summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/tests/memory_test.cc
blob: d17addf544d9cd7e12683b92c531f132e710feb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Ensure incompabilities with Windows macros (e.g. #define StoreFence) are
// detected. Must come before Highway headers.
#include "hwy/base.h"
#if defined(_WIN32) || defined(_WIN64)
#include <windows.h>
#endif

#include <stddef.h>
#include <stdint.h>

#include <algorithm>  // std::fill

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/memory_test.cc"
#include "hwy/cache_control.h"
#include "hwy/foreach_target.h"  // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"

HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {

struct TestLoadStore {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const size_t N = Lanes(d);
    const auto hi = Iota(d, static_cast<T>(1 + N));
    const auto lo = Iota(d, 1);
    auto lanes = AllocateAligned<T>(2 * N);
    Store(hi, d, &lanes[N]);
    Store(lo, d, &lanes[0]);

    // Aligned load
    const auto lo2 = Load(d, &lanes[0]);
    HWY_ASSERT_VEC_EQ(d, lo2, lo);

    // Aligned store
    auto lanes2 = AllocateAligned<T>(2 * N);
    Store(lo2, d, &lanes2[0]);
    Store(hi, d, &lanes2[N]);
    for (size_t i = 0; i < 2 * N; ++i) {
      HWY_ASSERT_EQ(lanes[i], lanes2[i]);
    }

    // Unaligned load
    const auto vu = LoadU(d, &lanes[1]);
    auto lanes3 = AllocateAligned<T>(N);
    Store(vu, d, lanes3.get());
    for (size_t i = 0; i < N; ++i) {
      HWY_ASSERT_EQ(T(i + 2), lanes3[i]);
    }

    // Unaligned store
    StoreU(lo2, d, &lanes2[N / 2]);
    size_t i = 0;
    for (; i < N / 2; ++i) {
      HWY_ASSERT_EQ(lanes[i], lanes2[i]);
    }
    for (; i < 3 * N / 2; ++i) {
      HWY_ASSERT_EQ(T(i - N / 2 + 1), lanes2[i]);
    }
    // Subsequent values remain unchanged.
    for (; i < 2 * N; ++i) {
      HWY_ASSERT_EQ(T(i + 1), lanes2[i]);
    }
  }
};

HWY_NOINLINE void TestAllLoadStore() {
  ForAllTypes(ForPartialVectors<TestLoadStore>());
}

struct TestSafeCopyN {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const size_t N = Lanes(d);
    const auto v = Iota(d, 1);
    auto from = AllocateAligned<T>(N + 2);
    auto to = AllocateAligned<T>(N + 2);
    Store(v, d, from.get());

    // 0: nothing changes
    to[0] = T();
    SafeCopyN(0, d, from.get(), to.get());
    HWY_ASSERT_EQ(T(), to[0]);

    // 1: only first changes
    to[1] = T();
    SafeCopyN(1, d, from.get(), to.get());
    HWY_ASSERT_EQ(static_cast<T>(1), to[0]);
    HWY_ASSERT_EQ(T(), to[1]);

    // N-1: last does not change
    to[N - 1] = T();
    SafeCopyN(N - 1, d, from.get(), to.get());
    HWY_ASSERT_EQ(T(), to[N - 1]);
    // Also check preceding lanes
    to[N - 1] = static_cast<T>(N);
    HWY_ASSERT_VEC_EQ(d, to.get(), v);

    // N: all change
    to[N] = T();
    SafeCopyN(N, d, from.get(), to.get());
    HWY_ASSERT_VEC_EQ(d, to.get(), v);
    HWY_ASSERT_EQ(T(), to[N]);

    // N+1: subsequent lane does not change if using masked store
    to[N + 1] = T();
    SafeCopyN(N + 1, d, from.get(), to.get());
    HWY_ASSERT_VEC_EQ(d, to.get(), v);
#if !HWY_MEM_OPS_MIGHT_FAULT
    HWY_ASSERT_EQ(T(), to[N + 1]);
#endif
  }
};

HWY_NOINLINE void TestAllSafeCopyN() {
  ForAllTypes(ForPartialVectors<TestSafeCopyN>());
}

struct TestLoadDup128 {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    // Scalar does not define LoadDup128.
#if HWY_TARGET != HWY_SCALAR || HWY_IDE
    constexpr size_t N128 = 16 / sizeof(T);
    alignas(16) T lanes[N128];
    for (size_t i = 0; i < N128; ++i) {
      lanes[i] = static_cast<T>(1 + i);
    }

    const size_t N = Lanes(d);
    auto expected = AllocateAligned<T>(N);
    for (size_t i = 0; i < N; ++i) {
      expected[i] = static_cast<T>(i % N128 + 1);
    }

    HWY_ASSERT_VEC_EQ(d, expected.get(), LoadDup128(d, lanes));
#else
    (void)d;
#endif
  }
};

HWY_NOINLINE void TestAllLoadDup128() {
  ForAllTypes(ForGEVectors<128, TestLoadDup128>());
}

struct TestStream {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const auto v = Iota(d, T(1));
    const size_t affected_bytes =
        (Lanes(d) * sizeof(T) + HWY_STREAM_MULTIPLE - 1) &
        ~size_t(HWY_STREAM_MULTIPLE - 1);
    const size_t affected_lanes = affected_bytes / sizeof(T);
    auto out = AllocateAligned<T>(2 * affected_lanes);
    std::fill(out.get(), out.get() + 2 * affected_lanes, T(0));

    Stream(v, d, out.get());
    FlushStream();
    const auto actual = Load(d, out.get());
    HWY_ASSERT_VEC_EQ(d, v, actual);
    // Ensure Stream didn't modify more memory than expected
    for (size_t i = affected_lanes; i < 2 * affected_lanes; ++i) {
      HWY_ASSERT_EQ(T(0), out[i]);
    }
  }
};

HWY_NOINLINE void TestAllStream() {
  const ForPartialVectors<TestStream> test;
  // No u8,u16.
  test(uint32_t());
  test(uint64_t());
  // No i8,i16.
  test(int32_t());
  test(int64_t());
  ForFloatTypes(test);
}

// Assumes little-endian byte order!
struct TestScatter {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    using Offset = MakeSigned<T>;

    const size_t N = Lanes(d);
    const size_t range = 4 * N;                  // number of items to scatter
    const size_t max_bytes = range * sizeof(T);  // upper bound on offset

    RandomState rng;

    // Data to be scattered
    auto bytes = AllocateAligned<uint8_t>(max_bytes);
    for (size_t i = 0; i < max_bytes; ++i) {
      bytes[i] = static_cast<uint8_t>(Random32(&rng) & 0xFF);
    }
    const auto data = Load(d, reinterpret_cast<const T*>(bytes.get()));

    // Scatter into these regions, ensure vector results match scalar
    auto expected = AllocateAligned<T>(range);
    auto actual = AllocateAligned<T>(range);

    const Rebind<Offset, D> d_offsets;
    auto offsets = AllocateAligned<Offset>(N);  // or indices

    for (size_t rep = 0; rep < 100; ++rep) {
      // Byte offsets
      std::fill(expected.get(), expected.get() + range, T(0));
      std::fill(actual.get(), actual.get() + range, T(0));
      for (size_t i = 0; i < N; ++i) {
        // Must be aligned
        offsets[i] = static_cast<Offset>((Random32(&rng) % range) * sizeof(T));
        CopyBytes<sizeof(T)>(
            bytes.get() + i * sizeof(T),
            reinterpret_cast<uint8_t*>(expected.get()) + offsets[i]);
      }
      const auto voffsets = Load(d_offsets, offsets.get());
      ScatterOffset(data, d, actual.get(), voffsets);
      if (!BytesEqual(expected.get(), actual.get(), max_bytes)) {
        Print(d, "Data", data);
        Print(d_offsets, "Offsets", voffsets);
        HWY_ASSERT(false);
      }

      // Indices
      std::fill(expected.get(), expected.get() + range, T(0));
      std::fill(actual.get(), actual.get() + range, T(0));
      for (size_t i = 0; i < N; ++i) {
        offsets[i] = static_cast<Offset>(Random32(&rng) % range);
        CopyBytes<sizeof(T)>(bytes.get() + i * sizeof(T),
                             &expected[size_t(offsets[i])]);
      }
      const auto vindices = Load(d_offsets, offsets.get());
      ScatterIndex(data, d, actual.get(), vindices);
      if (!BytesEqual(expected.get(), actual.get(), max_bytes)) {
        Print(d, "Data", data);
        Print(d_offsets, "Indices", vindices);
        HWY_ASSERT(false);
      }
    }
  }
};

HWY_NOINLINE void TestAllScatter() {
  ForUIF3264(ForPartialVectors<TestScatter>());
}

struct TestGather {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    using Offset = MakeSigned<T>;

    const size_t N = Lanes(d);
    const size_t range = 4 * N;                  // number of items to gather
    const size_t max_bytes = range * sizeof(T);  // upper bound on offset

    RandomState rng;

    // Data to be gathered from
    auto bytes = AllocateAligned<uint8_t>(max_bytes);
    for (size_t i = 0; i < max_bytes; ++i) {
      bytes[i] = static_cast<uint8_t>(Random32(&rng) & 0xFF);
    }

    auto expected = AllocateAligned<T>(N);
    auto offsets = AllocateAligned<Offset>(N);
    auto indices = AllocateAligned<Offset>(N);

    for (size_t rep = 0; rep < 100; ++rep) {
      // Offsets
      for (size_t i = 0; i < N; ++i) {
        // Must be aligned
        offsets[i] = static_cast<Offset>((Random32(&rng) % range) * sizeof(T));
        CopyBytes<sizeof(T)>(bytes.get() + offsets[i], &expected[i]);
      }

      const Rebind<Offset, D> d_offset;
      const T* base = reinterpret_cast<const T*>(bytes.get());
      auto actual = GatherOffset(d, base, Load(d_offset, offsets.get()));
      HWY_ASSERT_VEC_EQ(d, expected.get(), actual);

      // Indices
      for (size_t i = 0; i < N; ++i) {
        indices[i] =
            static_cast<Offset>(Random32(&rng) % (max_bytes / sizeof(T)));
        CopyBytes<sizeof(T)>(base + indices[i], &expected[i]);
      }
      actual = GatherIndex(d, base, Load(d_offset, indices.get()));
      HWY_ASSERT_VEC_EQ(d, expected.get(), actual);
    }
  }
};

HWY_NOINLINE void TestAllGather() {
  ForUIF3264(ForPartialVectors<TestGather>());
}

HWY_NOINLINE void TestAllCache() {
  LoadFence();
  FlushStream();
  int test = 0;
  Prefetch(&test);
  FlushCacheline(&test);
  Pause();
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace hwy
HWY_AFTER_NAMESPACE();

#if HWY_ONCE

namespace hwy {
HWY_BEFORE_TEST(HwyMemoryTest);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllLoadStore);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllSafeCopyN);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllLoadDup128);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllStream);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllScatter);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllGather);
HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllCache);
}  // namespace hwy

#endif