1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
|
/* Copyright (C) 2007-2008 Jean-Marc Valin
Copyright (C) 2008 Thorvald Natvig
File: resample.c
Arbitrary resampling code
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
/*
The design goals of this code are:
- Very fast algorithm
- SIMD-friendly algorithm
- Low memory requirement
- Good *perceptual* quality (and not best SNR)
Warning: This resampler is relatively new. Although I think I got rid of
all the major bugs and I don't expect the API to change anymore, there
may be something I've missed. So use with caution.
This algorithm is based on this original resampling algorithm:
Smith, Julius O. Digital Audio Resampling Home Page
Center for Computer Research in Music and Acoustics (CCRMA),
Stanford University, 2007.
Web published at http://ccrma.stanford.edu/~jos/resample/.
There is one main difference, though. This resampler uses cubic
interpolation instead of linear interpolation in the above paper. This
makes the table much smaller and makes it possible to compute that table
on a per-stream basis. In turn, being able to tweak the table for each
stream makes it possible to both reduce complexity on simple ratios
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define RESAMPLE_HUGEMEM 1
#ifdef OUTSIDE_SPEEX
#include <stdlib.h>
static void *speex_alloc (int size) {return calloc(size,1);}
static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);}
static void speex_free (void *ptr) {free(ptr);}
#include "speex_resampler.h"
#include "arch.h"
#else /* OUTSIDE_SPEEX */
#include "speex/speex_resampler.h"
#include "arch.h"
#include "os_support.h"
#endif /* OUTSIDE_SPEEX */
#include "stack_alloc.h"
#include <math.h>
#include <limits.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
#ifndef NULL
#define NULL 0
#endif
#ifndef UINT32_MAX
#define UINT32_MAX 4294967296U
#endif
#include "simd_detect.h"
/* Numer of elements to allocate on the stack */
#ifdef VAR_ARRAYS
#define FIXED_STACK_ALLOC 8192
#else
#define FIXED_STACK_ALLOC 1024
#endif
typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
struct SpeexResamplerState_ {
spx_uint32_t in_rate;
spx_uint32_t out_rate;
spx_uint32_t num_rate;
spx_uint32_t den_rate;
int quality;
spx_uint32_t nb_channels;
spx_uint32_t filt_len;
spx_uint32_t mem_alloc_size;
spx_uint32_t buffer_size;
int int_advance;
int frac_advance;
float cutoff;
spx_uint32_t oversample;
int initialised;
int started;
/* These are per-channel */
spx_int32_t *last_sample;
spx_uint32_t *samp_frac_num;
spx_uint32_t *magic_samples;
spx_word16_t *mem;
spx_word16_t *sinc_table;
spx_uint32_t sinc_table_length;
resampler_basic_func resampler_ptr;
int in_stride;
int out_stride;
} ;
static const double kaiser12_table[68] = {
0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
0.00001000, 0.00000000};
/*
static const double kaiser12_table[36] = {
0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
*/
static const double kaiser10_table[36] = {
0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};
static const double kaiser8_table[36] = {
0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
static const double kaiser6_table[36] = {
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};
struct FuncDef {
const double *table;
int oversample;
};
static const struct FuncDef _KAISER12 = {kaiser12_table, 64};
#define KAISER12 (&_KAISER12)
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
#define KAISER12 (&_KAISER12)*/
static const struct FuncDef _KAISER10 = {kaiser10_table, 32};
#define KAISER10 (&_KAISER10)
static const struct FuncDef _KAISER8 = {kaiser8_table, 32};
#define KAISER8 (&_KAISER8)
static const struct FuncDef _KAISER6 = {kaiser6_table, 32};
#define KAISER6 (&_KAISER6)
struct QualityMapping {
int base_length;
int oversample;
float downsample_bandwidth;
float upsample_bandwidth;
const struct FuncDef *window_func;
};
/* This table maps conversion quality to internal parameters. There are two
reasons that explain why the up-sampling bandwidth is larger than the
down-sampling bandwidth:
1) When up-sampling, we can assume that the spectrum is already attenuated
close to the Nyquist rate (from an A/D or a previous resampling filter)
2) Any aliasing that occurs very close to the Nyquist rate will be masked
by the sinusoids/noise just below the Nyquist rate (guaranteed only for
up-sampling).
*/
static const struct QualityMapping quality_map[11] = {
{ 8, 4, 0.830f, 0.860f, KAISER6 }, /* Q0 */
{ 16, 4, 0.850f, 0.880f, KAISER6 }, /* Q1 */
{ 32, 4, 0.882f, 0.910f, KAISER6 }, /* Q2 */ /* 82.3% cutoff ( ~60 dB stop) 6 */
{ 48, 8, 0.895f, 0.917f, KAISER8 }, /* Q3 */ /* 84.9% cutoff ( ~80 dB stop) 8 */
{ 64, 8, 0.921f, 0.940f, KAISER8 }, /* Q4 */ /* 88.7% cutoff ( ~80 dB stop) 8 */
{ 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */ /* 89.1% cutoff (~100 dB stop) 10 */
{ 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */ /* 91.5% cutoff (~100 dB stop) 10 */
{128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */ /* 93.1% cutoff (~100 dB stop) 10 */
{160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */ /* 94.5% cutoff (~100 dB stop) 10 */
{192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */ /* 95.5% cutoff (~100 dB stop) 10 */
{256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */
};
/*8,24,40,56,80,104,128,160,200,256,320*/
static double compute_func(float x, const struct FuncDef *func)
{
float y, frac;
double interp[4];
int ind;
y = x*func->oversample;
ind = (int)floor(y);
frac = (y-ind);
/* CSE with handle the repeated powers */
interp[3] = -0.1666666667*frac + 0.1666666667*(frac*frac*frac);
interp[2] = frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac);
/*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
/* Just to make sure we don't have rounding problems */
interp[1] = 1.f-interp[3]-interp[2]-interp[0];
/*sum = frac*accum[1] + (1-frac)*accum[2];*/
return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
}
#if 0
#include <stdio.h>
int main(int argc, char **argv)
{
int i;
for (i=0;i<256;i++)
{
printf ("%f\n", compute_func(i/256., KAISER12));
}
return 0;
}
#endif
#ifdef FIXED_POINT
/* The slow way of computing a sinc for the table. Should improve that some day */
static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
{
/*fprintf (stderr, "%f ", x);*/
float xx = x * cutoff;
if (fabs(x)<1e-6f)
return WORD2INT(32768.*cutoff);
else if (fabs(x) > .5f*N)
return 0;
/*FIXME: Can it really be any slower than this? */
return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func));
}
#else
/* The slow way of computing a sinc for the table. Should improve that some day */
static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
{
/*fprintf (stderr, "%f ", x);*/
float xx = x * cutoff;
if (fabs(x)<1e-6)
return cutoff;
else if (fabs(x) > .5*N)
return 0;
/*FIXME: Can it really be any slower than this? */
return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func);
}
#endif
#ifdef FIXED_POINT
static void cubic_coef(spx_word16_t x, spx_word16_t interp[4])
{
/* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
but I know it's MMSE-optimal on a sinc */
spx_word16_t x2, x3;
x2 = MULT16_16_P15(x, x);
x3 = MULT16_16_P15(x, x2);
interp[0] = PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(QCONST16(0.16667f, 15),x3),15);
interp[1] = EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32(x3)),1));
interp[3] = PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(QCONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15);
/* Just to make sure we don't have rounding problems */
interp[2] = Q15_ONE-interp[0]-interp[1]-interp[3];
if (interp[2]<32767)
interp[2]+=1;
}
#else
static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4])
{
/* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
but I know it's MMSE-optimal on a sinc */
interp[0] = -0.16667f*frac + 0.16667f*frac*frac*frac;
interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac;
/*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac;
/* Just to make sure we don't have rounding problems */
interp[2] = 1.-interp[0]-interp[1]-interp[3];
}
#endif
static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
const int N = st->filt_len;
int out_sample = 0;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
const spx_word16_t *sinc_table = st->sinc_table;
const int out_stride = st->out_stride;
const int int_advance = st->int_advance;
const int frac_advance = st->frac_advance;
const spx_uint32_t den_rate = st->den_rate;
spx_word32_t sum;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
const spx_word16_t *iptr = & in[last_sample];
#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
if (!moz_speex_have_single_simd()) {
#endif
int j;
sum = 0;
for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]);
/* This code is slower on most DSPs which have only 2 accumulators.
Plus this this forces truncation to 32 bits and you lose the HW guard bits.
I think we can trust the compiler and let it vectorize and/or unroll itself.
spx_word32_t accum[4] = {0,0,0,0};
for(j=0;j<N;j+=4) {
accum[0] += MULT16_16(sinct[j], iptr[j]);
accum[1] += MULT16_16(sinct[j+1], iptr[j+1]);
accum[2] += MULT16_16(sinct[j+2], iptr[j+2]);
accum[3] += MULT16_16(sinct[j+3], iptr[j+3]);
}
sum = accum[0] + accum[1] + accum[2] + accum[3];
*/
sum = SATURATE32PSHR(sum, 15, 32767);
#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
} else {
sum = inner_product_single(sinct, iptr, N);
}
#endif
out[out_stride * out_sample++] = sum;
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}
}
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
}
#ifdef FIXED_POINT
#else
/* This is the same as the previous function, except with a double-precision accumulator */
static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
const int N = st->filt_len;
int out_sample = 0;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
const spx_word16_t *sinc_table = st->sinc_table;
const int out_stride = st->out_stride;
const int int_advance = st->int_advance;
const int frac_advance = st->frac_advance;
const spx_uint32_t den_rate = st->den_rate;
double sum;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
const spx_word16_t *iptr = & in[last_sample];
#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
if(moz_speex_have_double_simd()) {
#endif
int j;
double accum[4] = {0,0,0,0};
for(j=0;j<N;j+=4) {
accum[0] += sinct[j]*iptr[j];
accum[1] += sinct[j+1]*iptr[j+1];
accum[2] += sinct[j+2]*iptr[j+2];
accum[3] += sinct[j+3]*iptr[j+3];
}
sum = accum[0] + accum[1] + accum[2] + accum[3];
#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
} else {
sum = inner_product_double(sinct, iptr, N);
}
#endif
out[out_stride * out_sample++] = PSHR32(sum, 15);
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}
}
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
}
#endif
static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
const int N = st->filt_len;
int out_sample = 0;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
const int out_stride = st->out_stride;
const int int_advance = st->int_advance;
const int frac_advance = st->frac_advance;
const spx_uint32_t den_rate = st->den_rate;
spx_word32_t sum;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
const spx_word16_t *iptr = & in[last_sample];
const int offset = samp_frac_num*st->oversample/st->den_rate;
#ifdef FIXED_POINT
const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
#else
const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
#endif
spx_word16_t interp[4];
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
if (!moz_speex_have_single_simd()) {
#endif
int j;
spx_word32_t accum[4] = {0,0,0,0};
for(j=0;j<N;j++) {
const spx_word16_t curr_in=iptr[j];
accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
}
cubic_coef(frac, interp);
sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
sum = SATURATE32PSHR(sum, 15, 32767);
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
} else {
cubic_coef(frac, interp);
sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
}
#endif
out[out_stride * out_sample++] = sum;
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}
}
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
}
#ifdef FIXED_POINT
#else
/* This is the same as the previous function, except with a double-precision accumulator */
static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
const int N = st->filt_len;
int out_sample = 0;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
const int out_stride = st->out_stride;
const int int_advance = st->int_advance;
const int frac_advance = st->frac_advance;
const spx_uint32_t den_rate = st->den_rate;
spx_word32_t sum;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
const spx_word16_t *iptr = & in[last_sample];
const int offset = samp_frac_num*st->oversample/st->den_rate;
#ifdef FIXED_POINT
const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
#else
const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
#endif
spx_word16_t interp[4];
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
if (!moz_speex_have_double_simd()) {
#endif
int j;
double accum[4] = {0,0,0,0};
for(j=0;j<N;j++) {
const double curr_in=iptr[j];
accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
}
cubic_coef(frac, interp);
sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
} else {
cubic_coef(frac, interp);
sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
}
#endif
out[out_stride * out_sample++] = PSHR32(sum,15);
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}
}
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
}
#endif
/* This resampler is used to produce zero output in situations where memory
for the filter could not be allocated. The expected numbers of input and
output samples are still processed so that callers failing to check error
codes are not surprised, possibly getting into infinite loops. */
static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
int out_sample = 0;
int last_sample = st->last_sample[channel_index];
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
const int out_stride = st->out_stride;
const int int_advance = st->int_advance;
const int frac_advance = st->frac_advance;
const spx_uint32_t den_rate = st->den_rate;
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
{
out[out_stride * out_sample++] = 0;
last_sample += int_advance;
samp_frac_num += frac_advance;
if (samp_frac_num >= den_rate)
{
samp_frac_num -= den_rate;
last_sample++;
}
}
st->last_sample[channel_index] = last_sample;
st->samp_frac_num[channel_index] = samp_frac_num;
return out_sample;
}
static int _muldiv(spx_uint32_t *result, spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
{
speex_assert(result);
spx_uint32_t major = value / div;
spx_uint32_t remainder = value % div;
/* TODO: Could use 64 bits operation to check for overflow. But only guaranteed in C99+ */
if (remainder > UINT32_MAX / mul || major > UINT32_MAX / mul
|| major * mul > UINT32_MAX - remainder * mul / div)
return RESAMPLER_ERR_OVERFLOW;
*result = remainder * mul / div + major * mul;
return RESAMPLER_ERR_SUCCESS;
}
static int update_filter(SpeexResamplerState *st)
{
spx_uint32_t old_length = st->filt_len;
spx_uint32_t old_alloc_size = st->mem_alloc_size;
int use_direct;
spx_uint32_t min_sinc_table_length;
spx_uint32_t min_alloc_size;
st->int_advance = st->num_rate/st->den_rate;
st->frac_advance = st->num_rate%st->den_rate;
st->oversample = quality_map[st->quality].oversample;
st->filt_len = quality_map[st->quality].base_length;
if (st->num_rate > st->den_rate)
{
/* down-sampling */
st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
if (_muldiv(&st->filt_len,st->filt_len,st->num_rate,st->den_rate) != RESAMPLER_ERR_SUCCESS)
goto fail;
/* Round up to make sure we have a multiple of 8 for SSE */
st->filt_len = ((st->filt_len-1)&(~0x7))+8;
if (2*st->den_rate < st->num_rate)
st->oversample >>= 1;
if (4*st->den_rate < st->num_rate)
st->oversample >>= 1;
if (8*st->den_rate < st->num_rate)
st->oversample >>= 1;
if (16*st->den_rate < st->num_rate)
st->oversample >>= 1;
if (st->oversample < 1)
st->oversample = 1;
} else {
/* up-sampling */
st->cutoff = quality_map[st->quality].upsample_bandwidth;
}
use_direct =
#ifdef RESAMPLE_HUGEMEM
/* Choose the direct resampler, even with higher initialization costs,
when resampling any multiple of 100 to 44100. */
st->den_rate <= 441
#else
/* Choose the resampling type that requires the least amount of memory */
st->filt_len*st->den_rate <= st->filt_len*st->oversample+8
#endif
&& INT_MAX/sizeof(spx_word16_t)/st->den_rate >= st->filt_len;
if (use_direct)
{
min_sinc_table_length = st->filt_len*st->den_rate;
} else {
if ((INT_MAX/sizeof(spx_word16_t)-8)/st->oversample < st->filt_len)
goto fail;
min_sinc_table_length = st->filt_len*st->oversample+8;
}
if (st->sinc_table_length < min_sinc_table_length)
{
spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t));
if (!sinc_table)
goto fail;
st->sinc_table = sinc_table;
st->sinc_table_length = min_sinc_table_length;
}
if (use_direct)
{
spx_uint32_t i;
for (i=0;i<st->den_rate;i++)
{
spx_int32_t j;
for (j=0;j<st->filt_len;j++)
{
st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-(spx_int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_map[st->quality].window_func);
}
}
#ifdef FIXED_POINT
st->resampler_ptr = resampler_basic_direct_single;
#else
if (st->quality>8)
st->resampler_ptr = resampler_basic_direct_double;
else
st->resampler_ptr = resampler_basic_direct_single;
#endif
/*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/
} else {
spx_int32_t i;
for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++)
st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func);
#ifdef FIXED_POINT
st->resampler_ptr = resampler_basic_interpolate_single;
#else
if (st->quality>8)
st->resampler_ptr = resampler_basic_interpolate_double;
else
st->resampler_ptr = resampler_basic_interpolate_single;
#endif
/*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/
}
/* Here's the place where we update the filter memory to take into account
the change in filter length. It's probably the messiest part of the code
due to handling of lots of corner cases. */
/* Adding buffer_size to filt_len won't overflow here because filt_len
could be multiplied by sizeof(spx_word16_t) above. */
min_alloc_size = st->filt_len-1 + st->buffer_size;
if (min_alloc_size > st->mem_alloc_size)
{
spx_word16_t *mem;
if (INT_MAX/sizeof(spx_word16_t)/st->nb_channels < min_alloc_size)
goto fail;
else if (!(mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(*mem))))
goto fail;
st->mem = mem;
st->mem_alloc_size = min_alloc_size;
}
if (!st->started)
{
spx_uint32_t i;
for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
st->mem[i] = 0;
/*speex_warning("reinit filter");*/
} else if (st->filt_len > old_length)
{
spx_uint32_t i;
/* Increase the filter length */
/*speex_warning("increase filter size");*/
for (i=st->nb_channels;i--;)
{
spx_uint32_t j;
spx_uint32_t olen = old_length;
/*if (st->magic_samples[i])*/
{
/* Try and remove the magic samples as if nothing had happened */
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
olen = old_length + 2*st->magic_samples[i];
for (j=old_length-1+st->magic_samples[i];j--;)
st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j];
for (j=0;j<st->magic_samples[i];j++)
st->mem[i*st->mem_alloc_size+j] = 0;
st->magic_samples[i] = 0;
}
if (st->filt_len > olen)
{
/* If the new filter length is still bigger than the "augmented" length */
/* Copy data going backward */
for (j=0;j<olen-1;j++)
st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = st->mem[i*st->mem_alloc_size+(olen-2-j)];
/* Then put zeros for lack of anything better */
for (;j<st->filt_len-1;j++)
st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = 0;
/* Adjust last_sample */
st->last_sample[i] += (st->filt_len - olen)/2;
} else {
/* Put back some of the magic! */
st->magic_samples[i] = (olen - st->filt_len)/2;
for (j=0;j<st->filt_len-1+st->magic_samples[i];j++)
st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]];
}
}
} else if (st->filt_len < old_length)
{
spx_uint32_t i;
/* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
samples so they can be used directly as input the next time(s) */
for (i=0;i<st->nb_channels;i++)
{
spx_uint32_t j;
spx_uint32_t old_magic = st->magic_samples[i];
st->magic_samples[i] = (old_length - st->filt_len)/2;
/* We must copy some of the memory that's no longer used */
/* Copy data going backward */
for (j=0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++)
st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]];
st->magic_samples[i] += old_magic;
}
}
return RESAMPLER_ERR_SUCCESS;
fail:
st->resampler_ptr = resampler_basic_zero;
/* st->mem may still contain consumed input samples for the filter.
Restore filt_len so that filt_len - 1 still points to the position after
the last of these samples. */
st->filt_len = old_length;
return RESAMPLER_ERR_ALLOC_FAILED;
}
EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
{
return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err);
}
EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
{
spx_uint32_t i;
SpeexResamplerState *st;
int filter_err;
if (nb_channels == 0 || ratio_num == 0 || ratio_den == 0 || quality > 10 || quality < 0)
{
if (err)
*err = RESAMPLER_ERR_INVALID_ARG;
return NULL;
}
st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
if (!st)
{
if (err)
*err = RESAMPLER_ERR_ALLOC_FAILED;
return NULL;
}
st->initialised = 0;
st->started = 0;
st->in_rate = 0;
st->out_rate = 0;
st->num_rate = 0;
st->den_rate = 0;
st->quality = -1;
st->sinc_table_length = 0;
st->mem_alloc_size = 0;
st->filt_len = 0;
st->mem = 0;
st->resampler_ptr = 0;
st->cutoff = 1.f;
st->nb_channels = nb_channels;
st->in_stride = 1;
st->out_stride = 1;
st->buffer_size = 160;
/* Per channel data */
if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t))))
goto fail;
if (!(st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
goto fail;
if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
goto fail;
speex_resampler_set_quality(st, quality);
speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
filter_err = update_filter(st);
if (filter_err == RESAMPLER_ERR_SUCCESS)
{
st->initialised = 1;
} else {
speex_resampler_destroy(st);
st = NULL;
}
if (err)
*err = filter_err;
return st;
fail:
if (err)
*err = RESAMPLER_ERR_ALLOC_FAILED;
speex_resampler_destroy(st);
return NULL;
}
EXPORT void speex_resampler_destroy(SpeexResamplerState *st)
{
speex_free(st->mem);
speex_free(st->sinc_table);
speex_free(st->last_sample);
speex_free(st->magic_samples);
speex_free(st->samp_frac_num);
speex_free(st);
}
static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
{
int j=0;
const int N = st->filt_len;
int out_sample = 0;
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
spx_uint32_t ilen;
st->started = 1;
/* Call the right resampler through the function ptr */
out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
*in_len = st->last_sample[channel_index];
*out_len = out_sample;
st->last_sample[channel_index] -= *in_len;
ilen = *in_len;
for(j=0;j<N-1;++j)
mem[j] = mem[j+ilen];
return RESAMPLER_ERR_SUCCESS;
}
static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) {
spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
const int N = st->filt_len;
speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
st->magic_samples[channel_index] -= tmp_in_len;
/* If we couldn't process all "magic" input samples, save the rest for next time */
if (st->magic_samples[channel_index])
{
spx_uint32_t i;
for (i=0;i<st->magic_samples[channel_index];i++)
mem[N-1+i]=mem[N-1+i+tmp_in_len];
}
*out += out_len*st->out_stride;
return out_len;
}
#ifdef FIXED_POINT
EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
#else
EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
#endif
{
int j;
spx_uint32_t ilen = *in_len;
spx_uint32_t olen = *out_len;
spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
const int filt_offs = st->filt_len - 1;
const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
const int istride = st->in_stride;
if (st->magic_samples[channel_index])
olen -= speex_resampler_magic(st, channel_index, &out, olen);
if (! st->magic_samples[channel_index]) {
while (ilen && olen) {
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
spx_uint32_t ochunk = olen;
if (in) {
for(j=0;j<ichunk;++j)
x[j+filt_offs]=in[j*istride];
} else {
for(j=0;j<ichunk;++j)
x[j+filt_offs]=0;
}
speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk);
ilen -= ichunk;
olen -= ochunk;
out += ochunk * st->out_stride;
if (in)
in += ichunk * istride;
}
}
*in_len -= ilen;
*out_len -= olen;
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
}
#ifdef FIXED_POINT
EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
#else
EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
#endif
{
int j;
const int istride_save = st->in_stride;
const int ostride_save = st->out_stride;
spx_uint32_t ilen = *in_len;
spx_uint32_t olen = *out_len;
spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1);
#ifdef VAR_ARRAYS
const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC;
VARDECL(spx_word16_t *ystack);
ALLOC(ystack, ylen, spx_word16_t);
#else
const unsigned int ylen = FIXED_STACK_ALLOC;
spx_word16_t ystack[FIXED_STACK_ALLOC];
#endif
st->out_stride = 1;
while (ilen && olen) {
spx_word16_t *y = ystack;
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
spx_uint32_t ochunk = (olen > ylen) ? ylen : olen;
spx_uint32_t omagic = 0;
if (st->magic_samples[channel_index]) {
omagic = speex_resampler_magic(st, channel_index, &y, ochunk);
ochunk -= omagic;
olen -= omagic;
}
if (! st->magic_samples[channel_index]) {
if (in) {
for(j=0;j<ichunk;++j)
#ifdef FIXED_POINT
x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]);
#else
x[j+st->filt_len-1]=in[j*istride_save];
#endif
} else {
for(j=0;j<ichunk;++j)
x[j+st->filt_len-1]=0;
}
speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk);
} else {
ichunk = 0;
ochunk = 0;
}
for (j=0;j<ochunk+omagic;++j)
#ifdef FIXED_POINT
out[j*ostride_save] = ystack[j];
#else
out[j*ostride_save] = WORD2INT(ystack[j]);
#endif
ilen -= ichunk;
olen -= ochunk;
out += (ochunk+omagic) * ostride_save;
if (in)
in += ichunk * istride_save;
}
st->out_stride = ostride_save;
*in_len -= ilen;
*out_len -= olen;
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
}
EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
{
spx_uint32_t i;
int istride_save, ostride_save;
spx_uint32_t bak_out_len = *out_len;
spx_uint32_t bak_in_len = *in_len;
istride_save = st->in_stride;
ostride_save = st->out_stride;
st->in_stride = st->out_stride = st->nb_channels;
for (i=0;i<st->nb_channels;i++)
{
*out_len = bak_out_len;
*in_len = bak_in_len;
if (in != NULL)
speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
else
speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len);
}
st->in_stride = istride_save;
st->out_stride = ostride_save;
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
}
EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
{
spx_uint32_t i;
int istride_save, ostride_save;
spx_uint32_t bak_out_len = *out_len;
spx_uint32_t bak_in_len = *in_len;
istride_save = st->in_stride;
ostride_save = st->out_stride;
st->in_stride = st->out_stride = st->nb_channels;
for (i=0;i<st->nb_channels;i++)
{
*out_len = bak_out_len;
*in_len = bak_in_len;
if (in != NULL)
speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
else
speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len);
}
st->in_stride = istride_save;
st->out_stride = ostride_save;
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
}
EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
{
return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate);
}
EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
{
*in_rate = st->in_rate;
*out_rate = st->out_rate;
}
static inline spx_uint32_t _gcd(spx_uint32_t a, spx_uint32_t b)
{
while (b != 0)
{
spx_uint32_t temp = a;
a = b;
b = temp % b;
}
return a;
}
EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
{
spx_uint32_t fact;
spx_uint32_t old_den;
spx_uint32_t i;
if (ratio_num == 0 || ratio_den == 0)
return RESAMPLER_ERR_INVALID_ARG;
if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
return RESAMPLER_ERR_SUCCESS;
old_den = st->den_rate;
st->in_rate = in_rate;
st->out_rate = out_rate;
st->num_rate = ratio_num;
st->den_rate = ratio_den;
fact = _gcd (st->num_rate, st->den_rate);
st->num_rate /= fact;
st->den_rate /= fact;
if (old_den > 0)
{
for (i=0;i<st->nb_channels;i++)
{
if (_muldiv(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS) {
st->samp_frac_num[i] = st->den_rate-1;
}
/* Safety net */
if (st->samp_frac_num[i] >= st->den_rate)
st->samp_frac_num[i] = st->den_rate-1;
}
}
if (st->initialised)
return update_filter(st);
return RESAMPLER_ERR_SUCCESS;
}
EXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den)
{
*ratio_num = st->num_rate;
*ratio_den = st->den_rate;
}
EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
{
if (quality > 10 || quality < 0)
return RESAMPLER_ERR_INVALID_ARG;
if (st->quality == quality)
return RESAMPLER_ERR_SUCCESS;
st->quality = quality;
if (st->initialised)
return update_filter(st);
return RESAMPLER_ERR_SUCCESS;
}
EXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
{
*quality = st->quality;
}
EXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride)
{
st->in_stride = stride;
}
EXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride)
{
*stride = st->in_stride;
}
EXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride)
{
st->out_stride = stride;
}
EXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride)
{
*stride = st->out_stride;
}
EXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st)
{
return st->filt_len / 2;
}
EXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st)
{
return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate;
}
EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st)
{
spx_uint32_t i;
for (i=0;i<st->nb_channels;i++)
st->last_sample[i] = st->filt_len/2;
return RESAMPLER_ERR_SUCCESS;
}
EXPORT int speex_resampler_set_skip_frac_num(SpeexResamplerState *st, spx_uint32_t skip_frac_num)
{
spx_uint32_t i;
spx_uint32_t last_sample = skip_frac_num / st->den_rate;
spx_uint32_t samp_frac_num = skip_frac_num % st->den_rate;
for (i=0;i<st->nb_channels;i++) {
st->last_sample[i] = last_sample;
st->samp_frac_num[i] = samp_frac_num;
}
return RESAMPLER_ERR_SUCCESS;
}
EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st)
{
spx_uint32_t i;
for (i=0;i<st->nb_channels;i++)
{
st->last_sample[i] = 0;
st->magic_samples[i] = 0;
st->samp_frac_num[i] = 0;
}
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
st->mem[i] = 0;
return RESAMPLER_ERR_SUCCESS;
}
EXPORT const char *speex_resampler_strerror(int err)
{
switch (err)
{
case RESAMPLER_ERR_SUCCESS:
return "Success.";
case RESAMPLER_ERR_ALLOC_FAILED:
return "Memory allocation failed.";
case RESAMPLER_ERR_BAD_STATE:
return "Bad resampler state.";
case RESAMPLER_ERR_INVALID_ARG:
return "Invalid argument.";
case RESAMPLER_ERR_PTR_OVERLAP:
return "Input and output buffers overlap.";
default:
return "Unknown error. Bad error code or strange version mismatch.";
}
}
|