1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
// Copyright 2022 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdint.h>
#include <string.h> // memset
#include <array> // IWYU pragma: keep
#include "hwy/base.h"
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/compress_test.cc"
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
// Regenerate tables used in the implementation, instead of testing.
#define HWY_PRINT_TABLES 0
#if !HWY_PRINT_TABLES || HWY_IDE
template <class D, class DI, typename T = TFromD<D>, typename TI = TFromD<DI>>
void CheckStored(D d, DI di, const char* op, size_t expected_pos,
size_t actual_pos, size_t num_to_check,
const AlignedFreeUniquePtr<T[]>& in,
const AlignedFreeUniquePtr<TI[]>& mask_lanes,
const AlignedFreeUniquePtr<T[]>& expected, const T* actual_u,
int line) {
if (expected_pos != actual_pos) {
hwy::Abort(__FILE__, line,
"%s: size mismatch for %s: expected %d, actual %d\n", op,
TypeName(T(), Lanes(d)).c_str(), static_cast<int>(expected_pos),
static_cast<int>(actual_pos));
}
// Modified from AssertVecEqual - we may not be checking all lanes.
for (size_t i = 0; i < num_to_check; ++i) {
if (!IsEqual(expected[i], actual_u[i])) {
const size_t N = Lanes(d);
fprintf(stderr, "%s: mismatch at i=%d of %d, line %d:\n\n", op,
static_cast<int>(i), static_cast<int>(num_to_check), line);
Print(di, "mask", Load(di, mask_lanes.get()), 0, N);
Print(d, "in", Load(d, in.get()), 0, N);
Print(d, "expect", Load(d, expected.get()), 0, num_to_check);
Print(d, "actual", Load(d, actual_u), 0, num_to_check);
HWY_ASSERT(false);
}
}
}
struct TestCompress {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
RandomState rng;
using TI = MakeSigned<T>; // For mask > 0 comparison
using TU = MakeUnsigned<T>;
const Rebind<TI, D> di;
const size_t N = Lanes(d);
for (int frac : {0, 2, 3}) {
// For CompressStore
const size_t misalign = static_cast<size_t>(frac) * N / 4;
auto in_lanes = AllocateAligned<T>(N);
auto mask_lanes = AllocateAligned<TI>(N);
auto garbage = AllocateAligned<TU>(N);
auto expected = AllocateAligned<T>(N);
auto actual_a = AllocateAligned<T>(misalign + N);
T* actual_u = actual_a.get() + misalign;
const size_t bits_size = RoundUpTo((N + 7) / 8, 8);
auto bits = AllocateAligned<uint8_t>(bits_size);
memset(bits.get(), 0, bits_size); // for MSAN
// Each lane should have a chance of having mask=true.
for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
size_t expected_pos = 0;
for (size_t i = 0; i < N; ++i) {
const uint64_t r = Random32(&rng);
in_lanes[i] = T(); // cannot initialize float16_t directly.
CopyBytes<sizeof(T)>(&r, &in_lanes[i]); // not same size
mask_lanes[i] = (Random32(&rng) & 1024) ? TI(1) : TI(0);
if (mask_lanes[i] > 0) {
expected[expected_pos++] = in_lanes[i];
}
garbage[i] = static_cast<TU>(Random64(&rng));
}
size_t num_to_check;
if (CompressIsPartition<T>::value) {
// For non-native Compress, also check that mask=false lanes were
// moved to the back of the vector (highest indices).
size_t extra = expected_pos;
for (size_t i = 0; i < N; ++i) {
if (mask_lanes[i] == 0) {
expected[extra++] = in_lanes[i];
}
}
HWY_ASSERT(extra == N);
num_to_check = N;
} else {
// For native Compress, only the mask=true lanes are defined.
num_to_check = expected_pos;
}
const auto in = Load(d, in_lanes.get());
const auto mask =
RebindMask(d, Gt(Load(di, mask_lanes.get()), Zero(di)));
StoreMaskBits(d, mask, bits.get());
// Compress
memset(actual_u, 0, N * sizeof(T));
StoreU(Compress(in, mask), d, actual_u);
CheckStored(d, di, "Compress", expected_pos, expected_pos, num_to_check,
in_lanes, mask_lanes, expected, actual_u, __LINE__);
// CompressNot
memset(actual_u, 0, N * sizeof(T));
StoreU(CompressNot(in, Not(mask)), d, actual_u);
CheckStored(d, di, "CompressNot", expected_pos, expected_pos,
num_to_check, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
// CompressStore
memset(actual_u, 0, N * sizeof(T));
const size_t size1 = CompressStore(in, mask, d, actual_u);
// expected_pos instead of num_to_check because this op is not
// affected by CompressIsPartition.
CheckStored(d, di, "CompressStore", expected_pos, size1, expected_pos,
in_lanes, mask_lanes, expected, actual_u, __LINE__);
// CompressBlendedStore
memcpy(actual_u, garbage.get(), N * sizeof(T));
const size_t size2 = CompressBlendedStore(in, mask, d, actual_u);
// expected_pos instead of num_to_check because this op only writes
// the mask=true lanes.
CheckStored(d, di, "CompressBlendedStore", expected_pos, size2,
expected_pos, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
// Subsequent lanes are untouched.
for (size_t i = size2; i < N; ++i) {
#if HWY_COMPILER_MSVC && HWY_TARGET == HWY_AVX2
// TODO(eustas): re-enable when compiler is fixed
#else
HWY_ASSERT_EQ(garbage[i], reinterpret_cast<TU*>(actual_u)[i]);
#endif
}
// CompressBits
memset(actual_u, 0, N * sizeof(T));
StoreU(CompressBits(in, bits.get()), d, actual_u);
CheckStored(d, di, "CompressBits", expected_pos, expected_pos,
num_to_check, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
// CompressBitsStore
memset(actual_u, 0, N * sizeof(T));
const size_t size3 = CompressBitsStore(in, bits.get(), d, actual_u);
// expected_pos instead of num_to_check because this op is not
// affected by CompressIsPartition.
CheckStored(d, di, "CompressBitsStore", expected_pos, size3,
expected_pos, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
} // rep
} // frac
} // operator()
};
HWY_NOINLINE void TestAllCompress() {
ForAllTypes(ForPartialVectors<TestCompress>());
}
struct TestCompressBlocks {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
#if HWY_TARGET == HWY_SCALAR
(void)d;
#else
static_assert(sizeof(T) == 8 && !IsSigned<T>(), "Should be u64");
RandomState rng;
using TI = MakeSigned<T>; // For mask > 0 comparison
const Rebind<TI, D> di;
const size_t N = Lanes(d);
auto in_lanes = AllocateAligned<T>(N);
auto mask_lanes = AllocateAligned<TI>(N);
auto expected = AllocateAligned<T>(N);
auto actual = AllocateAligned<T>(N);
// Each lane should have a chance of having mask=true.
for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
size_t expected_pos = 0;
for (size_t i = 0; i < N; i += 2) {
const uint64_t bits = Random32(&rng);
in_lanes[i + 1] = in_lanes[i] = T(); // cannot set float16_t directly.
CopyBytes<sizeof(T)>(&bits, &in_lanes[i]); // not same size
CopyBytes<sizeof(T)>(&bits, &in_lanes[i + 1]); // not same size
mask_lanes[i + 1] = mask_lanes[i] = TI{(Random32(&rng) & 8) ? 1 : 0};
if (mask_lanes[i] > 0) {
expected[expected_pos++] = in_lanes[i];
expected[expected_pos++] = in_lanes[i + 1];
}
}
size_t num_to_check;
if (CompressIsPartition<T>::value) {
// For non-native Compress, also check that mask=false lanes were
// moved to the back of the vector (highest indices).
size_t extra = expected_pos;
for (size_t i = 0; i < N; ++i) {
if (mask_lanes[i] == 0) {
expected[extra++] = in_lanes[i];
}
}
HWY_ASSERT(extra == N);
num_to_check = N;
} else {
// For native Compress, only the mask=true lanes are defined.
num_to_check = expected_pos;
}
const auto in = Load(d, in_lanes.get());
const auto mask = RebindMask(d, Gt(Load(di, mask_lanes.get()), Zero(di)));
// CompressBlocksNot
memset(actual.get(), 0, N * sizeof(T));
StoreU(CompressBlocksNot(in, Not(mask)), d, actual.get());
CheckStored(d, di, "CompressBlocksNot", expected_pos, expected_pos,
num_to_check, in_lanes, mask_lanes, expected, actual.get(),
__LINE__);
} // rep
#endif // HWY_TARGET == HWY_SCALAR
} // operator()
};
HWY_NOINLINE void TestAllCompressBlocks() {
ForGE128Vectors<TestCompressBlocks>()(uint64_t());
}
#endif // !HWY_PRINT_TABLES
#if HWY_PRINT_TABLES || HWY_IDE
namespace detail { // for code folding
void PrintCompress8x8Tables() {
printf("======================================= 8x8\n");
constexpr size_t N = 8;
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint8_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
printf("%d,", indices[i]);
}
printf(code & 1 ? "//\n" : "/**/");
}
printf("\n");
}
void PrintCompress16x8Tables() {
printf("======================================= 16x8\n");
constexpr size_t N = 8; // 128-bit SIMD
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint8_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Doubled (for converting lane to byte indices)
for (size_t i = 0; i < N; ++i) {
printf("%d,", 2 * indices[i]);
}
printf(code & 1 ? "//\n" : "/**/");
}
printf("\n");
}
void PrintCompressNot16x8Tables() {
printf("======================================= Not 16x8\n");
constexpr size_t N = 8; // 128-bit SIMD
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint8_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Doubled (for converting lane to byte indices)
for (size_t i = 0; i < N; ++i) {
printf("%d,", 2 * indices[i]);
}
printf(not_code & 1 ? "//\n" : "/**/");
}
printf("\n");
}
// Compressed to nibbles, unpacked via variable right shift. Also includes
// FirstN bits in the nibble MSB.
void PrintCompress32x8Tables() {
printf("======================================= 32/64x8\n");
constexpr size_t N = 8; // AVX2 or 64-bit AVX3
for (uint64_t code = 0; code < (1ull << N); ++code) {
const size_t count = PopCount(code);
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
if (i < count) {
indices[i] |= N;
HWY_ASSERT(indices[i] < 0x10);
}
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompressNot32x8Tables() {
printf("======================================= Not 32/64x8\n");
constexpr size_t N = 8; // AVX2 or 64-bit AVX3
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
const size_t count = PopCount(code);
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
if (i < count) {
indices[i] |= N;
HWY_ASSERT(indices[i] < 0x10);
}
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
// Compressed to nibbles (for AVX3 64x4)
void PrintCompress64x4NibbleTables() {
printf("======================================= 64x4Nibble\n");
constexpr size_t N = 4; // AVX2
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompressNot64x4NibbleTables() {
printf("======================================= Not 64x4Nibble\n");
constexpr size_t N = 4; // AVX2
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompressNot64x2NibbleTables() {
printf("======================================= Not 64x2Nibble\n");
constexpr size_t N = 2; // 128-bit
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompress64x4Tables() {
printf("======================================= 64x4 uncompressed\n");
constexpr size_t N = 4; // SVE_256
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
printf("%d,", static_cast<int>(indices[i]));
}
}
printf("\n");
}
void PrintCompressNot64x4Tables() {
printf("======================================= Not 64x4 uncompressed\n");
constexpr size_t N = 4; // SVE_256
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
printf("%d,", static_cast<int>(indices[i]));
}
}
printf("\n");
}
// Same as above, but prints pairs of u32 indices (for AVX2). Also includes
// FirstN bits in the nibble MSB.
void PrintCompress64x4PairTables() {
printf("======================================= 64x4 u32 index\n");
constexpr size_t N = 4; // AVX2
for (uint64_t code = 0; code < (1ull << N); ++code) {
const size_t count = PopCount(code);
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
const int first_n_bit = i < count ? 8 : 0;
const int low = static_cast<int>(2 * indices[i]) + first_n_bit;
HWY_ASSERT(low < 0x10);
printf("%d, %d, ", low, low + 1);
}
}
printf("\n");
}
void PrintCompressNot64x4PairTables() {
printf("======================================= Not 64x4 u32 index\n");
constexpr size_t N = 4; // AVX2
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
const size_t count = PopCount(code);
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
const int first_n_bit = i < count ? 8 : 0;
const int low = static_cast<int>(2 * indices[i]) + first_n_bit;
HWY_ASSERT(low < 0x10);
printf("%d, %d, ", low, low + 1);
}
}
printf("\n");
}
// 4-tuple of byte indices
void PrintCompress32x4Tables() {
printf("======================================= 32x4\n");
using T = uint32_t;
constexpr size_t N = 4; // SSE4
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
void PrintCompressNot32x4Tables() {
printf("======================================= Not 32x4\n");
using T = uint32_t;
constexpr size_t N = 4; // SSE4
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
// 8-tuple of byte indices
void PrintCompress64x2Tables() {
printf("======================================= 64x2\n");
using T = uint64_t;
constexpr size_t N = 2; // SSE4
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
void PrintCompressNot64x2Tables() {
printf("======================================= Not 64x2\n");
using T = uint64_t;
constexpr size_t N = 2; // SSE4
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
} // namespace detail
HWY_NOINLINE void PrintTables() {
// Only print once.
#if HWY_TARGET == HWY_STATIC_TARGET
detail::PrintCompress32x8Tables();
detail::PrintCompressNot32x8Tables();
detail::PrintCompress64x4NibbleTables();
detail::PrintCompressNot64x4NibbleTables();
detail::PrintCompressNot64x2NibbleTables();
detail::PrintCompress64x4Tables();
detail::PrintCompressNot64x4Tables();
detail::PrintCompress32x4Tables();
detail::PrintCompressNot32x4Tables();
detail::PrintCompress64x2Tables();
detail::PrintCompressNot64x2Tables();
detail::PrintCompress64x4PairTables();
detail::PrintCompressNot64x4PairTables();
detail::PrintCompress16x8Tables();
detail::PrintCompress8x8Tables();
detail::PrintCompressNot16x8Tables();
#endif
}
#endif // HWY_PRINT_TABLES
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace hwy {
HWY_BEFORE_TEST(HwyCompressTest);
#if HWY_PRINT_TABLES
// Only print instead of running tests; this will be visible in the log.
HWY_EXPORT_AND_TEST_P(HwyCompressTest, PrintTables);
#else
HWY_EXPORT_AND_TEST_P(HwyCompressTest, TestAllCompress);
HWY_EXPORT_AND_TEST_P(HwyCompressTest, TestAllCompressBlocks);
#endif
} // namespace hwy
#endif
|