summaryrefslogtreecommitdiffstats
path: root/media/libwebp/src/enc/picture_csp_enc.c
blob: 78c8ca479b012d729d598f8ced7c5afe0a51b8a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// WebPPicture utils for colorspace conversion
//
// Author: Skal (pascal.massimino@gmail.com)

#include <assert.h>
#include <stdlib.h>
#include <math.h>

#include "sharpyuv/sharpyuv.h"
#include "sharpyuv/sharpyuv_csp.h"
#include "src/enc/vp8i_enc.h"
#include "src/utils/random_utils.h"
#include "src/utils/utils.h"
#include "src/dsp/dsp.h"
#include "src/dsp/lossless.h"
#include "src/dsp/yuv.h"
#include "src/dsp/cpu.h"

#if defined(WEBP_USE_THREAD) && !defined(_WIN32)
#include <pthread.h>
#endif

// Uncomment to disable gamma-compression during RGB->U/V averaging
#define USE_GAMMA_COMPRESSION

// If defined, use table to compute x / alpha.
#define USE_INVERSE_ALPHA_TABLE

#ifdef WORDS_BIGENDIAN
// uint32_t 0xff000000 is 0xff,00,00,00 in memory
#define CHANNEL_OFFSET(i) (i)
#else
// uint32_t 0xff000000 is 0x00,00,00,ff in memory
#define CHANNEL_OFFSET(i) (3-(i))
#endif

#define ALPHA_OFFSET CHANNEL_OFFSET(0)

//------------------------------------------------------------------------------
// Detection of non-trivial transparency

// Returns true if alpha[] has non-0xff values.
static int CheckNonOpaque(const uint8_t* alpha, int width, int height,
                          int x_step, int y_step) {
  if (alpha == NULL) return 0;
  WebPInitAlphaProcessing();
  if (x_step == 1) {
    for (; height-- > 0; alpha += y_step) {
      if (WebPHasAlpha8b(alpha, width)) return 1;
    }
  } else {
    for (; height-- > 0; alpha += y_step) {
      if (WebPHasAlpha32b(alpha, width)) return 1;
    }
  }
  return 0;
}

// Checking for the presence of non-opaque alpha.
int WebPPictureHasTransparency(const WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (picture->use_argb) {
    if (picture->argb != NULL) {
      return CheckNonOpaque((const uint8_t*)picture->argb + ALPHA_OFFSET,
                            picture->width, picture->height,
                            4, picture->argb_stride * sizeof(*picture->argb));
    }
    return 0;
  }
  return CheckNonOpaque(picture->a, picture->width, picture->height,
                        1, picture->a_stride);
}

//------------------------------------------------------------------------------
// Code for gamma correction

#if defined(USE_GAMMA_COMPRESSION)

// Gamma correction compensates loss of resolution during chroma subsampling.
#define GAMMA_FIX 12      // fixed-point precision for linear values
#define GAMMA_TAB_FIX 7   // fixed-point fractional bits precision
#define GAMMA_TAB_SIZE (1 << (GAMMA_FIX - GAMMA_TAB_FIX))
static const double kGamma = 0.80;
static const int kGammaScale = ((1 << GAMMA_FIX) - 1);
static const int kGammaTabScale = (1 << GAMMA_TAB_FIX);
static const int kGammaTabRounder = (1 << GAMMA_TAB_FIX >> 1);

static int kLinearToGammaTab[GAMMA_TAB_SIZE + 1];
static uint16_t kGammaToLinearTab[256];
static volatile int kGammaTablesOk = 0;
static void InitGammaTables(void);

WEBP_DSP_INIT_FUNC(InitGammaTables) {
  if (!kGammaTablesOk) {
    int v;
    const double scale = (double)(1 << GAMMA_TAB_FIX) / kGammaScale;
    const double norm = 1. / 255.;
    for (v = 0; v <= 255; ++v) {
      kGammaToLinearTab[v] =
          (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5);
    }
    for (v = 0; v <= GAMMA_TAB_SIZE; ++v) {
      kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5);
    }
    kGammaTablesOk = 1;
  }
}

static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) {
  return kGammaToLinearTab[v];
}

static WEBP_INLINE int Interpolate(int v) {
  const int tab_pos = v >> (GAMMA_TAB_FIX + 2);    // integer part
  const int x = v & ((kGammaTabScale << 2) - 1);  // fractional part
  const int v0 = kLinearToGammaTab[tab_pos];
  const int v1 = kLinearToGammaTab[tab_pos + 1];
  const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x);   // interpolate
  assert(tab_pos + 1 < GAMMA_TAB_SIZE + 1);
  return y;
}

// Convert a linear value 'v' to YUV_FIX+2 fixed-point precision
// U/V value, suitable for RGBToU/V calls.
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
  const int y = Interpolate(base_value << shift);   // final uplifted value
  return (y + kGammaTabRounder) >> GAMMA_TAB_FIX;    // descale
}

#else

static void InitGammaTables(void) {}
static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; }
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
  return (int)(base_value << shift);
}

#endif    // USE_GAMMA_COMPRESSION

//------------------------------------------------------------------------------
// RGB -> YUV conversion

static int RGBToY(int r, int g, int b, VP8Random* const rg) {
  return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF)
                      : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX));
}

static int RGBToU(int r, int g, int b, VP8Random* const rg) {
  return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2)
                      : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
}

static int RGBToV(int r, int g, int b, VP8Random* const rg) {
  return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2)
                      : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
}

//------------------------------------------------------------------------------
// Sharp RGB->YUV conversion

static const int kMinDimensionIterativeConversion = 4;

//------------------------------------------------------------------------------
// Main function

static int PreprocessARGB(const uint8_t* r_ptr,
                          const uint8_t* g_ptr,
                          const uint8_t* b_ptr,
                          int step, int rgb_stride,
                          WebPPicture* const picture) {
  const int ok = SharpYuvConvert(
      r_ptr, g_ptr, b_ptr, step, rgb_stride, /*rgb_bit_depth=*/8,
      picture->y, picture->y_stride, picture->u, picture->uv_stride, picture->v,
      picture->uv_stride, /*yuv_bit_depth=*/8, picture->width,
      picture->height, SharpYuvGetConversionMatrix(kSharpYuvMatrixWebp));
  if (!ok) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
  }
  return ok;
}

//------------------------------------------------------------------------------
// "Fast" regular RGB->YUV

#define SUM4(ptr, step) LinearToGamma(                     \
    GammaToLinear((ptr)[0]) +                              \
    GammaToLinear((ptr)[(step)]) +                         \
    GammaToLinear((ptr)[rgb_stride]) +                     \
    GammaToLinear((ptr)[rgb_stride + (step)]), 0)          \

#define SUM2(ptr) \
    LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1)

#define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride])
#define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4))

#if defined(USE_INVERSE_ALPHA_TABLE)

static const int kAlphaFix = 19;
// Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix
// formula is then equal to v / a in most (99.6%) cases. Note that this table
// and constant are adjusted very tightly to fit 32b arithmetic.
// In particular, they use the fact that the operands for 'v / a' are actually
// derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3
// with ai in [0..255] and pi in [0..1<<GAMMA_FIX). The constraint to avoid
// overflow is: GAMMA_FIX + kAlphaFix <= 31.
static const uint32_t kInvAlpha[4 * 0xff + 1] = {
  0,  /* alpha = 0 */
  524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536,
  58254, 52428, 47662, 43690, 40329, 37449, 34952, 32768,
  30840, 29127, 27594, 26214, 24966, 23831, 22795, 21845,
  20971, 20164, 19418, 18724, 18078, 17476, 16912, 16384,
  15887, 15420, 14979, 14563, 14169, 13797, 13443, 13107,
  12787, 12483, 12192, 11915, 11650, 11397, 11155, 10922,
  10699, 10485, 10280, 10082, 9892, 9709, 9532, 9362,
  9198, 9039, 8886, 8738, 8594, 8456, 8322, 8192,
  8065, 7943, 7825, 7710, 7598, 7489, 7384, 7281,
  7182, 7084, 6990, 6898, 6808, 6721, 6636, 6553,
  6472, 6393, 6316, 6241, 6168, 6096, 6026, 5957,
  5890, 5825, 5761, 5698, 5637, 5577, 5518, 5461,
  5405, 5349, 5295, 5242, 5190, 5140, 5090, 5041,
  4993, 4946, 4899, 4854, 4809, 4766, 4723, 4681,
  4639, 4599, 4559, 4519, 4481, 4443, 4405, 4369,
  4332, 4297, 4262, 4228, 4194, 4161, 4128, 4096,
  4064, 4032, 4002, 3971, 3942, 3912, 3883, 3855,
  3826, 3799, 3771, 3744, 3718, 3692, 3666, 3640,
  3615, 3591, 3566, 3542, 3518, 3495, 3472, 3449,
  3426, 3404, 3382, 3360, 3339, 3318, 3297, 3276,
  3256, 3236, 3216, 3196, 3177, 3158, 3139, 3120,
  3102, 3084, 3066, 3048, 3030, 3013, 2995, 2978,
  2962, 2945, 2928, 2912, 2896, 2880, 2864, 2849,
  2833, 2818, 2803, 2788, 2774, 2759, 2744, 2730,
  2716, 2702, 2688, 2674, 2661, 2647, 2634, 2621,
  2608, 2595, 2582, 2570, 2557, 2545, 2532, 2520,
  2508, 2496, 2484, 2473, 2461, 2449, 2438, 2427,
  2416, 2404, 2394, 2383, 2372, 2361, 2351, 2340,
  2330, 2319, 2309, 2299, 2289, 2279, 2269, 2259,
  2250, 2240, 2231, 2221, 2212, 2202, 2193, 2184,
  2175, 2166, 2157, 2148, 2139, 2131, 2122, 2114,
  2105, 2097, 2088, 2080, 2072, 2064, 2056, 2048,
  2040, 2032, 2024, 2016, 2008, 2001, 1993, 1985,
  1978, 1971, 1963, 1956, 1949, 1941, 1934, 1927,
  1920, 1913, 1906, 1899, 1892, 1885, 1879, 1872,
  1865, 1859, 1852, 1846, 1839, 1833, 1826, 1820,
  1814, 1807, 1801, 1795, 1789, 1783, 1777, 1771,
  1765, 1759, 1753, 1747, 1741, 1736, 1730, 1724,
  1718, 1713, 1707, 1702, 1696, 1691, 1685, 1680,
  1675, 1669, 1664, 1659, 1653, 1648, 1643, 1638,
  1633, 1628, 1623, 1618, 1613, 1608, 1603, 1598,
  1593, 1588, 1583, 1579, 1574, 1569, 1565, 1560,
  1555, 1551, 1546, 1542, 1537, 1533, 1528, 1524,
  1519, 1515, 1510, 1506, 1502, 1497, 1493, 1489,
  1485, 1481, 1476, 1472, 1468, 1464, 1460, 1456,
  1452, 1448, 1444, 1440, 1436, 1432, 1428, 1424,
  1420, 1416, 1413, 1409, 1405, 1401, 1398, 1394,
  1390, 1387, 1383, 1379, 1376, 1372, 1368, 1365,
  1361, 1358, 1354, 1351, 1347, 1344, 1340, 1337,
  1334, 1330, 1327, 1323, 1320, 1317, 1314, 1310,
  1307, 1304, 1300, 1297, 1294, 1291, 1288, 1285,
  1281, 1278, 1275, 1272, 1269, 1266, 1263, 1260,
  1257, 1254, 1251, 1248, 1245, 1242, 1239, 1236,
  1233, 1230, 1227, 1224, 1222, 1219, 1216, 1213,
  1210, 1208, 1205, 1202, 1199, 1197, 1194, 1191,
  1188, 1186, 1183, 1180, 1178, 1175, 1172, 1170,
  1167, 1165, 1162, 1159, 1157, 1154, 1152, 1149,
  1147, 1144, 1142, 1139, 1137, 1134, 1132, 1129,
  1127, 1125, 1122, 1120, 1117, 1115, 1113, 1110,
  1108, 1106, 1103, 1101, 1099, 1096, 1094, 1092,
  1089, 1087, 1085, 1083, 1081, 1078, 1076, 1074,
  1072, 1069, 1067, 1065, 1063, 1061, 1059, 1057,
  1054, 1052, 1050, 1048, 1046, 1044, 1042, 1040,
  1038, 1036, 1034, 1032, 1030, 1028, 1026, 1024,
  1022, 1020, 1018, 1016, 1014, 1012, 1010, 1008,
  1006, 1004, 1002, 1000, 998, 996, 994, 992,
  991, 989, 987, 985, 983, 981, 979, 978,
  976, 974, 972, 970, 969, 967, 965, 963,
  961, 960, 958, 956, 954, 953, 951, 949,
  948, 946, 944, 942, 941, 939, 937, 936,
  934, 932, 931, 929, 927, 926, 924, 923,
  921, 919, 918, 916, 914, 913, 911, 910,
  908, 907, 905, 903, 902, 900, 899, 897,
  896, 894, 893, 891, 890, 888, 887, 885,
  884, 882, 881, 879, 878, 876, 875, 873,
  872, 870, 869, 868, 866, 865, 863, 862,
  860, 859, 858, 856, 855, 853, 852, 851,
  849, 848, 846, 845, 844, 842, 841, 840,
  838, 837, 836, 834, 833, 832, 830, 829,
  828, 826, 825, 824, 823, 821, 820, 819,
  817, 816, 815, 814, 812, 811, 810, 809,
  807, 806, 805, 804, 802, 801, 800, 799,
  798, 796, 795, 794, 793, 791, 790, 789,
  788, 787, 786, 784, 783, 782, 781, 780,
  779, 777, 776, 775, 774, 773, 772, 771,
  769, 768, 767, 766, 765, 764, 763, 762,
  760, 759, 758, 757, 756, 755, 754, 753,
  752, 751, 750, 748, 747, 746, 745, 744,
  743, 742, 741, 740, 739, 738, 737, 736,
  735, 734, 733, 732, 731, 730, 729, 728,
  727, 726, 725, 724, 723, 722, 721, 720,
  719, 718, 717, 716, 715, 714, 713, 712,
  711, 710, 709, 708, 707, 706, 705, 704,
  703, 702, 701, 700, 699, 699, 698, 697,
  696, 695, 694, 693, 692, 691, 690, 689,
  688, 688, 687, 686, 685, 684, 683, 682,
  681, 680, 680, 679, 678, 677, 676, 675,
  674, 673, 673, 672, 671, 670, 669, 668,
  667, 667, 666, 665, 664, 663, 662, 661,
  661, 660, 659, 658, 657, 657, 656, 655,
  654, 653, 652, 652, 651, 650, 649, 648,
  648, 647, 646, 645, 644, 644, 643, 642,
  641, 640, 640, 639, 638, 637, 637, 636,
  635, 634, 633, 633, 632, 631, 630, 630,
  629, 628, 627, 627, 626, 625, 624, 624,
  623, 622, 621, 621, 620, 619, 618, 618,
  617, 616, 616, 615, 614, 613, 613, 612,
  611, 611, 610, 609, 608, 608, 607, 606,
  606, 605, 604, 604, 603, 602, 601, 601,
  600, 599, 599, 598, 597, 597, 596, 595,
  595, 594, 593, 593, 592, 591, 591, 590,
  589, 589, 588, 587, 587, 586, 585, 585,
  584, 583, 583, 582, 581, 581, 580, 579,
  579, 578, 578, 577, 576, 576, 575, 574,
  574, 573, 572, 572, 571, 571, 570, 569,
  569, 568, 568, 567, 566, 566, 565, 564,
  564, 563, 563, 562, 561, 561, 560, 560,
  559, 558, 558, 557, 557, 556, 555, 555,
  554, 554, 553, 553, 552, 551, 551, 550,
  550, 549, 548, 548, 547, 547, 546, 546,
  545, 544, 544, 543, 543, 542, 542, 541,
  541, 540, 539, 539, 538, 538, 537, 537,
  536, 536, 535, 534, 534, 533, 533, 532,
  532, 531, 531, 530, 530, 529, 529, 528,
  527, 527, 526, 526, 525, 525, 524, 524,
  523, 523, 522, 522, 521, 521, 520, 520,
  519, 519, 518, 518, 517, 517, 516, 516,
  515, 515, 514, 514
};

// Note that LinearToGamma() expects the values to be premultiplied by 4,
// so we incorporate this factor 4 inside the DIVIDE_BY_ALPHA macro directly.
#define DIVIDE_BY_ALPHA(sum, a)  (((sum) * kInvAlpha[(a)]) >> (kAlphaFix - 2))

#else

#define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a))

#endif  // USE_INVERSE_ALPHA_TABLE

static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src,
                                             const uint8_t* a_ptr,
                                             uint32_t total_a, int step,
                                             int rgb_stride) {
  const uint32_t sum =
      a_ptr[0] * GammaToLinear(src[0]) +
      a_ptr[step] * GammaToLinear(src[step]) +
      a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) +
      a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]);
  assert(total_a > 0 && total_a <= 4 * 0xff);
#if defined(USE_INVERSE_ALPHA_TABLE)
  assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32));
#endif
  return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0);
}

static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr,
                                      const uint8_t* const g_ptr,
                                      const uint8_t* const b_ptr,
                                      int step,
                                      uint8_t* const dst_y,
                                      int width,
                                      VP8Random* const rg) {
  int i, j;
  for (i = 0, j = 0; i < width; i += 1, j += step) {
    dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg);
  }
}

static WEBP_INLINE void AccumulateRGBA(const uint8_t* const r_ptr,
                                       const uint8_t* const g_ptr,
                                       const uint8_t* const b_ptr,
                                       const uint8_t* const a_ptr,
                                       int rgb_stride,
                                       uint16_t* dst, int width) {
  int i, j;
  // we loop over 2x2 blocks and produce one R/G/B/A value for each.
  for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * 4, dst += 4) {
    const uint32_t a = SUM4ALPHA(a_ptr + j);
    int r, g, b;
    if (a == 4 * 0xff || a == 0) {
      r = SUM4(r_ptr + j, 4);
      g = SUM4(g_ptr + j, 4);
      b = SUM4(b_ptr + j, 4);
    } else {
      r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride);
      g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride);
      b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride);
    }
    dst[0] = r;
    dst[1] = g;
    dst[2] = b;
    dst[3] = a;
  }
  if (width & 1) {
    const uint32_t a = 2u * SUM2ALPHA(a_ptr + j);
    int r, g, b;
    if (a == 4 * 0xff || a == 0) {
      r = SUM2(r_ptr + j);
      g = SUM2(g_ptr + j);
      b = SUM2(b_ptr + j);
    } else {
      r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride);
      g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride);
      b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride);
    }
    dst[0] = r;
    dst[1] = g;
    dst[2] = b;
    dst[3] = a;
  }
}

static WEBP_INLINE void AccumulateRGB(const uint8_t* const r_ptr,
                                      const uint8_t* const g_ptr,
                                      const uint8_t* const b_ptr,
                                      int step, int rgb_stride,
                                      uint16_t* dst, int width) {
  int i, j;
  for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * step, dst += 4) {
    dst[0] = SUM4(r_ptr + j, step);
    dst[1] = SUM4(g_ptr + j, step);
    dst[2] = SUM4(b_ptr + j, step);
    // MemorySanitizer may raise false positives with data that passes through
    // RGBA32PackedToPlanar_16b_SSE41() due to incorrect modeling of shuffles.
    // See https://crbug.com/webp/573.
#ifdef WEBP_MSAN
    dst[3] = 0;
#endif
  }
  if (width & 1) {
    dst[0] = SUM2(r_ptr + j);
    dst[1] = SUM2(g_ptr + j);
    dst[2] = SUM2(b_ptr + j);
#ifdef WEBP_MSAN
    dst[3] = 0;
#endif
  }
}

static WEBP_INLINE void ConvertRowsToUV(const uint16_t* rgb,
                                        uint8_t* const dst_u,
                                        uint8_t* const dst_v,
                                        int width,
                                        VP8Random* const rg) {
  int i;
  for (i = 0; i < width; i += 1, rgb += 4) {
    const int r = rgb[0], g = rgb[1], b = rgb[2];
    dst_u[i] = RGBToU(r, g, b, rg);
    dst_v[i] = RGBToV(r, g, b, rg);
  }
}

extern void SharpYuvInit(VP8CPUInfo cpu_info_func);

static int ImportYUVAFromRGBA(const uint8_t* r_ptr,
                              const uint8_t* g_ptr,
                              const uint8_t* b_ptr,
                              const uint8_t* a_ptr,
                              int step,         // bytes per pixel
                              int rgb_stride,   // bytes per scanline
                              float dithering,
                              int use_iterative_conversion,
                              WebPPicture* const picture) {
  int y;
  const int width = picture->width;
  const int height = picture->height;
  const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride);
  const int is_rgb = (r_ptr < b_ptr);  // otherwise it's bgr

  picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420;
  picture->use_argb = 0;

  // disable smart conversion if source is too small (overkill).
  if (width < kMinDimensionIterativeConversion ||
      height < kMinDimensionIterativeConversion) {
    use_iterative_conversion = 0;
  }

  if (!WebPPictureAllocYUVA(picture)) {
    return 0;
  }
  if (has_alpha) {
    assert(step == 4);
#if defined(USE_GAMMA_COMPRESSION) && defined(USE_INVERSE_ALPHA_TABLE)
    assert(kAlphaFix + GAMMA_FIX <= 31);
#endif
  }

  if (use_iterative_conversion) {
    SharpYuvInit(VP8GetCPUInfo);
    if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) {
      return 0;
    }
    if (has_alpha) {
      WebPExtractAlpha(a_ptr, rgb_stride, width, height,
                       picture->a, picture->a_stride);
    }
  } else {
    const int uv_width = (width + 1) >> 1;
    int use_dsp = (step == 3);  // use special function in this case
    // temporary storage for accumulated R/G/B values during conversion to U/V
    uint16_t* const tmp_rgb =
        (uint16_t*)WebPSafeMalloc(4 * uv_width, sizeof(*tmp_rgb));
    uint8_t* dst_y = picture->y;
    uint8_t* dst_u = picture->u;
    uint8_t* dst_v = picture->v;
    uint8_t* dst_a = picture->a;

    VP8Random base_rg;
    VP8Random* rg = NULL;
    if (dithering > 0.) {
      VP8InitRandom(&base_rg, dithering);
      rg = &base_rg;
      use_dsp = 0;   // can't use dsp in this case
    }
    WebPInitConvertARGBToYUV();
    InitGammaTables();

    if (tmp_rgb == NULL) return 0;  // malloc error

    // Downsample Y/U/V planes, two rows at a time
    for (y = 0; y < (height >> 1); ++y) {
      int rows_have_alpha = has_alpha;
      if (use_dsp) {
        if (is_rgb) {
          WebPConvertRGB24ToY(r_ptr, dst_y, width);
          WebPConvertRGB24ToY(r_ptr + rgb_stride,
                              dst_y + picture->y_stride, width);
        } else {
          WebPConvertBGR24ToY(b_ptr, dst_y, width);
          WebPConvertBGR24ToY(b_ptr + rgb_stride,
                              dst_y + picture->y_stride, width);
        }
      } else {
        ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg);
        ConvertRowToY(r_ptr + rgb_stride,
                      g_ptr + rgb_stride,
                      b_ptr + rgb_stride, step,
                      dst_y + picture->y_stride, width, rg);
      }
      dst_y += 2 * picture->y_stride;
      if (has_alpha) {
        rows_have_alpha &= !WebPExtractAlpha(a_ptr, rgb_stride, width, 2,
                                             dst_a, picture->a_stride);
        dst_a += 2 * picture->a_stride;
      }
      // Collect averaged R/G/B(/A)
      if (!rows_have_alpha) {
        AccumulateRGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, tmp_rgb, width);
      } else {
        AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, rgb_stride, tmp_rgb, width);
      }
      // Convert to U/V
      if (rg == NULL) {
        WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width);
      } else {
        ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg);
      }
      dst_u += picture->uv_stride;
      dst_v += picture->uv_stride;
      r_ptr += 2 * rgb_stride;
      b_ptr += 2 * rgb_stride;
      g_ptr += 2 * rgb_stride;
      if (has_alpha) a_ptr += 2 * rgb_stride;
    }
    if (height & 1) {    // extra last row
      int row_has_alpha = has_alpha;
      if (use_dsp) {
        if (r_ptr < b_ptr) {
          WebPConvertRGB24ToY(r_ptr, dst_y, width);
        } else {
          WebPConvertBGR24ToY(b_ptr, dst_y, width);
        }
      } else {
        ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg);
      }
      if (row_has_alpha) {
        row_has_alpha &= !WebPExtractAlpha(a_ptr, 0, width, 1, dst_a, 0);
      }
      // Collect averaged R/G/B(/A)
      if (!row_has_alpha) {
        // Collect averaged R/G/B
        AccumulateRGB(r_ptr, g_ptr, b_ptr, step, /* rgb_stride = */ 0,
                      tmp_rgb, width);
      } else {
        AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, /* rgb_stride = */ 0,
                       tmp_rgb, width);
      }
      if (rg == NULL) {
        WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width);
      } else {
        ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg);
      }
    }
    WebPSafeFree(tmp_rgb);
  }
  return 1;
}

#undef SUM4
#undef SUM2
#undef SUM4ALPHA
#undef SUM2ALPHA

//------------------------------------------------------------------------------
// call for ARGB->YUVA conversion

static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace,
                             float dithering, int use_iterative_conversion) {
  if (picture == NULL) return 0;
  if (picture->argb == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
  } else {
    const uint8_t* const argb = (const uint8_t*)picture->argb;
    const uint8_t* const a = argb + CHANNEL_OFFSET(0);
    const uint8_t* const r = argb + CHANNEL_OFFSET(1);
    const uint8_t* const g = argb + CHANNEL_OFFSET(2);
    const uint8_t* const b = argb + CHANNEL_OFFSET(3);

    picture->colorspace = WEBP_YUV420;
    return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride,
                              dithering, use_iterative_conversion, picture);
  }
}

int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace,
                                  float dithering) {
  return PictureARGBToYUVA(picture, colorspace, dithering, 0);
}

int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) {
  return PictureARGBToYUVA(picture, colorspace, 0.f, 0);
}

int WebPPictureSharpARGBToYUVA(WebPPicture* picture) {
  return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1);
}
// for backward compatibility
int WebPPictureSmartARGBToYUVA(WebPPicture* picture) {
  return WebPPictureSharpARGBToYUVA(picture);
}

//------------------------------------------------------------------------------
// call for YUVA -> ARGB conversion

int WebPPictureYUVAToARGB(WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (picture->y == NULL || picture->u == NULL || picture->v == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  }
  if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  }
  if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
  }
  // Allocate a new argb buffer (discarding the previous one).
  if (!WebPPictureAllocARGB(picture)) return 0;
  picture->use_argb = 1;

  // Convert
  {
    int y;
    const int width = picture->width;
    const int height = picture->height;
    const int argb_stride = 4 * picture->argb_stride;
    uint8_t* dst = (uint8_t*)picture->argb;
    const uint8_t* cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y;
    WebPUpsampleLinePairFunc upsample =
        WebPGetLinePairConverter(ALPHA_OFFSET > 0);

    // First row, with replicated top samples.
    upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
    cur_y += picture->y_stride;
    dst += argb_stride;
    // Center rows.
    for (y = 1; y + 1 < height; y += 2) {
      const uint8_t* const top_u = cur_u;
      const uint8_t* const top_v = cur_v;
      cur_u += picture->uv_stride;
      cur_v += picture->uv_stride;
      upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v,
               dst, dst + argb_stride, width);
      cur_y += 2 * picture->y_stride;
      dst += 2 * argb_stride;
    }
    // Last row (if needed), with replicated bottom samples.
    if (height > 1 && !(height & 1)) {
      upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
    }
    // Insert alpha values if needed, in replacement for the default 0xff ones.
    if (picture->colorspace & WEBP_CSP_ALPHA_BIT) {
      for (y = 0; y < height; ++y) {
        uint32_t* const argb_dst = picture->argb + y * picture->argb_stride;
        const uint8_t* const src = picture->a + y * picture->a_stride;
        int x;
        for (x = 0; x < width; ++x) {
          argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24);
        }
      }
    }
  }
  return 1;
}

//------------------------------------------------------------------------------
// automatic import / conversion

static int Import(WebPPicture* const picture,
                  const uint8_t* rgb, int rgb_stride,
                  int step, int swap_rb, int import_alpha) {
  int y;
  // swap_rb -> b,g,r,a , !swap_rb -> r,g,b,a
  const uint8_t* r_ptr = rgb + (swap_rb ? 2 : 0);
  const uint8_t* g_ptr = rgb + 1;
  const uint8_t* b_ptr = rgb + (swap_rb ? 0 : 2);
  const int width = picture->width;
  const int height = picture->height;

  if (abs(rgb_stride) < (import_alpha ? 4 : 3) * width) return 0;

  if (!picture->use_argb) {
    const uint8_t* a_ptr = import_alpha ? rgb + 3 : NULL;
    return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride,
                              0.f /* no dithering */, 0, picture);
  }
  if (!WebPPictureAlloc(picture)) return 0;

  VP8LDspInit();
  WebPInitAlphaProcessing();

  if (import_alpha) {
    // dst[] byte order is {a,r,g,b} for big-endian, {b,g,r,a} for little endian
    uint32_t* dst = picture->argb;
    const int do_copy = (ALPHA_OFFSET == 3) && swap_rb;
    assert(step == 4);
    if (do_copy) {
      for (y = 0; y < height; ++y) {
        memcpy(dst, rgb, width * 4);
        rgb += rgb_stride;
        dst += picture->argb_stride;
      }
    } else {
      for (y = 0; y < height; ++y) {
#ifdef WORDS_BIGENDIAN
        // BGRA or RGBA input order.
        const uint8_t* a_ptr = rgb + 3;
        WebPPackARGB(a_ptr, r_ptr, g_ptr, b_ptr, width, dst);
        r_ptr += rgb_stride;
        g_ptr += rgb_stride;
        b_ptr += rgb_stride;
#else
        // RGBA input order. Need to swap R and B.
        VP8LConvertBGRAToRGBA((const uint32_t*)rgb, width, (uint8_t*)dst);
#endif
        rgb += rgb_stride;
        dst += picture->argb_stride;
      }
    }
  } else {
    uint32_t* dst = picture->argb;
    assert(step >= 3);
    for (y = 0; y < height; ++y) {
      WebPPackRGB(r_ptr, g_ptr, b_ptr, width, step, dst);
      r_ptr += rgb_stride;
      g_ptr += rgb_stride;
      b_ptr += rgb_stride;
      dst += picture->argb_stride;
    }
  }
  return 1;
}

// Public API

#if !defined(WEBP_REDUCE_CSP)

int WebPPictureImportBGR(WebPPicture* picture,
                         const uint8_t* bgr, int bgr_stride) {
  return (picture != NULL && bgr != NULL)
             ? Import(picture, bgr, bgr_stride, 3, 1, 0)
             : 0;
}

int WebPPictureImportBGRA(WebPPicture* picture,
                          const uint8_t* bgra, int bgra_stride) {
  return (picture != NULL && bgra != NULL)
             ? Import(picture, bgra, bgra_stride, 4, 1, 1)
             : 0;
}


int WebPPictureImportBGRX(WebPPicture* picture,
                          const uint8_t* bgrx, int bgrx_stride) {
  return (picture != NULL && bgrx != NULL)
             ? Import(picture, bgrx, bgrx_stride, 4, 1, 0)
             : 0;
}

#endif   // WEBP_REDUCE_CSP

int WebPPictureImportRGB(WebPPicture* picture,
                         const uint8_t* rgb, int rgb_stride) {
  return (picture != NULL && rgb != NULL)
             ? Import(picture, rgb, rgb_stride, 3, 0, 0)
             : 0;
}

int WebPPictureImportRGBA(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return (picture != NULL && rgba != NULL)
             ? Import(picture, rgba, rgba_stride, 4, 0, 1)
             : 0;
}

int WebPPictureImportRGBX(WebPPicture* picture,
                          const uint8_t* rgbx, int rgbx_stride) {
  return (picture != NULL && rgbx != NULL)
             ? Import(picture, rgbx, rgbx_stride, 4, 0, 0)
             : 0;
}

//------------------------------------------------------------------------------