1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <string.h>
#include <cmath>
#include <numeric>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/dct_test.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include <hwy/tests/test_util-inl.h>
#include "lib/jxl/common.h"
#include "lib/jxl/dct-inl.h"
#include "lib/jxl/dct_for_test.h"
#include "lib/jxl/dct_scales.h"
#include "lib/jxl/image.h"
#include "lib/jxl/test_utils.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// Computes the in-place NxN DCT of block.
// Requires that block is HWY_ALIGN'ed.
//
// Performs ComputeTransposedScaledDCT and then transposes and scales it to
// obtain "vanilla" DCT.
template <size_t N>
void ComputeDCT(float block[N * N]) {
HWY_ALIGN float tmp_block[N * N];
HWY_ALIGN float scratch_space[N * N];
ComputeScaledDCT<N, N>()(DCTFrom(block, N), tmp_block, scratch_space);
// Untranspose.
Transpose<N, N>::Run(DCTFrom(tmp_block, N), DCTTo(block, N));
}
// Computes the in-place 8x8 iDCT of block.
// Requires that block is HWY_ALIGN'ed.
template <int N>
void ComputeIDCT(float block[N * N]) {
HWY_ALIGN float tmp_block[N * N];
HWY_ALIGN float scratch_space[N * N];
// Untranspose.
Transpose<N, N>::Run(DCTFrom(block, N), DCTTo(tmp_block, N));
ComputeScaledIDCT<N, N>()(tmp_block, DCTTo(block, N), scratch_space);
}
template <size_t N>
void TransposeTestT(float accuracy) {
constexpr size_t kBlockSize = N * N;
HWY_ALIGN float src[kBlockSize];
DCTTo to_src(src, N);
for (size_t y = 0; y < N; ++y) {
for (size_t x = 0; x < N; ++x) {
to_src.Write(y * N + x, y, x);
}
}
HWY_ALIGN float dst[kBlockSize];
Transpose<N, N>::Run(DCTFrom(src, N), DCTTo(dst, N));
DCTFrom from_dst(dst, N);
for (size_t y = 0; y < N; ++y) {
for (size_t x = 0; x < N; ++x) {
float expected = x * N + y;
float actual = from_dst.Read(y, x);
EXPECT_NEAR(expected, actual, accuracy) << "x = " << x << ", y = " << y;
}
}
}
void TransposeTest() {
TransposeTestT<8>(1e-7f);
TransposeTestT<16>(1e-7f);
TransposeTestT<32>(1e-7f);
}
template <size_t N>
void ColumnDctRoundtripT(float accuracy) {
constexpr size_t kBlockSize = N * N;
// Though we are only interested in single column result, dct.h has built-in
// limit on minimal number of columns processed. So, to be safe, we do
// regular 8x8 block transformation. On the bright side - we could check all
// 8 basis vectors at once.
HWY_ALIGN float block[kBlockSize];
DCTTo to(block, N);
DCTFrom from(block, N);
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
to.Write((i == j) ? 1.0f : 0.0f, i, j);
}
}
// Running (I)DCT on the same memory block seems to trigger a compiler bug on
// ARMv7 with clang6.
HWY_ALIGN float tmp[kBlockSize];
DCTTo to_tmp(tmp, N);
DCTFrom from_tmp(tmp, N);
DCT1D<N, N>()(from, to_tmp);
IDCT1D<N, N>()(from_tmp, to);
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
float expected = (i == j) ? 1.0f : 0.0f;
float actual = from.Read(i, j);
EXPECT_NEAR(expected, actual, accuracy) << " i=" << i << ", j=" << j;
}
}
}
void ColumnDctRoundtrip() {
ColumnDctRoundtripT<8>(1e-6f);
ColumnDctRoundtripT<16>(1e-6f);
ColumnDctRoundtripT<32>(1e-6f);
}
template <size_t N>
void TestDctAccuracy(float accuracy, size_t start = 0, size_t end = N * N) {
constexpr size_t kBlockSize = N * N;
for (size_t i = start; i < end; i++) {
HWY_ALIGN float fast[kBlockSize] = {0.0f};
double slow[kBlockSize] = {0.0};
fast[i] = 1.0;
slow[i] = 1.0;
DCTSlow<N>(slow);
ComputeDCT<N>(fast);
for (size_t k = 0; k < kBlockSize; ++k) {
EXPECT_NEAR(fast[k], slow[k], accuracy / N)
<< "i = " << i << ", k = " << k << ", N = " << N;
}
}
}
template <size_t N>
void TestIdctAccuracy(float accuracy, size_t start = 0, size_t end = N * N) {
constexpr size_t kBlockSize = N * N;
for (size_t i = start; i < end; i++) {
HWY_ALIGN float fast[kBlockSize] = {0.0f};
double slow[kBlockSize] = {0.0};
fast[i] = 1.0;
slow[i] = 1.0;
IDCTSlow<N>(slow);
ComputeIDCT<N>(fast);
for (size_t k = 0; k < kBlockSize; ++k) {
EXPECT_NEAR(fast[k], slow[k], accuracy * N)
<< "i = " << i << ", k = " << k << ", N = " << N;
}
}
}
template <size_t N>
void TestInverseT(float accuracy) {
test::ThreadPoolForTests pool(N < 32 ? 0 : 8);
enum { kBlockSize = N * N };
EXPECT_TRUE(RunOnPool(
&pool, 0, kBlockSize, ThreadPool::NoInit,
[accuracy](const uint32_t task, size_t /*thread*/) {
const size_t i = static_cast<size_t>(task);
HWY_ALIGN float x[kBlockSize] = {0.0f};
x[i] = 1.0;
ComputeIDCT<N>(x);
ComputeDCT<N>(x);
for (size_t k = 0; k < kBlockSize; ++k) {
EXPECT_NEAR(x[k], (k == i) ? 1.0f : 0.0f, accuracy)
<< "i = " << i << ", k = " << k;
}
},
"TestInverse"));
}
void InverseTest() {
TestInverseT<8>(1e-6f);
TestInverseT<16>(1e-6f);
TestInverseT<32>(3e-6f);
}
template <size_t N>
void TestDctTranspose(float accuracy, size_t start = 0, size_t end = N * N) {
constexpr size_t kBlockSize = N * N;
for (size_t i = start; i < end; i++) {
for (size_t j = 0; j < kBlockSize; ++j) {
// We check that <e_i, Me_j> = <M^\dagger{}e_i, e_j>.
// That means (Me_j)_i = (M^\dagger{}e_i)_j
// x := Me_j
HWY_ALIGN float x[kBlockSize] = {0.0f};
x[j] = 1.0;
ComputeIDCT<N>(x);
// y := M^\dagger{}e_i
HWY_ALIGN float y[kBlockSize] = {0.0f};
y[i] = 1.0;
ComputeDCT<N>(y);
EXPECT_NEAR(x[i] / N, y[j] * N, accuracy) << "i = " << i << ", j = " << j;
}
}
}
template <size_t N>
void TestSlowInverse(float accuracy, size_t start = 0, size_t end = N * N) {
constexpr size_t kBlockSize = N * N;
for (size_t i = start; i < end; i++) {
double x[kBlockSize] = {0.0f};
x[i] = 1.0;
DCTSlow<N>(x);
IDCTSlow<N>(x);
for (size_t k = 0; k < kBlockSize; ++k) {
EXPECT_NEAR(x[k], (k == i) ? 1.0f : 0.0f, accuracy)
<< "i = " << i << ", k = " << k;
}
}
}
template <size_t ROWS, size_t COLS>
void TestRectInverseT(float accuracy) {
constexpr size_t kBlockSize = ROWS * COLS;
for (size_t i = 0; i < kBlockSize; ++i) {
HWY_ALIGN float x[kBlockSize] = {0.0f};
HWY_ALIGN float out[kBlockSize] = {0.0f};
x[i] = 1.0;
HWY_ALIGN float coeffs[kBlockSize] = {0.0f};
HWY_ALIGN float scratch_space[kBlockSize * 2];
ComputeScaledDCT<ROWS, COLS>()(DCTFrom(x, COLS), coeffs, scratch_space);
ComputeScaledIDCT<ROWS, COLS>()(coeffs, DCTTo(out, COLS), scratch_space);
for (size_t k = 0; k < kBlockSize; ++k) {
EXPECT_NEAR(out[k], (k == i) ? 1.0f : 0.0f, accuracy)
<< "i = " << i << ", k = " << k << " ROWS = " << ROWS
<< " COLS = " << COLS;
}
}
}
void TestRectInverse() {
TestRectInverseT<16, 32>(1e-6f);
TestRectInverseT<8, 32>(1e-6f);
TestRectInverseT<8, 16>(1e-6f);
TestRectInverseT<4, 8>(1e-6f);
TestRectInverseT<2, 4>(1e-6f);
TestRectInverseT<1, 4>(1e-6f);
TestRectInverseT<1, 2>(1e-6f);
TestRectInverseT<32, 16>(1e-6f);
TestRectInverseT<32, 8>(1e-6f);
TestRectInverseT<16, 8>(1e-6f);
TestRectInverseT<8, 4>(1e-6f);
TestRectInverseT<4, 2>(1e-6f);
TestRectInverseT<4, 1>(1e-6f);
TestRectInverseT<2, 1>(1e-6f);
}
template <size_t ROWS, size_t COLS>
void TestRectTransposeT(float accuracy) {
constexpr size_t kBlockSize = ROWS * COLS;
HWY_ALIGN float scratch_space[kBlockSize * 2];
for (size_t px = 0; px < COLS; ++px) {
for (size_t py = 0; py < ROWS; ++py) {
HWY_ALIGN float x1[kBlockSize] = {0.0f};
HWY_ALIGN float x2[kBlockSize] = {0.0f};
HWY_ALIGN float coeffs1[kBlockSize] = {0.0f};
HWY_ALIGN float coeffs2[kBlockSize] = {0.0f};
x1[py * COLS + px] = 1;
x2[px * ROWS + py] = 1;
constexpr size_t OUT_ROWS = ROWS < COLS ? ROWS : COLS;
constexpr size_t OUT_COLS = ROWS < COLS ? COLS : ROWS;
ComputeScaledDCT<ROWS, COLS>()(DCTFrom(x1, COLS), coeffs1, scratch_space);
ComputeScaledDCT<COLS, ROWS>()(DCTFrom(x2, ROWS), coeffs2, scratch_space);
for (size_t x = 0; x < OUT_COLS; ++x) {
for (size_t y = 0; y < OUT_ROWS; ++y) {
EXPECT_NEAR(coeffs1[y * OUT_COLS + x], coeffs2[y * OUT_COLS + x],
accuracy)
<< " px = " << px << ", py = " << py << ", x = " << x
<< ", y = " << y;
}
}
}
}
}
void TestRectTranspose() {
TestRectTransposeT<16, 32>(1e-6f);
TestRectTransposeT<8, 32>(1e-6f);
TestRectTransposeT<8, 16>(1e-6f);
TestRectTransposeT<4, 8>(1e-6f);
TestRectTransposeT<2, 4>(1e-6f);
TestRectTransposeT<1, 4>(1e-6f);
TestRectTransposeT<1, 2>(1e-6f);
// Identical to 8, 16
// TestRectTranspose<16, 8>(1e-6f);
}
void TestDctAccuracyShard(size_t shard) {
if (shard == 0) {
TestDctAccuracy<1>(1.1E-7f);
TestDctAccuracy<2>(1.1E-7f);
TestDctAccuracy<4>(1.1E-7f);
TestDctAccuracy<8>(1.1E-7f);
TestDctAccuracy<16>(1.3E-7f);
}
TestDctAccuracy<32>(1.1E-7f, 32 * shard, 32 * (shard + 1));
}
void TestIdctAccuracyShard(size_t shard) {
if (shard == 0) {
TestIdctAccuracy<1>(1E-7f);
TestIdctAccuracy<2>(1E-7f);
TestIdctAccuracy<4>(1E-7f);
TestIdctAccuracy<8>(1E-7f);
TestIdctAccuracy<16>(1E-7f);
}
TestIdctAccuracy<32>(1E-7f, 32 * shard, 32 * (shard + 1));
}
void TestDctTransposeShard(size_t shard) {
if (shard == 0) {
TestDctTranspose<8>(1E-6f);
TestDctTranspose<16>(1E-6f);
}
TestDctTranspose<32>(3E-6f, 32 * shard, 32 * (shard + 1));
}
void TestSlowInverseShard(size_t shard) {
if (shard == 0) {
TestSlowInverse<1>(1E-5f);
TestSlowInverse<2>(1E-5f);
TestSlowInverse<4>(1E-5f);
TestSlowInverse<8>(1E-5f);
TestSlowInverse<16>(1E-5f);
}
TestSlowInverse<32>(1E-5f, 32 * shard, 32 * (shard + 1));
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
class TransposeTest : public hwy::TestWithParamTarget {};
HWY_TARGET_INSTANTIATE_TEST_SUITE_P(TransposeTest);
HWY_EXPORT_AND_TEST_P(TransposeTest, TransposeTest);
HWY_EXPORT_AND_TEST_P(TransposeTest, InverseTest);
HWY_EXPORT_AND_TEST_P(TransposeTest, ColumnDctRoundtrip);
HWY_EXPORT_AND_TEST_P(TransposeTest, TestRectInverse);
HWY_EXPORT_AND_TEST_P(TransposeTest, TestRectTranspose);
// Tests in the DctShardedTest class are sharded for N=32.
class DctShardedTest : public ::hwy::TestWithParamTargetAndT<uint32_t> {};
std::vector<uint32_t> ShardRange(uint32_t n) {
#ifdef JXL_DISABLE_SLOW_TESTS
JXL_ASSERT(n > 6);
std::vector<uint32_t> ret = {0, 1, 3, 5, n - 1};
#else
std::vector<uint32_t> ret(n);
std::iota(ret.begin(), ret.end(), 0);
#endif // JXL_DISABLE_SLOW_TESTS
return ret;
}
HWY_TARGET_INSTANTIATE_TEST_SUITE_P_T(DctShardedTest,
::testing::ValuesIn(ShardRange(32)));
HWY_EXPORT_AND_TEST_P_T(DctShardedTest, TestDctAccuracyShard);
HWY_EXPORT_AND_TEST_P_T(DctShardedTest, TestIdctAccuracyShard);
HWY_EXPORT_AND_TEST_P_T(DctShardedTest, TestDctTransposeShard);
HWY_EXPORT_AND_TEST_P_T(DctShardedTest, TestSlowInverseShard);
} // namespace jxl
#endif // HWY_ONCE
|