summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/simd/arm/aarch32/jchuff-neon.c
blob: 19d94f720da0f98c900ef122483f60dedb9d783c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
 * jchuff-neon.c - Huffman entropy encoding (32-bit Arm Neon)
 *
 * Copyright (C) 2020, Arm Limited.  All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 *
 * NOTE: All referenced figures are from
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
 */

#define JPEG_INTERNALS
#include "../../../jinclude.h"
#include "../../../jpeglib.h"
#include "../../../jsimd.h"
#include "../../../jdct.h"
#include "../../../jsimddct.h"
#include "../../jsimd.h"
#include "../jchuff.h"
#include "neon-compat.h"

#include <limits.h>

#include <arm_neon.h>


JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer,
                                         JCOEFPTR block, int last_dc_val,
                                         c_derived_tbl *dctbl,
                                         c_derived_tbl *actbl)
{
  uint8_t block_nbits[DCTSIZE2];
  uint16_t block_diff[DCTSIZE2];

  /* Load rows of coefficients from DCT block in zig-zag order. */

  /* Compute DC coefficient difference value. (F.1.1.5.1) */
  int16x8_t row0 = vdupq_n_s16(block[0] - last_dc_val);
  row0 = vld1q_lane_s16(block +  1, row0, 1);
  row0 = vld1q_lane_s16(block +  8, row0, 2);
  row0 = vld1q_lane_s16(block + 16, row0, 3);
  row0 = vld1q_lane_s16(block +  9, row0, 4);
  row0 = vld1q_lane_s16(block +  2, row0, 5);
  row0 = vld1q_lane_s16(block +  3, row0, 6);
  row0 = vld1q_lane_s16(block + 10, row0, 7);

  int16x8_t row1 = vld1q_dup_s16(block + 17);
  row1 = vld1q_lane_s16(block + 24, row1, 1);
  row1 = vld1q_lane_s16(block + 32, row1, 2);
  row1 = vld1q_lane_s16(block + 25, row1, 3);
  row1 = vld1q_lane_s16(block + 18, row1, 4);
  row1 = vld1q_lane_s16(block + 11, row1, 5);
  row1 = vld1q_lane_s16(block +  4, row1, 6);
  row1 = vld1q_lane_s16(block +  5, row1, 7);

  int16x8_t row2 = vld1q_dup_s16(block + 12);
  row2 = vld1q_lane_s16(block + 19, row2, 1);
  row2 = vld1q_lane_s16(block + 26, row2, 2);
  row2 = vld1q_lane_s16(block + 33, row2, 3);
  row2 = vld1q_lane_s16(block + 40, row2, 4);
  row2 = vld1q_lane_s16(block + 48, row2, 5);
  row2 = vld1q_lane_s16(block + 41, row2, 6);
  row2 = vld1q_lane_s16(block + 34, row2, 7);

  int16x8_t row3 = vld1q_dup_s16(block + 27);
  row3 = vld1q_lane_s16(block + 20, row3, 1);
  row3 = vld1q_lane_s16(block + 13, row3, 2);
  row3 = vld1q_lane_s16(block +  6, row3, 3);
  row3 = vld1q_lane_s16(block +  7, row3, 4);
  row3 = vld1q_lane_s16(block + 14, row3, 5);
  row3 = vld1q_lane_s16(block + 21, row3, 6);
  row3 = vld1q_lane_s16(block + 28, row3, 7);

  int16x8_t abs_row0 = vabsq_s16(row0);
  int16x8_t abs_row1 = vabsq_s16(row1);
  int16x8_t abs_row2 = vabsq_s16(row2);
  int16x8_t abs_row3 = vabsq_s16(row3);

  int16x8_t row0_lz = vclzq_s16(abs_row0);
  int16x8_t row1_lz = vclzq_s16(abs_row1);
  int16x8_t row2_lz = vclzq_s16(abs_row2);
  int16x8_t row3_lz = vclzq_s16(abs_row3);

  /* Compute number of bits required to represent each coefficient. */
  uint8x8_t row0_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row0_lz)));
  uint8x8_t row1_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row1_lz)));
  uint8x8_t row2_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row2_lz)));
  uint8x8_t row3_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row3_lz)));

  vst1_u8(block_nbits + 0 * DCTSIZE, row0_nbits);
  vst1_u8(block_nbits + 1 * DCTSIZE, row1_nbits);
  vst1_u8(block_nbits + 2 * DCTSIZE, row2_nbits);
  vst1_u8(block_nbits + 3 * DCTSIZE, row3_nbits);

  uint16x8_t row0_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row0, 15)),
              vnegq_s16(row0_lz));
  uint16x8_t row1_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row1, 15)),
              vnegq_s16(row1_lz));
  uint16x8_t row2_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row2, 15)),
              vnegq_s16(row2_lz));
  uint16x8_t row3_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row3, 15)),
              vnegq_s16(row3_lz));

  uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask);
  uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask);
  uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask);
  uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask);

  /* Store diff values for rows 0, 1, 2, and 3. */
  vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
  vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
  vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
  vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);

  /* Load last four rows of coefficients from DCT block in zig-zag order. */
  int16x8_t row4 = vld1q_dup_s16(block + 35);
  row4 = vld1q_lane_s16(block + 42, row4, 1);
  row4 = vld1q_lane_s16(block + 49, row4, 2);
  row4 = vld1q_lane_s16(block + 56, row4, 3);
  row4 = vld1q_lane_s16(block + 57, row4, 4);
  row4 = vld1q_lane_s16(block + 50, row4, 5);
  row4 = vld1q_lane_s16(block + 43, row4, 6);
  row4 = vld1q_lane_s16(block + 36, row4, 7);

  int16x8_t row5 = vld1q_dup_s16(block + 29);
  row5 = vld1q_lane_s16(block + 22, row5, 1);
  row5 = vld1q_lane_s16(block + 15, row5, 2);
  row5 = vld1q_lane_s16(block + 23, row5, 3);
  row5 = vld1q_lane_s16(block + 30, row5, 4);
  row5 = vld1q_lane_s16(block + 37, row5, 5);
  row5 = vld1q_lane_s16(block + 44, row5, 6);
  row5 = vld1q_lane_s16(block + 51, row5, 7);

  int16x8_t row6 = vld1q_dup_s16(block + 58);
  row6 = vld1q_lane_s16(block + 59, row6, 1);
  row6 = vld1q_lane_s16(block + 52, row6, 2);
  row6 = vld1q_lane_s16(block + 45, row6, 3);
  row6 = vld1q_lane_s16(block + 38, row6, 4);
  row6 = vld1q_lane_s16(block + 31, row6, 5);
  row6 = vld1q_lane_s16(block + 39, row6, 6);
  row6 = vld1q_lane_s16(block + 46, row6, 7);

  int16x8_t row7 = vld1q_dup_s16(block + 53);
  row7 = vld1q_lane_s16(block + 60, row7, 1);
  row7 = vld1q_lane_s16(block + 61, row7, 2);
  row7 = vld1q_lane_s16(block + 54, row7, 3);
  row7 = vld1q_lane_s16(block + 47, row7, 4);
  row7 = vld1q_lane_s16(block + 55, row7, 5);
  row7 = vld1q_lane_s16(block + 62, row7, 6);
  row7 = vld1q_lane_s16(block + 63, row7, 7);

  int16x8_t abs_row4 = vabsq_s16(row4);
  int16x8_t abs_row5 = vabsq_s16(row5);
  int16x8_t abs_row6 = vabsq_s16(row6);
  int16x8_t abs_row7 = vabsq_s16(row7);

  int16x8_t row4_lz = vclzq_s16(abs_row4);
  int16x8_t row5_lz = vclzq_s16(abs_row5);
  int16x8_t row6_lz = vclzq_s16(abs_row6);
  int16x8_t row7_lz = vclzq_s16(abs_row7);

  /* Compute number of bits required to represent each coefficient. */
  uint8x8_t row4_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row4_lz)));
  uint8x8_t row5_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row5_lz)));
  uint8x8_t row6_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row6_lz)));
  uint8x8_t row7_nbits = vsub_u8(vdup_n_u8(16),
                                 vmovn_u16(vreinterpretq_u16_s16(row7_lz)));

  vst1_u8(block_nbits + 4 * DCTSIZE, row4_nbits);
  vst1_u8(block_nbits + 5 * DCTSIZE, row5_nbits);
  vst1_u8(block_nbits + 6 * DCTSIZE, row6_nbits);
  vst1_u8(block_nbits + 7 * DCTSIZE, row7_nbits);

  uint16x8_t row4_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row4, 15)),
              vnegq_s16(row4_lz));
  uint16x8_t row5_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row5, 15)),
              vnegq_s16(row5_lz));
  uint16x8_t row6_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row6, 15)),
              vnegq_s16(row6_lz));
  uint16x8_t row7_mask =
    vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row7, 15)),
              vnegq_s16(row7_lz));

  uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask);
  uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask);
  uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask);
  uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask);

  /* Store diff values for rows 4, 5, 6, and 7. */
  vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
  vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
  vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
  vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);

  /* Construct bitmap to accelerate encoding of AC coefficients.  A set bit
   * means that the corresponding coefficient != 0.
   */
  uint8x8_t row0_nbits_gt0 = vcgt_u8(row0_nbits, vdup_n_u8(0));
  uint8x8_t row1_nbits_gt0 = vcgt_u8(row1_nbits, vdup_n_u8(0));
  uint8x8_t row2_nbits_gt0 = vcgt_u8(row2_nbits, vdup_n_u8(0));
  uint8x8_t row3_nbits_gt0 = vcgt_u8(row3_nbits, vdup_n_u8(0));
  uint8x8_t row4_nbits_gt0 = vcgt_u8(row4_nbits, vdup_n_u8(0));
  uint8x8_t row5_nbits_gt0 = vcgt_u8(row5_nbits, vdup_n_u8(0));
  uint8x8_t row6_nbits_gt0 = vcgt_u8(row6_nbits, vdup_n_u8(0));
  uint8x8_t row7_nbits_gt0 = vcgt_u8(row7_nbits, vdup_n_u8(0));

  /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */
  const uint8x8_t bitmap_mask =
    vreinterpret_u8_u64(vmov_n_u64(0x0102040810204080));

  row0_nbits_gt0 = vand_u8(row0_nbits_gt0, bitmap_mask);
  row1_nbits_gt0 = vand_u8(row1_nbits_gt0, bitmap_mask);
  row2_nbits_gt0 = vand_u8(row2_nbits_gt0, bitmap_mask);
  row3_nbits_gt0 = vand_u8(row3_nbits_gt0, bitmap_mask);
  row4_nbits_gt0 = vand_u8(row4_nbits_gt0, bitmap_mask);
  row5_nbits_gt0 = vand_u8(row5_nbits_gt0, bitmap_mask);
  row6_nbits_gt0 = vand_u8(row6_nbits_gt0, bitmap_mask);
  row7_nbits_gt0 = vand_u8(row7_nbits_gt0, bitmap_mask);

  uint8x8_t bitmap_rows_10 = vpadd_u8(row1_nbits_gt0, row0_nbits_gt0);
  uint8x8_t bitmap_rows_32 = vpadd_u8(row3_nbits_gt0, row2_nbits_gt0);
  uint8x8_t bitmap_rows_54 = vpadd_u8(row5_nbits_gt0, row4_nbits_gt0);
  uint8x8_t bitmap_rows_76 = vpadd_u8(row7_nbits_gt0, row6_nbits_gt0);
  uint8x8_t bitmap_rows_3210 = vpadd_u8(bitmap_rows_32, bitmap_rows_10);
  uint8x8_t bitmap_rows_7654 = vpadd_u8(bitmap_rows_76, bitmap_rows_54);
  uint8x8_t bitmap = vpadd_u8(bitmap_rows_7654, bitmap_rows_3210);

  /* Shift left to remove DC bit. */
  bitmap = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap), 1));
  /* Move bitmap to 32-bit scalar registers. */
  uint32_t bitmap_1_32 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 1);
  uint32_t bitmap_33_63 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 0);

  /* Set up state and bit buffer for output bitstream. */
  working_state *state_ptr = (working_state *)state;
  int free_bits = state_ptr->cur.free_bits;
  size_t put_buffer = state_ptr->cur.put_buffer;

  /* Encode DC coefficient. */

  unsigned int nbits = block_nbits[0];
  /* Emit Huffman-coded symbol and additional diff bits. */
  unsigned int diff = block_diff[0];
  PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff)

  /* Encode AC coefficients. */

  unsigned int r = 0;  /* r = run length of zeros */
  unsigned int i = 1;  /* i = number of coefficients encoded */
  /* Code and size information for a run length of 16 zero coefficients */
  const unsigned int code_0xf0 = actbl->ehufco[0xf0];
  const unsigned int size_0xf0 = actbl->ehufsi[0xf0];

  while (bitmap_1_32 != 0) {
    r = BUILTIN_CLZ(bitmap_1_32);
    i += r;
    bitmap_1_32 <<= r;
    nbits = block_nbits[i];
    diff = block_diff[i];
    while (r > 15) {
      /* If run length > 15, emit special run-length-16 codes. */
      PUT_BITS(code_0xf0, size_0xf0)
      r -= 16;
    }
    /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
    unsigned int rs = (r << 4) + nbits;
    PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
    i++;
    bitmap_1_32 <<= 1;
  }

  r = 33 - i;
  i = 33;

  while (bitmap_33_63 != 0) {
    unsigned int leading_zeros = BUILTIN_CLZ(bitmap_33_63);
    r += leading_zeros;
    i += leading_zeros;
    bitmap_33_63 <<= leading_zeros;
    nbits = block_nbits[i];
    diff = block_diff[i];
    while (r > 15) {
      /* If run length > 15, emit special run-length-16 codes. */
      PUT_BITS(code_0xf0, size_0xf0)
      r -= 16;
    }
    /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
    unsigned int rs = (r << 4) + nbits;
    PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
    r = 0;
    i++;
    bitmap_33_63 <<= 1;
  }

  /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code.
   * The value of RS for the EOB code is 0.
   */
  if (i != 64) {
    PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
  }

  state_ptr->cur.put_buffer = put_buffer;
  state_ptr->cur.free_bits = free_bits;

  return buffer;
}