1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/cdef.h"
/* Generated from gen_filter_tables.c. */
DECLARE_ALIGNED(16, const int, cdef_directions[8][2]) = {
{ -1 * CDEF_BSTRIDE + 1, -2 * CDEF_BSTRIDE + 2 },
{ 0 * CDEF_BSTRIDE + 1, -1 * CDEF_BSTRIDE + 2 },
{ 0 * CDEF_BSTRIDE + 1, 0 * CDEF_BSTRIDE + 2 },
{ 0 * CDEF_BSTRIDE + 1, 1 * CDEF_BSTRIDE + 2 },
{ 1 * CDEF_BSTRIDE + 1, 2 * CDEF_BSTRIDE + 2 },
{ 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 1 },
{ 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 0 },
{ 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE - 1 }
};
/* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
The search minimizes the weighted variance along all the lines in a
particular direction, i.e. the squared error between the input and a
"predicted" block where each pixel is replaced by the average along a line
in a particular direction. Since each direction have the same sum(x^2) term,
that term is never computed. See Section 2, step 2, of:
http://jmvalin.ca/notes/intra_paint.pdf */
int cdef_find_dir_c(const uint16_t *img, int stride, int32_t *var,
int coeff_shift) {
int i;
int32_t cost[8] = { 0 };
int partial[8][15] = { { 0 } };
int32_t best_cost = 0;
int best_dir = 0;
/* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
The output is then 840 times larger, but we don't care for finding
the max. */
static const int div_table[] = { 0, 840, 420, 280, 210, 168, 140, 120, 105 };
for (i = 0; i < 8; i++) {
int j;
for (j = 0; j < 8; j++) {
int x;
/* We subtract 128 here to reduce the maximum range of the squared
partial sums. */
x = (img[i * stride + j] >> coeff_shift) - 128;
partial[0][i + j] += x;
partial[1][i + j / 2] += x;
partial[2][i] += x;
partial[3][3 + i - j / 2] += x;
partial[4][7 + i - j] += x;
partial[5][3 - i / 2 + j] += x;
partial[6][j] += x;
partial[7][i / 2 + j] += x;
}
}
for (i = 0; i < 8; i++) {
cost[2] += partial[2][i] * partial[2][i];
cost[6] += partial[6][i] * partial[6][i];
}
cost[2] *= div_table[8];
cost[6] *= div_table[8];
for (i = 0; i < 7; i++) {
cost[0] += (partial[0][i] * partial[0][i] +
partial[0][14 - i] * partial[0][14 - i]) *
div_table[i + 1];
cost[4] += (partial[4][i] * partial[4][i] +
partial[4][14 - i] * partial[4][14 - i]) *
div_table[i + 1];
}
cost[0] += partial[0][7] * partial[0][7] * div_table[8];
cost[4] += partial[4][7] * partial[4][7] * div_table[8];
for (i = 1; i < 8; i += 2) {
int j;
for (j = 0; j < 4 + 1; j++) {
cost[i] += partial[i][3 + j] * partial[i][3 + j];
}
cost[i] *= div_table[8];
for (j = 0; j < 4 - 1; j++) {
cost[i] += (partial[i][j] * partial[i][j] +
partial[i][10 - j] * partial[i][10 - j]) *
div_table[2 * j + 2];
}
}
for (i = 0; i < 8; i++) {
if (cost[i] > best_cost) {
best_cost = cost[i];
best_dir = i;
}
}
/* Difference between the optimal variance and the variance along the
orthogonal direction. Again, the sum(x^2) terms cancel out. */
*var = best_cost - cost[(best_dir + 4) & 7];
/* We'd normally divide by 840, but dividing by 1024 is close enough
for what we're going to do with this. */
*var >>= 10;
return best_dir;
}
const int cdef_pri_taps[2][2] = { { 4, 2 }, { 3, 3 } };
const int cdef_sec_taps[2][2] = { { 2, 1 }, { 2, 1 } };
/* Smooth in the direction detected. */
void cdef_filter_block_c(uint8_t *dst8, uint16_t *dst16, int dstride,
const uint16_t *in, int pri_strength, int sec_strength,
int dir, int pri_damping, int sec_damping, int bsize,
AOM_UNUSED int max_unused, int coeff_shift) {
int i, j, k;
const int s = CDEF_BSTRIDE;
const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1];
const int *sec_taps = cdef_sec_taps[(pri_strength >> coeff_shift) & 1];
for (i = 0; i < 4 << (bsize == BLOCK_8X8 || bsize == BLOCK_4X8); i++) {
for (j = 0; j < 4 << (bsize == BLOCK_8X8 || bsize == BLOCK_8X4); j++) {
int16_t sum = 0;
int16_t y;
int16_t x = in[i * s + j];
int max = x;
int min = x;
for (k = 0; k < 2; k++) {
int16_t p0 = in[i * s + j + cdef_directions[dir][k]];
int16_t p1 = in[i * s + j - cdef_directions[dir][k]];
sum += pri_taps[k] * constrain(p0 - x, pri_strength, pri_damping);
sum += pri_taps[k] * constrain(p1 - x, pri_strength, pri_damping);
if (p0 != CDEF_VERY_LARGE) max = AOMMAX(p0, max);
if (p1 != CDEF_VERY_LARGE) max = AOMMAX(p1, max);
min = AOMMIN(p0, min);
min = AOMMIN(p1, min);
int16_t s0 = in[i * s + j + cdef_directions[(dir + 2) & 7][k]];
int16_t s1 = in[i * s + j - cdef_directions[(dir + 2) & 7][k]];
int16_t s2 = in[i * s + j + cdef_directions[(dir + 6) & 7][k]];
int16_t s3 = in[i * s + j - cdef_directions[(dir + 6) & 7][k]];
if (s0 != CDEF_VERY_LARGE) max = AOMMAX(s0, max);
if (s1 != CDEF_VERY_LARGE) max = AOMMAX(s1, max);
if (s2 != CDEF_VERY_LARGE) max = AOMMAX(s2, max);
if (s3 != CDEF_VERY_LARGE) max = AOMMAX(s3, max);
min = AOMMIN(s0, min);
min = AOMMIN(s1, min);
min = AOMMIN(s2, min);
min = AOMMIN(s3, min);
sum += sec_taps[k] * constrain(s0 - x, sec_strength, sec_damping);
sum += sec_taps[k] * constrain(s1 - x, sec_strength, sec_damping);
sum += sec_taps[k] * constrain(s2 - x, sec_strength, sec_damping);
sum += sec_taps[k] * constrain(s3 - x, sec_strength, sec_damping);
}
y = clamp((int16_t)x + ((8 + sum - (sum < 0)) >> 4), min, max);
if (dst8)
dst8[i * dstride + j] = (uint8_t)y;
else
dst16[i * dstride + j] = (uint16_t)y;
}
}
}
/* Compute the primary filter strength for an 8x8 block based on the
directional variance difference. A high variance difference means
that we have a highly directional pattern (e.g. a high contrast
edge), so we can apply more deringing. A low variance means that we
either have a low contrast edge, or a non-directional texture, so
we want to be careful not to blur. */
static INLINE int adjust_strength(int strength, int32_t var) {
const int i = var >> 6 ? AOMMIN(get_msb(var >> 6), 12) : 0;
/* We use the variance of 8x8 blocks to adjust the strength. */
return var ? (strength * (4 + i) + 8) >> 4 : 0;
}
void cdef_filter_fb(uint8_t *dst8, uint16_t *dst16, int dstride, uint16_t *in,
int xdec, int ydec, int dir[CDEF_NBLOCKS][CDEF_NBLOCKS],
int *dirinit, int var[CDEF_NBLOCKS][CDEF_NBLOCKS], int pli,
cdef_list *dlist, int cdef_count, int level,
int sec_strength, int pri_damping, int sec_damping,
int coeff_shift) {
int bi;
int bx;
int by;
int bsize, bsizex, bsizey;
int pri_strength = level << coeff_shift;
sec_strength <<= coeff_shift;
sec_damping += coeff_shift - (pli != AOM_PLANE_Y);
pri_damping += coeff_shift - (pli != AOM_PLANE_Y);
bsize =
ydec ? (xdec ? BLOCK_4X4 : BLOCK_8X4) : (xdec ? BLOCK_4X8 : BLOCK_8X8);
bsizex = 3 - xdec;
bsizey = 3 - ydec;
if (dirinit && pri_strength == 0 && sec_strength == 0) {
// If we're here, both primary and secondary strengths are 0, and
// we still haven't written anything to y[] yet, so we just copy
// the input to y[]. This is necessary only for av1_cdef_search()
// and only av1_cdef_search() sets dirinit.
for (bi = 0; bi < cdef_count; bi++) {
by = dlist[bi].by;
bx = dlist[bi].bx;
int iy, ix;
// TODO(stemidts/jmvalin): SIMD optimisations
for (iy = 0; iy < 1 << bsizey; iy++)
for (ix = 0; ix < 1 << bsizex; ix++)
dst16[(bi << (bsizex + bsizey)) + (iy << bsizex) + ix] =
in[((by << bsizey) + iy) * CDEF_BSTRIDE + (bx << bsizex) + ix];
}
return;
}
if (pli == 0) {
if (!dirinit || !*dirinit) {
for (bi = 0; bi < cdef_count; bi++) {
by = dlist[bi].by;
bx = dlist[bi].bx;
dir[by][bx] = cdef_find_dir(&in[8 * by * CDEF_BSTRIDE + 8 * bx],
CDEF_BSTRIDE, &var[by][bx], coeff_shift);
}
if (dirinit) *dirinit = 1;
}
}
if (pli == 1 && xdec != ydec) {
for (bi = 0; bi < cdef_count; bi++) {
static const int conv422[8] = { 7, 0, 2, 4, 5, 6, 6, 6 };
static const int conv440[8] = { 1, 2, 2, 2, 3, 4, 6, 0 };
by = dlist[bi].by;
bx = dlist[bi].bx;
dir[by][bx] = (xdec ? conv422 : conv440)[dir[by][bx]];
}
}
for (bi = 0; bi < cdef_count; bi++) {
int t = dlist[bi].skip ? 0 : pri_strength;
int s = dlist[bi].skip ? 0 : sec_strength;
by = dlist[bi].by;
bx = dlist[bi].bx;
if (dst8)
cdef_filter_block(&dst8[(by << bsizey) * dstride + (bx << bsizex)], NULL,
dstride,
&in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
(pli ? t : adjust_strength(t, var[by][bx])), s,
t ? dir[by][bx] : 0, pri_damping, sec_damping, bsize,
(256 << coeff_shift) - 1, coeff_shift);
else
cdef_filter_block(
NULL,
&dst16[dirinit ? bi << (bsizex + bsizey)
: (by << bsizey) * dstride + (bx << bsizex)],
dirinit ? 1 << bsizex : dstride,
&in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
(pli ? t : adjust_strength(t, var[by][bx])), s, t ? dir[by][bx] : 0,
pri_damping, sec_damping, bsize, (256 << coeff_shift) - 1,
coeff_shift);
}
}
|