1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_ONYXC_INT_H_
#define AOM_AV1_COMMON_ONYXC_INT_H_
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/enums.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/mv.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"
#include "av1/common/tile_common.h"
#include "av1/common/timing.h"
#include "av1/common/odintrin.h"
#include "av1/encoder/hash_motion.h"
#include "aom_dsp/grain_synthesis.h"
#include "aom_dsp/grain_table.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__clang__) && defined(__has_warning)
#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
#endif
#elif defined(__GNUC__) && __GNUC__ >= 7
#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
#endif
#ifndef AOM_FALLTHROUGH_INTENDED
#define AOM_FALLTHROUGH_INTENDED \
do { \
} while (0)
#endif
#define CDEF_MAX_STRENGTHS 16
/* Constant values while waiting for the sequence header */
#define FRAME_ID_LENGTH 15
#define DELTA_FRAME_ID_LENGTH 14
#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
// Extra frame context which is always kept at default values
#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
#define PRIMARY_REF_BITS 3
#define PRIMARY_REF_NONE 7
#define NUM_PING_PONG_BUFFERS 2
#define MAX_NUM_TEMPORAL_LAYERS 8
#define MAX_NUM_SPATIAL_LAYERS 4
/* clang-format off */
// clang-format seems to think this is a pointer dereference and not a
// multiplication.
#define MAX_NUM_OPERATING_POINTS \
MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS
/* clang-format on*/
// TODO(jingning): Turning this on to set up transform coefficient
// processing timer.
#define TXCOEFF_TIMER 0
#define TXCOEFF_COST_TIMER 0
typedef enum {
SINGLE_REFERENCE = 0,
COMPOUND_REFERENCE = 1,
REFERENCE_MODE_SELECT = 2,
REFERENCE_MODES = 3,
} REFERENCE_MODE;
typedef enum {
/**
* Frame context updates are disabled
*/
REFRESH_FRAME_CONTEXT_DISABLED,
/**
* Update frame context to values resulting from backward probability
* updates based on entropy/counts in the decoded frame
*/
REFRESH_FRAME_CONTEXT_BACKWARD,
} REFRESH_FRAME_CONTEXT_MODE;
#define MFMV_STACK_SIZE 3
typedef struct {
int_mv mfmv0;
uint8_t ref_frame_offset;
} TPL_MV_REF;
typedef struct {
int_mv mv;
MV_REFERENCE_FRAME ref_frame;
} MV_REF;
typedef struct {
int ref_count;
unsigned int cur_frame_offset;
unsigned int ref_frame_offset[INTER_REFS_PER_FRAME];
MV_REF *mvs;
uint8_t *seg_map;
struct segmentation seg;
int mi_rows;
int mi_cols;
// Width and height give the size of the buffer (before any upscaling, unlike
// the sizes that can be derived from the buf structure)
int width;
int height;
WarpedMotionParams global_motion[REF_FRAMES];
int showable_frame; // frame can be used as show existing frame in future
int film_grain_params_present;
aom_film_grain_t film_grain_params;
aom_codec_frame_buffer_t raw_frame_buffer;
YV12_BUFFER_CONFIG buf;
hash_table hash_table;
uint8_t intra_only;
FRAME_TYPE frame_type;
// The Following variables will only be used in frame parallel decode.
// frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
// that no FrameWorker owns, or is decoding, this buffer.
AVxWorker *frame_worker_owner;
// row and col indicate which position frame has been decoded to in real
// pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
// when the frame is fully decoded.
int row;
int col;
// Inter frame reference frame delta for loop filter
int8_t ref_deltas[REF_FRAMES];
// 0 = ZERO_MV, MV
int8_t mode_deltas[MAX_MODE_LF_DELTAS];
} RefCntBuffer;
typedef struct BufferPool {
// Protect BufferPool from being accessed by several FrameWorkers at
// the same time during frame parallel decode.
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
#if CONFIG_MULTITHREAD
pthread_mutex_t pool_mutex;
#endif
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
RefCntBuffer frame_bufs[FRAME_BUFFERS];
// Frame buffers allocated internally by the codec.
InternalFrameBufferList int_frame_buffers;
} BufferPool;
typedef struct {
int base_ctx_table[2 /*row*/][2 /*col*/][3 /*sig_map*/]
[BASE_CONTEXT_POSITION_NUM + 1];
} LV_MAP_CTX_TABLE;
typedef int BASE_CTX_TABLE[2 /*col*/][3 /*sig_map*/]
[BASE_CONTEXT_POSITION_NUM + 1];
typedef struct BitstreamLevel {
uint8_t major;
uint8_t minor;
} BitstreamLevel;
// Sequence header structure.
// Note: All syntax elements of sequence_header_obu that need to be
// bit-identical across multiple sequence headers must be part of this struct,
// so that consistency is checked by are_seq_headers_consistent() function.
typedef struct SequenceHeader {
int num_bits_width;
int num_bits_height;
int max_frame_width;
int max_frame_height;
int frame_id_numbers_present_flag;
int frame_id_length;
int delta_frame_id_length;
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
int mib_size; // Size of the superblock in units of MI blocks
int mib_size_log2; // Log 2 of above.
int order_hint_bits_minus_1;
int force_screen_content_tools; // 0 - force off
// 1 - force on
// 2 - adaptive
int force_integer_mv; // 0 - Not to force. MV can be in 1/4 or 1/8
// 1 - force to integer
// 2 - adaptive
int still_picture; // Video is a single frame still picture
int reduced_still_picture_hdr; // Use reduced header for still picture
int enable_filter_intra; // enables/disables filterintra
int enable_intra_edge_filter; // enables/disables corner/edge/upsampling
int enable_interintra_compound; // enables/disables interintra_compound
int enable_masked_compound; // enables/disables masked compound
int enable_dual_filter; // 0 - disable dual interpolation filter
// 1 - enable vert/horiz filter selection
int enable_order_hint; // 0 - disable order hint, and related tools
// jnt_comp, ref_frame_mvs, frame_sign_bias
// if 0, enable_jnt_comp and
// enable_ref_frame_mvs must be set zs 0.
int enable_jnt_comp; // 0 - disable joint compound modes
// 1 - enable it
int enable_ref_frame_mvs; // 0 - disable ref frame mvs
// 1 - enable it
int enable_warped_motion; // 0 - disable warped motion for sequence
// 1 - enable it for the sequence
int enable_superres; // 0 - Disable superres for the sequence, and disable
// transmitting per-frame superres enabled flag.
// 1 - Enable superres for the sequence, and also
// enable per-frame flag to denote if superres is
// enabled for that frame.
int enable_cdef; // To turn on/off CDEF
int enable_restoration; // To turn on/off loop restoration
BITSTREAM_PROFILE profile;
// Operating point info.
int operating_points_cnt_minus_1;
int operating_point_idc[MAX_NUM_OPERATING_POINTS];
int display_model_info_present_flag;
int decoder_model_info_present_flag;
BitstreamLevel level[MAX_NUM_OPERATING_POINTS];
uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in the spec. One bit: 0
// or 1.
// Color config.
aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
// AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
int use_highbitdepth; // If true, we need to use 16bit frame buffers.
int monochrome; // Monochorme video
aom_color_primaries_t color_primaries;
aom_transfer_characteristics_t transfer_characteristics;
aom_matrix_coefficients_t matrix_coefficients;
int color_range;
int subsampling_x; // Chroma subsampling for x
int subsampling_y; // Chroma subsampling for y
aom_chroma_sample_position_t chroma_sample_position;
int separate_uv_delta_q;
int film_grain_params_present;
} SequenceHeader;
typedef struct AV1Common {
struct aom_internal_error_info error;
int width;
int height;
int render_width;
int render_height;
int last_width;
int last_height;
int timing_info_present;
aom_timing_info_t timing_info;
int buffer_removal_time_present;
aom_dec_model_info_t buffer_model;
aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1];
uint32_t frame_presentation_time;
int largest_tile_id;
size_t largest_tile_size;
int context_update_tile_id;
// Scale of the current frame with respect to itself.
struct scale_factors sf_identity;
YV12_BUFFER_CONFIG *frame_to_show;
RefCntBuffer *prev_frame;
// TODO(hkuang): Combine this with cur_buf in macroblockd.
RefCntBuffer *cur_frame;
int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
// Prepare ref_frame_map for the next frame.
// Only used in frame parallel decode.
int next_ref_frame_map[REF_FRAMES];
// TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
// roll new_fb_idx into it.
// Each Inter frame can reference INTER_REFS_PER_FRAME buffers
RefBuffer frame_refs[INTER_REFS_PER_FRAME];
int is_skip_mode_allowed;
int skip_mode_flag;
int ref_frame_idx_0;
int ref_frame_idx_1;
int new_fb_idx;
FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
FRAME_TYPE frame_type;
int show_frame;
int showable_frame; // frame can be used as show existing frame in future
int last_show_frame;
int show_existing_frame;
// Flag for a frame used as a reference - not written to the bitstream
int is_reference_frame;
int reset_decoder_state;
// Flag signaling that the frame is encoded using only INTRA modes.
uint8_t intra_only;
uint8_t last_intra_only;
uint8_t disable_cdf_update;
int allow_high_precision_mv;
int cur_frame_force_integer_mv; // 0 the default in AOM, 1 only integer
int allow_screen_content_tools;
int allow_intrabc;
int allow_warped_motion;
// MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
// MB_MODE_INFO (8-pixel) units.
int MBs;
int mb_rows, mi_rows;
int mb_cols, mi_cols;
int mi_stride;
/* profile settings */
TX_MODE tx_mode;
#if CONFIG_ENTROPY_STATS
int coef_cdf_category;
#endif
int base_qindex;
int y_dc_delta_q;
int u_dc_delta_q;
int v_dc_delta_q;
int u_ac_delta_q;
int v_ac_delta_q;
// The dequantizers below are true dequntizers used only in the
// dequantization process. They have the same coefficient
// shift/scale as TX.
int16_t y_dequant_QTX[MAX_SEGMENTS][2];
int16_t u_dequant_QTX[MAX_SEGMENTS][2];
int16_t v_dequant_QTX[MAX_SEGMENTS][2];
// Global quant matrix tables
const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
// Local quant matrix tables for each frame
const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
// Encoder
int using_qmatrix;
int qm_y;
int qm_u;
int qm_v;
int min_qmlevel;
int max_qmlevel;
/* We allocate a MB_MODE_INFO struct for each macroblock, together with
an extra row on top and column on the left to simplify prediction. */
int mi_alloc_size;
MB_MODE_INFO *mip; /* Base of allocated array */
MB_MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
// TODO(agrange): Move prev_mi into encoder structure.
// prev_mip and prev_mi will only be allocated in encoder.
MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */
MB_MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
// Separate mi functions between encoder and decoder.
int (*alloc_mi)(struct AV1Common *cm, int mi_size);
void (*free_mi)(struct AV1Common *cm);
void (*setup_mi)(struct AV1Common *cm);
// Grid of pointers to 8x8 MB_MODE_INFO structs. Any 8x8 not in the visible
// area will be NULL.
MB_MODE_INFO **mi_grid_base;
MB_MODE_INFO **mi_grid_visible;
MB_MODE_INFO **prev_mi_grid_base;
MB_MODE_INFO **prev_mi_grid_visible;
// Whether to use previous frames' motion vectors for prediction.
int allow_ref_frame_mvs;
uint8_t *last_frame_seg_map;
uint8_t *current_frame_seg_map;
int seg_map_alloc_size;
InterpFilter interp_filter;
int switchable_motion_mode;
loop_filter_info_n lf_info;
// The denominator of the superres scale; the numerator is fixed.
uint8_t superres_scale_denominator;
int superres_upscaled_width;
int superres_upscaled_height;
RestorationInfo rst_info[MAX_MB_PLANE];
// rst_end_stripe[i] is one more than the index of the bottom stripe
// for tile row i.
int rst_end_stripe[MAX_TILE_ROWS];
// Pointer to a scratch buffer used by self-guided restoration
int32_t *rst_tmpbuf;
RestorationLineBuffers *rlbs;
// Output of loop restoration
YV12_BUFFER_CONFIG rst_frame;
// Flag signaling how frame contexts should be updated at the end of
// a frame decode
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */
struct loopfilter lf;
struct segmentation seg;
int coded_lossless; // frame is fully lossless at the coded resolution.
int all_lossless; // frame is fully lossless at the upscaled resolution.
int reduced_tx_set_used;
// Context probabilities for reference frame prediction
MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
REFERENCE_MODE reference_mode;
FRAME_CONTEXT *fc; /* this frame entropy */
FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
unsigned int frame_context_idx; /* Context to use/update */
int fb_of_context_type[REF_FRAMES];
int primary_ref_frame;
unsigned int frame_offset;
unsigned int current_video_frame;
aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
int error_resilient_mode;
int force_primary_ref_none;
int tile_cols, tile_rows;
int last_tile_cols, last_tile_rows;
int max_tile_width_sb;
int min_log2_tile_cols;
int max_log2_tile_cols;
int max_log2_tile_rows;
int min_log2_tile_rows;
int min_log2_tiles;
int max_tile_height_sb;
int uniform_tile_spacing_flag;
int log2_tile_cols; // only valid for uniform tiles
int log2_tile_rows; // only valid for uniform tiles
int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols
int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows
int tile_width, tile_height; // In MI units
unsigned int large_scale_tile;
unsigned int single_tile_decoding;
int byte_alignment;
int skip_loop_filter;
int skip_film_grain;
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
// Handles memory for the codec.
InternalFrameBufferList int_frame_buffers;
// External BufferPool passed from outside.
BufferPool *buffer_pool;
PARTITION_CONTEXT **above_seg_context;
ENTROPY_CONTEXT **above_context[MAX_MB_PLANE];
TXFM_CONTEXT **above_txfm_context;
WarpedMotionParams global_motion[REF_FRAMES];
aom_film_grain_t film_grain_params;
int cdef_pri_damping;
int cdef_sec_damping;
int nb_cdef_strengths;
int cdef_strengths[CDEF_MAX_STRENGTHS];
int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
int cdef_bits;
int delta_q_present_flag;
// Resolution of delta quant
int delta_q_res;
int delta_lf_present_flag;
// Resolution of delta lf level
int delta_lf_res;
// This is a flag for number of deltas of loop filter level
// 0: use 1 delta, for y_vertical, y_horizontal, u, and v
// 1: use separate deltas for each filter level
int delta_lf_multi;
int num_tg;
SequenceHeader seq_params;
int current_frame_id;
int ref_frame_id[REF_FRAMES];
int valid_for_referencing[REF_FRAMES];
int invalid_delta_frame_id_minus_1;
LV_MAP_CTX_TABLE coeff_ctx_table;
TPL_MV_REF *tpl_mvs;
int tpl_mvs_mem_size;
// TODO(jingning): This can be combined with sign_bias later.
int8_t ref_frame_side[REF_FRAMES];
int is_annexb;
int frame_refs_short_signaling;
int temporal_layer_id;
int spatial_layer_id;
unsigned int number_temporal_layers;
unsigned int number_spatial_layers;
int num_allocated_above_context_mi_col;
int num_allocated_above_contexts;
int num_allocated_above_context_planes;
#if TXCOEFF_TIMER
int64_t cum_txcoeff_timer;
int64_t txcoeff_timer;
int txb_count;
#endif
#if TXCOEFF_COST_TIMER
int64_t cum_txcoeff_cost_timer;
int64_t txcoeff_cost_timer;
int64_t txcoeff_cost_count;
#endif
const cfg_options_t *options;
} AV1_COMMON;
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
// frame reference count.
static void lock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static void unlock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
if (index < 0 || index >= REF_FRAMES) return NULL;
if (cm->ref_frame_map[index] < 0) return NULL;
assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
}
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
const AV1_COMMON *const cm) {
return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
}
static INLINE int get_free_fb(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
for (i = 0; i < FRAME_BUFFERS; ++i)
if (frame_bufs[i].ref_count == 0) break;
if (i != FRAME_BUFFERS) {
if (frame_bufs[i].buf.use_external_reference_buffers) {
// If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
// external reference buffers. Restore the buffer pointers to point to the
// internally allocated memory.
YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
ybf->y_buffer = ybf->store_buf_adr[0];
ybf->u_buffer = ybf->store_buf_adr[1];
ybf->v_buffer = ybf->store_buf_adr[2];
ybf->use_external_reference_buffers = 0;
}
frame_bufs[i].ref_count = 1;
} else {
// Reset i to be INVALID_IDX to indicate no free buffer found.
i = INVALID_IDX;
}
unlock_buffer_pool(cm->buffer_pool);
return i;
}
static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
const int ref_index = *idx;
if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
bufs[ref_index].ref_count--;
*idx = new_idx;
bufs[new_idx].ref_count++;
}
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
return cm->frame_type == KEY_FRAME || cm->intra_only;
}
static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
return cm->frame_type == S_FRAME;
}
static INLINE RefCntBuffer *get_prev_frame(const AV1_COMMON *const cm) {
if (cm->primary_ref_frame == PRIMARY_REF_NONE ||
cm->frame_refs[cm->primary_ref_frame].idx == INVALID_IDX) {
return NULL;
} else {
return &cm->buffer_pool
->frame_bufs[cm->frame_refs[cm->primary_ref_frame].idx];
}
}
// Returns 1 if this frame might allow mvs from some reference frame.
static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
return !cm->error_resilient_mode && cm->seq_params.enable_ref_frame_mvs &&
cm->seq_params.enable_order_hint && !frame_is_intra_only(cm);
}
// Returns 1 if this frame might use warped_motion
static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
return !cm->error_resilient_mode && !frame_is_intra_only(cm) &&
cm->seq_params.enable_warped_motion;
}
static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
const int buf_rows = buf->mi_rows;
const int buf_cols = buf->mi_cols;
if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) {
aom_free(buf->mvs);
buf->mi_rows = cm->mi_rows;
buf->mi_cols = cm->mi_cols;
CHECK_MEM_ERROR(cm, buf->mvs,
(MV_REF *)aom_calloc(
((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1),
sizeof(*buf->mvs)));
aom_free(buf->seg_map);
CHECK_MEM_ERROR(cm, buf->seg_map,
(uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*buf->seg_map)));
}
const int mem_size =
((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1);
int realloc = cm->tpl_mvs == NULL;
if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
if (realloc) {
aom_free(cm->tpl_mvs);
CHECK_MEM_ERROR(cm, cm->tpl_mvs,
(TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
cm->tpl_mvs_mem_size = mem_size;
}
}
void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
static INLINE int av1_num_planes(const AV1_COMMON *cm) {
return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
}
static INLINE void av1_init_above_context(AV1_COMMON *cm, MACROBLOCKD *xd,
const int tile_row) {
const int num_planes = av1_num_planes(cm);
for (int i = 0; i < num_planes; ++i) {
xd->above_context[i] = cm->above_context[i][tile_row];
}
xd->above_seg_context = cm->above_seg_context[tile_row];
xd->above_txfm_context = cm->above_txfm_context[tile_row];
}
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
tran_low_t *dqcoeff) {
const int num_planes = av1_num_planes(cm);
for (int i = 0; i < num_planes; ++i) {
xd->plane[i].dqcoeff = dqcoeff;
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX,
sizeof(cm->y_dequant_QTX));
memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
} else {
if (i == AOM_PLANE_U) {
memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX,
sizeof(cm->u_dequant_QTX));
memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix,
sizeof(cm->u_iqmatrix));
} else {
memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX,
sizeof(cm->v_dequant_QTX));
memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix,
sizeof(cm->v_iqmatrix));
}
}
}
xd->mi_stride = cm->mi_stride;
xd->error_info = &cm->error;
cfl_init(&xd->cfl, &cm->seq_params);
}
static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
const int num_planes) {
int i;
int row_offset = mi_row;
int col_offset = mi_col;
for (i = 0; i < num_planes; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
// Offset the buffer pointer
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
row_offset = mi_row - 1;
if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
col_offset = mi_col - 1;
int above_idx = col_offset;
int left_idx = row_offset & MAX_MIB_MASK;
pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
}
}
static INLINE int calc_mi_size(int len) {
// len is in mi units. Align to a multiple of SBs.
return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
}
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
const int num_planes) {
int i;
for (i = 0; i < num_planes; i++) {
xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
}
}
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
int mi_row, int bh, int mi_col, int bw,
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
// Are edges available for intra prediction?
xd->up_available = (mi_row > tile->mi_row_start);
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
xd->left_available = (mi_col > tile->mi_col_start);
xd->chroma_up_available = xd->up_available;
xd->chroma_left_available = xd->left_available;
if (ss_x && bw < mi_size_wide[BLOCK_8X8])
xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
if (ss_y && bh < mi_size_high[BLOCK_8X8])
xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
if (xd->up_available) {
xd->above_mbmi = xd->mi[-xd->mi_stride];
} else {
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mbmi = xd->mi[-1];
} else {
xd->left_mbmi = NULL;
}
const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
if (chroma_ref) {
// To help calculate the "above" and "left" chroma blocks, note that the
// current block may cover multiple luma blocks (eg, if partitioned into
// 4x4 luma blocks).
// First, find the top-left-most luma block covered by this chroma block
MB_MODE_INFO **base_mi =
&xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
// Then, we consider the luma region covered by the left or above 4x4 chroma
// prediction. We want to point to the chroma reference block in that
// region, which is the bottom-right-most mi unit.
// This leads to the following offsets:
MB_MODE_INFO *chroma_above_mi =
xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
xd->chroma_above_mbmi = chroma_above_mi;
MB_MODE_INFO *chroma_left_mi =
xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
xd->chroma_left_mbmi = chroma_left_mi;
}
xd->n4_h = bh;
xd->n4_w = bw;
xd->is_sec_rect = 0;
if (xd->n4_w < xd->n4_h) {
// Only mark is_sec_rect as 1 for the last block.
// For PARTITION_VERT_4, it would be (0, 0, 0, 1);
// For other partitions, it would be (0, 1).
if (!((mi_col + xd->n4_w) & (xd->n4_h - 1))) xd->is_sec_rect = 1;
}
if (xd->n4_w > xd->n4_h)
if (mi_row & (xd->n4_w - 1)) xd->is_sec_rect = 1;
}
static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi) {
const PREDICTION_MODE above = av1_above_block_mode(above_mi);
const PREDICTION_MODE left = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[above];
const int left_ctx = intra_mode_context[left];
return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
}
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bh);
}
static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
int subsampling_x, int subsampling_y) {
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
return ref_pos;
}
static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
int subsampling_y) {
BLOCK_SIZE bs = bsize;
switch (bsize) {
case BLOCK_4X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
break;
case BLOCK_4X8:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X8;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
break;
case BLOCK_8X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_8X8;
break;
case BLOCK_4X16:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X16;
else if (subsampling_x == 1)
bs = BLOCK_8X16;
else if (subsampling_y == 1)
bs = BLOCK_4X16;
break;
case BLOCK_16X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_16X8;
else if (subsampling_x == 1)
bs = BLOCK_16X4;
else if (subsampling_y == 1)
bs = BLOCK_16X8;
break;
default: break;
}
return bs;
}
static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
size_t element) {
assert(cdf != NULL);
return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
}
static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
const aom_cdf_prob *const in,
BLOCK_SIZE bsize) {
(void)bsize;
out[0] = CDF_PROB_TOP;
out[0] -= cdf_element_prob(in, PARTITION_HORZ);
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
out[0] = AOM_ICDF(out[0]);
out[1] = AOM_ICDF(CDF_PROB_TOP);
}
static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
const aom_cdf_prob *const in,
BLOCK_SIZE bsize) {
(void)bsize;
out[0] = CDF_PROB_TOP;
out[0] -= cdf_element_prob(in, PARTITION_VERT);
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
out[0] = AOM_ICDF(out[0]);
out[1] = AOM_ICDF(CDF_PROB_TOP);
}
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (bsize >= BLOCK_8X8) {
const int hbs = mi_size_wide[bsize] / 2;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
switch (partition) {
case PARTITION_SPLIT:
if (bsize != BLOCK_8X8) break;
AOM_FALLTHROUGH_INTENDED;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default: assert(0 && "Invalid partition type");
}
}
}
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
// Minimum partition point is 8x8. Offset the bsl accordingly.
const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
// Return the number of elements in the partition CDF when
// partitioning the (square) block with luma block size of bsize.
static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
if (bsize <= BLOCK_8X8)
return PARTITION_TYPES;
else if (bsize == BLOCK_128X128)
return EXT_PARTITION_TYPES - 2;
else
return EXT_PARTITION_TYPES;
}
static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_wide = block_size_wide[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
// Scale the width in the transform block unit.
return max_blocks_wide >> tx_size_wide_log2[0];
}
static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_high = block_size_high[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
// Scale the height in the transform block unit.
return max_blocks_high >> tx_size_high_log2[0];
}
static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
TX_SIZE tx_size) {
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
<< tx_size_wide_log2[0];
return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
}
static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
BLOCK_SIZE plane_bsize, int plane,
TX_SIZE tx_size) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
<< tx_size_high_log2[0];
return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
}
static INLINE void av1_zero_above_context(AV1_COMMON *const cm, const MACROBLOCKD *xd,
int mi_col_start, int mi_col_end, const int tile_row) {
const SequenceHeader *const seq_params = &cm->seq_params;
const int num_planes = av1_num_planes(cm);
const int width = mi_col_end - mi_col_start;
const int aligned_width =
ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
const int offset_y = mi_col_start;
const int width_y = aligned_width;
const int offset_uv = offset_y >> seq_params->subsampling_x;
const int width_uv = width_y >> seq_params->subsampling_x;
av1_zero_array(cm->above_context[0][tile_row] + offset_y, width_y);
if (num_planes > 1) {
if (cm->above_context[1][tile_row] && cm->above_context[2][tile_row]) {
av1_zero_array(cm->above_context[1][tile_row] + offset_uv, width_uv);
av1_zero_array(cm->above_context[2][tile_row] + offset_uv, width_uv);
} else {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of planes");
}
}
av1_zero_array(cm->above_seg_context[tile_row] + mi_col_start, aligned_width);
memset(cm->above_txfm_context[tile_row] + mi_col_start,
tx_size_wide[TX_SIZES_LARGEST],
aligned_width * sizeof(TXFM_CONTEXT));
}
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
av1_zero(xd->left_context);
av1_zero(xd->left_seg_context);
memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
sizeof(xd->left_txfm_context_buffer));
}
// Disable array-bounds checks as the TX_SIZE enum contains values larger than
// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
// infeasible. The assert is enough for static analysis and this or other tools
// asan, valgrind would catch oob access at runtime.
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic warning "-Warray-bounds"
#endif
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
int i;
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
}
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
const MACROBLOCKD *xd) {
uint8_t bw = tx_size_wide[tx_size];
uint8_t bh = tx_size_high[tx_size];
if (skip) {
bw = n4_w * MI_SIZE;
bh = n4_h * MI_SIZE;
}
set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
}
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
TX_SIZE tx_size, TX_SIZE txb_size) {
BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
uint8_t txw = tx_size_wide[tx_size];
uint8_t txh = tx_size_high[tx_size];
int i;
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
}
static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
switch (tx_dim) {
case 128:
case 64: return TX_64X64; break;
case 32: return TX_32X32; break;
case 16: return TX_16X16; break;
case 8: return TX_8X8; break;
default: return TX_4X4;
}
}
static INLINE TX_SIZE get_tx_size(int width, int height) {
if (width == height) {
return get_sqr_tx_size(width);
}
if (width < height) {
if (width + width == height) {
switch (width) {
case 4: return TX_4X8; break;
case 8: return TX_8X16; break;
case 16: return TX_16X32; break;
case 32: return TX_32X64; break;
}
} else {
switch (width) {
case 4: return TX_4X16; break;
case 8: return TX_8X32; break;
case 16: return TX_16X64; break;
}
}
} else {
if (height + height == width) {
switch (height) {
case 4: return TX_8X4; break;
case 8: return TX_16X8; break;
case 16: return TX_32X16; break;
case 32: return TX_64X32; break;
}
} else {
switch (height) {
case 4: return TX_16X4; break;
case 8: return TX_32X8; break;
case 16: return TX_64X16; break;
}
}
}
assert(0);
return TX_4X4;
}
static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
const int above = *above_ctx < txw;
const int left = *left_ctx < txh;
int category = TXFM_PARTITION_CONTEXTS;
// dummy return, not used by others.
if (tx_size <= TX_4X4) return 0;
TX_SIZE max_tx_size =
get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
if (max_tx_size >= TX_8X8) {
category =
(txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
(TX_SIZES - 1 - max_tx_size) * 2;
}
assert(category != TXFM_PARTITION_CONTEXTS);
return category * 3 + above + left;
}
// Compute the next partition in the direction of the sb_type stored in the mi
// array, starting with bsize.
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID;
const int offset = mi_row * cm->mi_stride + mi_col;
MB_MODE_INFO **mi = cm->mi_grid_visible + offset;
const BLOCK_SIZE subsize = mi[0]->sb_type;
if (subsize == bsize) return PARTITION_NONE;
const int bhigh = mi_size_high[bsize];
const int bwide = mi_size_wide[bsize];
const int sshigh = mi_size_high[subsize];
const int sswide = mi_size_wide[subsize];
if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows &&
mi_col + bhigh / 2 < cm->mi_cols) {
// In this case, the block might be using an extended partition
// type.
const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride];
if (sswide == bwide) {
// Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
// PARTITION_HORZ_B. To distinguish the latter two, check if the lower
// half was split.
if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
assert(sshigh * 2 == bhigh);
if (mbmi_below->sb_type == subsize)
return PARTITION_HORZ;
else
return PARTITION_HORZ_B;
} else if (sshigh == bhigh) {
// Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
// PARTITION_VERT_B. To distinguish the latter two, check if the right
// half was split.
if (sswide * 4 == bwide) return PARTITION_VERT_4;
assert(sswide * 2 == bhigh);
if (mbmi_right->sb_type == subsize)
return PARTITION_VERT;
else
return PARTITION_VERT_B;
} else {
// Smaller width and smaller height. Might be PARTITION_SPLIT or could be
// PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
// dimensions, we immediately know this is a split (which will recurse to
// get to subsize). Otherwise look down and to the right. With
// PARTITION_VERT_A, the right block will have height bhigh; with
// PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
// it's PARTITION_SPLIT.
if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
return PARTITION_SPLIT;
}
}
const int vert_split = sswide < bwide;
const int horz_split = sshigh < bhigh;
const int split_idx = (vert_split << 1) | horz_split;
assert(split_idx != 0);
static const PARTITION_TYPE base_partitions[4] = {
PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
};
return base_partitions[split_idx];
}
static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) {
cm->seq_params.frame_id_numbers_present_flag = use;
}
static INLINE void set_sb_size(SequenceHeader *const seq_params,
BLOCK_SIZE sb_size) {
seq_params->sb_size = sb_size;
seq_params->mib_size = mi_size_wide[seq_params->sb_size];
seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
}
// Returns true if the frame is fully lossless at the coded resolution.
// Note: If super-resolution is used, such a frame will still NOT be lossless at
// the upscaled resolution.
static INLINE int is_coded_lossless(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int coded_lossless = 1;
if (cm->seg.enabled) {
for (int i = 0; i < MAX_SEGMENTS; ++i) {
if (!xd->lossless[i]) {
coded_lossless = 0;
break;
}
}
} else {
coded_lossless = xd->lossless[0];
}
return coded_lossless;
}
static INLINE int is_valid_seq_level_idx(uint8_t seq_level_idx) {
return seq_level_idx < 24 || seq_level_idx == 31;
}
static INLINE uint8_t major_minor_to_seq_level_idx(BitstreamLevel bl) {
assert(bl.major >= LEVEL_MAJOR_MIN && bl.major <= LEVEL_MAJOR_MAX);
// Since bl.minor is unsigned a comparison will return a warning:
// comparison is always true due to limited range of data type
assert(LEVEL_MINOR_MIN == 0);
assert(bl.minor <= LEVEL_MINOR_MAX);
return ((bl.major - LEVEL_MAJOR_MIN) << LEVEL_MINOR_BITS) + bl.minor;
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_ONYXC_INT_H_
|