call during the tiering-up process; if F calls
 * A and B in that order, it may reach tier-2 code for A and tier-1 code for B.
 * If F is running concurrently on threads T1 and T2, T1 and T2 may see code
 * from different tiers for either function.
 *
 * Note, tiering up also requires upgrading the jit-entry stubs so that they
 * reference tier-2 code.  The mechanics of this upgrading are described at
 * WasmInstanceObject::getExportedFunction().
 *
 * ## Current limitations of tiering
 *
 * Tiering is not always seamless.  Partly, it is possible for a program to get
 * stuck in tier-1 code.  Partly, a function that has tiered up continues to
 * force execution to go via tier-1 code to reach tier-2 code, paying for an
 * additional jump and a slightly less optimized prologue than tier-2 code could
 * have had on its own.
 *
 * Known tiering limitiations:
 *
 * - We can tier up only at function boundaries.  If a tier-1 function has a
 *   long-running loop it will not tier up until it returns to its caller.  If
 *   this loop never exits (a runloop in a worker, for example) then the
 *   function will never tier up.
 *
 *   To do better, we need OSR.
 *
 * - Wasm Table entries are never patched during tier-up.  A Table of funcref
 *   holds not a JSFunction pointer, but a (code*,instance*) pair of pointers.
 * When a table.set operation is performed, the JSFunction value is decomposed
 * and its code and instance pointers are stored in the table; subsequently,
 * when a table.get operation is performed, the JSFunction value is
 * reconstituted from its code pointer using fairly elaborate machinery.  (The
 * mechanics are the same also for the reflected JS operations on a
 * WebAssembly.Table.  For everything, see WasmTable.{cpp,h}.)  The code pointer
 * in the Table will always be the code pointer belonging to the best tier that
 * was active at the time when that function was stored in that Table slot; in
 * many cases, it will be tier-1 code.  As a consequence, a call through a table
 * will first enter tier-1 code and then jump to tier-2 code.
 *
 *   To do better, we must update all the tables in the system when an instance
 *   tiers up.  This is expected to be very hard.
 *
 * - Imported Wasm functions are never patched during tier-up.  Imports are held
 *   in FuncImportInstanceData values in the instance, and for a wasm
 *   callee, what's stored is the raw code pointer into the best tier of the
 *   callee that was active at the time the import was resolved.  That could be
 *   baseline code, and if it is, the situation is as for Table entries: a call
 *   to an import will always go via that import's tier-1 code, which will tier
 * up with an indirect jump.
 *
 *   To do better, we must update all the import tables in the system that
 *   import functions from instances whose modules have tiered up.  This is
 *   expected to be hard.
 */

// Classify the current system as one of a set of recognizable classes.  This
// really needs to get our tier-1 systems right.
//
// TODO: We don't yet have a good measure of how fast a system is.  We
// distinguish between mobile and desktop because these are very different kinds
// of systems, but we could further distinguish between low / medium / high end
// within those major classes.  If we do so, then constants below would be
// provided for each (class, architecture, system-tier) combination, not just
// (class, architecture) as now.
//
// CPU clock speed is not by itself a good predictor of system performance, as
// there are high-performance systems with slow clocks (recent Intel) and
// low-performance systems with fast clocks (older AMD).  We can also use
// physical memory, core configuration, OS details, CPU class and family, and
// CPU manufacturer to disambiguate.

enum class SystemClass {
  DesktopX86,
  DesktopX64,
  DesktopUnknown32,
  DesktopUnknown64,
  MobileX86,
  MobileArm32,
  MobileArm64,
  MobileUnknown32,
  MobileUnknown64
};

static SystemClass ClassifySystem() {
  bool isDesktop;

#if defined(ANDROID) || defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64)
  isDesktop = false;
#else
  isDesktop = true;
#endif

  if (isDesktop) {
#if defined(JS_CODEGEN_X64)
    return SystemClass::DesktopX64;
#elif defined(JS_CODEGEN_X86)
    return SystemClass::DesktopX86;
#elif defined(JS_64BIT)
    return SystemClass::DesktopUnknown64;
#else
    return SystemClass::DesktopUnknown32;
#endif
  } else {
#if defined(JS_CODEGEN_X86)
    return SystemClass::MobileX86;
#elif defined(JS_CODEGEN_ARM)
    return SystemClass::MobileArm32;
#elif defined(JS_CODEGEN_ARM64)
    return SystemClass::MobileArm64;
#elif defined(JS_64BIT)
    return SystemClass::MobileUnknown64;
#else
    return SystemClass::MobileUnknown32;
#endif
  }
}

// Code sizes in machine code bytes per bytecode byte, again empirical except
// where marked.
//
// The Ion estimate for ARM64 is the measured Baseline value scaled by a
// plausible factor for optimized code.

static const double x64Tox86Inflation = 1.25;

static const double x64IonBytesPerBytecode = 2.45;
static const double x86IonBytesPerBytecode =
    x64IonBytesPerBytecode * x64Tox86Inflation;
static const double arm32IonBytesPerBytecode = 3.3;
static const double arm64IonBytesPerBytecode = 3.0 / 1.4;  // Estimate

static const double x64BaselineBytesPerBytecode = x64IonBytesPerBytecode * 1.43;
static const double x86BaselineBytesPerBytecode =
    x64BaselineBytesPerBytecode * x64Tox86Inflation;
static const double arm32BaselineBytesPerBytecode =
    arm32IonBytesPerBytecode * 1.39;
static const double arm64BaselineBytesPerBytecode = 3.0;

static double OptimizedBytesPerBytecode(SystemClass cls) {
  switch (cls) {
    case SystemClass::DesktopX86:
    case SystemClass::MobileX86:
    case SystemClass::DesktopUnknown32:
      return x86IonBytesPerBytecode;
    case SystemClass::DesktopX64:
    case SystemClass::DesktopUnknown64:
      return x64IonBytesPerBytecode;
    case SystemClass::MobileArm32:
    case SystemClass::MobileUnknown32:
      return arm32IonBytesPerBytecode;
    case SystemClass::MobileArm64:
    case SystemClass::MobileUnknown64:
      return arm64IonBytesPerBytecode;
    default:
      MOZ_CRASH();
  }
}

static double BaselineBytesPerBytecode(SystemClass cls) {
  switch (cls) {
    case SystemClass::DesktopX86:
    case SystemClass::MobileX86:
    case SystemClass::DesktopUnknown32:
      return x86BaselineBytesPerBytecode;
    case SystemClass::DesktopX64:
    case SystemClass::DesktopUnknown64:
      return x64BaselineBytesPerBytecode;
    case SystemClass::MobileArm32:
    case SystemClass::MobileUnknown32:
      return arm32BaselineBytesPerBytecode;
    case SystemClass::MobileArm64:
    case SystemClass::MobileUnknown64:
      return arm64BaselineBytesPerBytecode;
    default:
      MOZ_CRASH();
  }
}

double wasm::EstimateCompiledCodeSize(Tier tier, size_t bytecodeSize) {
  SystemClass cls = ClassifySystem();
  switch (tier) {
    case Tier::Baseline:
      return double(bytecodeSize) * BaselineBytesPerBytecode(cls);
    case Tier::Optimized:
      return double(bytecodeSize) * OptimizedBytesPerBytecode(cls);
  }
  MOZ_CRASH("bad tier");
}

// If parallel Ion compilation is going to take longer than this, we should
// tier.

static const double tierCutoffMs = 10;

// Compilation rate values are empirical except when noted, the reference
// systems are:
//
// Late-2013 MacBook Pro (2.6GHz 4 x hyperthreaded Haswell, Mac OS X)
// Late-2015 Nexus 5X (1.4GHz 4 x Cortex-A53 + 1.8GHz 2 x Cortex-A57, Android)
// Ca-2016 SoftIron Overdrive 1000 (1.7GHz 4 x Cortex-A57, Fedora)
//
// The rates are always per core.
//
// The estimate for ARM64 is the Baseline compilation rate on the SoftIron
// (because we have no Ion yet), divided by 5 to estimate Ion compile rate and
// then divided by 2 to make it more reasonable for consumer ARM64 systems.

static const double x64IonBytecodesPerMs = 2100;
static const double x86IonBytecodesPerMs = 1500;
static const double arm32IonBytecodesPerMs = 450;
static const double arm64IonBytecodesPerMs = 750;  // Estimate

// Tiering cutoff values: if code section sizes are below these values (when
// divided by the effective number of cores) we do not tier, because we guess
// that parallel Ion compilation will be fast enough.

static const double x64DesktopTierCutoff = x64IonBytecodesPerMs * tierCutoffMs;
static const double x86DesktopTierCutoff = x86IonBytecodesPerMs * tierCutoffMs;
static const double x86MobileTierCutoff = x86DesktopTierCutoff / 2;  // Guess
static const double arm32MobileTierCutoff =
    arm32IonBytecodesPerMs * tierCutoffMs;
static const double arm64MobileTierCutoff =
    arm64IonBytecodesPerMs * tierCutoffMs;

static double CodesizeCutoff(SystemClass cls) {
  switch (cls) {
    case SystemClass::DesktopX86:
    case SystemClass::DesktopUnknown32:
      return x86DesktopTierCutoff;
    case SystemClass::DesktopX64:
    case SystemClass::DesktopUnknown64:
      return x64DesktopTierCutoff;
    case SystemClass::MobileX86:
      return x86MobileTierCutoff;
    case SystemClass::MobileArm32:
    case SystemClass::MobileUnknown32:
      return arm32MobileTierCutoff;
    case SystemClass::MobileArm64:
    case SystemClass::MobileUnknown64:
      return arm64MobileTierCutoff;
    default:
      MOZ_CRASH();
  }
}

// As the number of cores grows the effectiveness of each core dwindles (on the
// systems we care about for SpiderMonkey).
//
// The data are empirical, computed from the observed compilation time of the
// Tanks demo code on a variable number of cores.
//
// The heuristic may fail on NUMA systems where the core count is high but the
// performance increase is nil or negative once the program moves beyond one
// socket.  However, few browser users have such systems.

static double EffectiveCores(uint32_t cores) {
  if (cores <= 3) {
    return pow(cores, 0.9);
  }
  return pow(cores, 0.75);
}

#ifndef JS_64BIT
// Don't tier if tiering will fill code memory to more to more than this
// fraction.

static const double spaceCutoffPct = 0.9;
#endif

// Figure out whether we should use tiered compilation or not.
static bool TieringBeneficial(uint32_t codeSize) {
  uint32_t cpuCount = GetHelperThreadCPUCount();
  MOZ_ASSERT(cpuCount > 0);

  // It's mostly sensible not to background compile when there's only one
  // hardware thread as we want foreground computation to have access to that.
  // However, if wasm background compilation helper threads can be given lower
  // priority then background compilation on single-core systems still makes
  // some kind of sense.  That said, this is a non-issue: as of September 2017
  // 1-core was down to 3.5% of our population and falling.

  if (cpuCount == 1) {
    return false;
  }

  // Compute the max number of threads available to do actual background
  // compilation work.

  uint32_t workers = GetMaxWasmCompilationThreads();

  // The number of cores we will use is bounded both by the CPU count and the
  // worker count, since the worker count already takes this into account.

  uint32_t cores = workers;

  SystemClass cls = ClassifySystem();

  // Ion compilation on available cores must take long enough to be worth the
  // bother.

  double cutoffSize = CodesizeCutoff(cls);
  double effectiveCores = EffectiveCores(cores);

  if ((codeSize / effectiveCores) < cutoffSize) {
    return false;
  }

  // Do not implement a size cutoff for 64-bit systems since the code size
  // budget for 64 bit is so large that it will hardly ever be an issue.
  // (Also the cutoff percentage might be different on 64-bit.)

#ifndef JS_64BIT
  // If the amount of executable code for baseline compilation jeopardizes the
  // availability of executable memory for ion code then do not tier, for now.
  //
  // TODO: For now we consider this module in isolation.  We should really
  // worry about what else is going on in this process and might be filling up
  // the code memory.  It's like we need some kind of code memory reservation
  // system or JIT compilation for large modules.

  double ionRatio = OptimizedBytesPerBytecode(cls);
  double baselineRatio = BaselineBytesPerBytecode(cls);
  double needMemory = codeSize * (ionRatio + baselineRatio);
  double availMemory = LikelyAvailableExecutableMemory();
  double cutoff = spaceCutoffPct * MaxCodeBytesPerProcess;

  // If the sum of baseline and ion code makes us exceeds some set percentage
  // of the executable memory then disable tiering.

  if ((MaxCodeBytesPerProcess - availMemory) + needMemory > cutoff) {
    return false;
  }
#endif

  return true;
}

// Ensure that we have the non-compiler requirements to tier safely.
static bool PlatformCanTier() {
  return CanUseExtraThreads() && jit::CanFlushExecutionContextForAllThreads();
}

CompilerEnvironment::CompilerEnvironment(const CompileArgs& args)
    : state_(InitialWithArgs), args_(&args) {}

CompilerEnvironment::CompilerEnvironment(CompileMode mode, Tier tier,
                                         DebugEnabled debugEnabled)
    : state_(InitialWithModeTierDebug),
      mode_(mode),
      tier_(tier),
      debug_(debugEnabled) {}

void CompilerEnvironment::computeParameters() {
  MOZ_ASSERT(state_ == InitialWithModeTierDebug);

  state_ = Computed;
}

void CompilerEnvironment::computeParameters(Decoder& d) {
  MOZ_ASSERT(!isComputed());

  if (state_ == InitialWithModeTierDebug) {
    computeParameters();
    return;
  }

  bool baselineEnabled = args_->baselineEnabled;
  bool ionEnabled = args_->ionEnabled;
  bool debugEnabled = args_->debugEnabled;
  bool forceTiering = args_->forceTiering;

  bool hasSecondTier = ionEnabled;
  MOZ_ASSERT_IF(debugEnabled, baselineEnabled);
  MOZ_ASSERT_IF(forceTiering, baselineEnabled && hasSecondTier);

  // Various constraints in various places should prevent failure here.
  MOZ_RELEASE_ASSERT(baselineEnabled || ionEnabled);

  uint32_t codeSectionSize = 0;

  SectionRange range;
  if (StartsCodeSection(d.begin(), d.end(), &range)) {
    codeSectionSize = range.size;
  }

  if (baselineEnabled && hasSecondTier &&
      (TieringBeneficial(codeSectionSize) || forceTiering) &&
      PlatformCanTier()) {
    mode_ = CompileMode::Tier1;
    tier_ = Tier::Baseline;
  } else {
    mode_ = CompileMode::Once;
    tier_ = hasSecondTier ? Tier::Optimized : Tier::Baseline;
  }

  debug_ = debugEnabled ? DebugEnabled::True : DebugEnabled::False;

  state_ = Computed;
}

template <class DecoderT>
static bool DecodeFunctionBody(DecoderT& d, ModuleGenerator& mg,
                               uint32_t funcIndex) {
  uint32_t bodySize;
  if (!d.readVarU32(&bodySize)) {
    return d.fail("expected number of function body bytes");
  }

  if (bodySize > MaxFunctionBytes) {
    return d.fail("function body too big");
  }

  const size_t offsetInModule = d.currentOffset();

  // Skip over the function body; it will be validated by the compilation
  // thread.
  const uint8_t* bodyBegin;
  if (!d.readBytes(bodySize, &bodyBegin)) {
    return d.fail("function body length too big");
  }

  return mg.compileFuncDef(funcIndex, offsetInModule, bodyBegin,
                           bodyBegin + bodySize);
}

template <class DecoderT>
static bool DecodeCodeSection(const ModuleEnvironment& env, DecoderT& d,
                              ModuleGenerator& mg) {
  if (!env.codeSection) {
    if (env.numFuncDefs() != 0) {
      return d.fail("expected code section");
    }

    return mg.finishFuncDefs();
  }

  uint32_t numFuncDefs;
  if (!d.readVarU32(&numFuncDefs)) {
    return d.fail("expected function body count");
  }

  if (numFuncDefs != env.numFuncDefs()) {
    return d.fail(
        "function body count does not match function signature count");
  }

  for (uint32_t funcDefIndex = 0; funcDefIndex < numFuncDefs; funcDefIndex++) {
    if (!DecodeFunctionBody(d, mg, env.numFuncImports + funcDefIndex)) {
      return false;
    }
  }

  if (!d.finishSection(*env.codeSection, "code")) {
    return false;
  }

  return mg.finishFuncDefs();
}

SharedModule wasm::CompileBuffer(const CompileArgs& args,
                                 const ShareableBytes& bytecode,
                                 UniqueChars* error,
                                 UniqueCharsVector* warnings,
                                 JS::OptimizedEncodingListener* listener) {
  Decoder d(bytecode.bytes, 0, error, warnings);

  ModuleEnvironment moduleEnv(args.features);
  if (!moduleEnv.init() || !DecodeModuleEnvironment(d, &moduleEnv)) {
    return nullptr;
  }
  CompilerEnvironment compilerEnv(args);
  compilerEnv.computeParameters(d);

  ModuleGenerator mg(args, &moduleEnv, &compilerEnv, nullptr, error, warnings);
  if (!mg.init(nullptr)) {
    return nullptr;
  }

  if (!DecodeCodeSection(moduleEnv, d, mg)) {
    return nullptr;
  }

  if (!DecodeModuleTail(d, &moduleEnv)) {
    return nullptr;
  }

  return mg.finishModule(bytecode, listener);
}

bool wasm::CompileTier2(const CompileArgs& args, const Bytes& bytecode,
                        const Module& module, UniqueChars* error,
                        UniqueCharsVector* warnings, Atomic<bool>* cancelled) {
  Decoder d(bytecode, 0, error);

  ModuleEnvironment moduleEnv(args.features);
  if (!moduleEnv.init() || !DecodeModuleEnvironment(d, &moduleEnv)) {
    return false;
  }
  CompilerEnvironment compilerEnv(CompileMode::Tier2, Tier::Optimized,
                                  DebugEnabled::False);
  compilerEnv.computeParameters(d);

  ModuleGenerator mg(args, &moduleEnv, &compilerEnv, cancelled, error,
                     warnings);
  if (!mg.init(nullptr)) {
    return false;
  }

  if (!DecodeCodeSection(moduleEnv, d, mg)) {
    return false;
  }

  if (!DecodeModuleTail(d, &moduleEnv)) {
    return false;
  }

  return mg.finishTier2(module);
}

class StreamingDecoder {
  Decoder d_;
  const ExclusiveBytesPtr& codeBytesEnd_;
  const Atomic<bool>& cancelled_;

 public:
  StreamingDecoder(const ModuleEnvironment& env, const Bytes& begin,
                   const ExclusiveBytesPtr& codeBytesEnd,
                   const Atomic<bool>& cancelled, UniqueChars* error,
                   UniqueCharsVector* warnings)
      : d_(begin, env.codeSection->start, error, warnings),
        codeBytesEnd_(codeBytesEnd),
        cancelled_(cancelled) {}

  bool fail(const char* msg) { return d_.fail(msg); }

  bool done() const { return d_.done(); }

  size_t currentOffset() const { return d_.currentOffset(); }

  bool waitForBytes(size_t numBytes) {
    numBytes = std::min(numBytes, d_.bytesRemain());
    const uint8_t* requiredEnd = d_.currentPosition() + numBytes;
    auto codeBytesEnd = codeBytesEnd_.lock();
    while (codeBytesEnd < requiredEnd) {
      if (cancelled_) {
        return false;
      }
      codeBytesEnd.wait();
    }
    return true;
  }

  bool readVarU32(uint32_t* u32) {
    return waitForBytes(MaxVarU32DecodedBytes) && d_.readVarU32(u32);
  }

  bool readBytes(size_t size, const uint8_t** begin) {
    return waitForBytes(size) && d_.readBytes(size, begin);
  }

  bool finishSection(const SectionRange& range, const char* name) {
    return d_.finishSection(range, name);
  }
};

static SharedBytes CreateBytecode(const Bytes& env, const Bytes& code,
                                  const Bytes& tail, UniqueChars* error) {
  size_t size = env.length() + code.length() + tail.length();
  if (size > MaxModuleBytes) {
    *error = DuplicateString("module too big");
    return nullptr;
  }

  MutableBytes bytecode = js_new<ShareableBytes>();
  if (!bytecode || !bytecode->bytes.resize(size)) {
    return nullptr;
  }

  uint8_t* p = bytecode->bytes.begin();

  memcpy(p, env.begin(), env.length());
  p += env.length();

  memcpy(p, code.begin(), code.length());
  p += code.length();

  memcpy(p, tail.begin(), tail.length());
  p += tail.length();

  MOZ_ASSERT(p == bytecode->end());

  return bytecode;
}

SharedModule wasm::CompileStreaming(
    const CompileArgs& args, const Bytes& envBytes, const Bytes& codeBytes,
    const ExclusiveBytesPtr& codeBytesEnd,
    const ExclusiveStreamEndData& exclusiveStreamEnd,
    const Atomic<bool>& cancelled, UniqueChars* error,
    UniqueCharsVector* warnings) {
  CompilerEnvironment compilerEnv(args);
  ModuleEnvironment moduleEnv(args.features);
  if (!moduleEnv.init()) {
    return nullptr;
  }

  {
    Decoder d(envBytes, 0, error, warnings);

    if (!DecodeModuleEnvironment(d, &moduleEnv)) {
      return nullptr;
    }
    compilerEnv.computeParameters(d);

    if (!moduleEnv.codeSection) {
      d.fail("unknown section before code section");
      return nullptr;
    }

    MOZ_RELEASE_ASSERT(moduleEnv.codeSection->size == codeBytes.length());
    MOZ_RELEASE_ASSERT(d.done());
  }

  ModuleGenerator mg(args, &moduleEnv, &compilerEnv, &cancelled, error,
                     warnings);
  if (!mg.init(nullptr)) {
    return nullptr;
  }

  {
    StreamingDecoder d(moduleEnv, codeBytes, codeBytesEnd, cancelled, error,
                       warnings);

    if (!DecodeCodeSection(moduleEnv, d, mg)) {
      return nullptr;
    }

    MOZ_RELEASE_ASSERT(d.done());
  }

  {
    auto streamEnd = exclusiveStreamEnd.lock();
    while (!streamEnd->reached) {
      if (cancelled) {
        return nullptr;
      }
      streamEnd.wait();
    }
  }

  const StreamEndData& streamEnd = exclusiveStreamEnd.lock();
  const Bytes& tailBytes = *streamEnd.tailBytes;

  {
    Decoder d(tailBytes, moduleEnv.codeSection->end(), error, warnings);

    if (!DecodeModuleTail(d, &moduleEnv)) {
      return nullptr;
    }

    MOZ_RELEASE_ASSERT(d.done());
  }

  SharedBytes bytecode = CreateBytecode(envBytes, codeBytes, tailBytes, error);
  if (!bytecode) {
    return nullptr;
  }

  return mg.finishModule(*bytecode, streamEnd.tier2Listener);
}