summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/dec_xyb.cc
blob: 46fc63c49e2ba79796850a44bf52861f37f2d6df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/dec_xyb.h"

#include <string.h>

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/dec_xyb.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>

#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/profiler.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/dec_group_border.h"
#include "lib/jxl/dec_xyb-inl.h"
#include "lib/jxl/fields.h"
#include "lib/jxl/image.h"
#include "lib/jxl/matrix_ops.h"
#include "lib/jxl/opsin_params.h"
#include "lib/jxl/quantizer.h"
#include "lib/jxl/sanitizers.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::MulAdd;

void OpsinToLinearInplace(Image3F* JXL_RESTRICT inout, ThreadPool* pool,
                          const OpsinParams& opsin_params) {
  PROFILER_FUNC;
  JXL_CHECK_IMAGE_INITIALIZED(*inout, Rect(*inout));

  const size_t xsize = inout->xsize();  // not padded
  JXL_CHECK(RunOnPool(
      pool, 0, inout->ysize(), ThreadPool::NoInit,
      [&](const uint32_t task, size_t /* thread */) {
        const size_t y = task;

        // Faster than adding via ByteOffset at end of loop.
        float* JXL_RESTRICT row0 = inout->PlaneRow(0, y);
        float* JXL_RESTRICT row1 = inout->PlaneRow(1, y);
        float* JXL_RESTRICT row2 = inout->PlaneRow(2, y);

        const HWY_FULL(float) d;

        for (size_t x = 0; x < xsize; x += Lanes(d)) {
          const auto in_opsin_x = Load(d, row0 + x);
          const auto in_opsin_y = Load(d, row1 + x);
          const auto in_opsin_b = Load(d, row2 + x);
          auto linear_r = Undefined(d);
          auto linear_g = Undefined(d);
          auto linear_b = Undefined(d);
          XybToRgb(d, in_opsin_x, in_opsin_y, in_opsin_b, opsin_params,
                   &linear_r, &linear_g, &linear_b);

          Store(linear_r, d, row0 + x);
          Store(linear_g, d, row1 + x);
          Store(linear_b, d, row2 + x);
        }
      },
      "OpsinToLinear"));
}

// Same, but not in-place.
void OpsinToLinear(const Image3F& opsin, const Rect& rect, ThreadPool* pool,
                   Image3F* JXL_RESTRICT linear,
                   const OpsinParams& opsin_params) {
  PROFILER_FUNC;

  JXL_ASSERT(SameSize(rect, *linear));
  JXL_CHECK_IMAGE_INITIALIZED(opsin, rect);

  JXL_CHECK(RunOnPool(
      pool, 0, static_cast<int>(rect.ysize()), ThreadPool::NoInit,
      [&](const uint32_t task, size_t /*thread*/) {
        const size_t y = static_cast<size_t>(task);

        // Faster than adding via ByteOffset at end of loop.
        const float* JXL_RESTRICT row_opsin_0 = rect.ConstPlaneRow(opsin, 0, y);
        const float* JXL_RESTRICT row_opsin_1 = rect.ConstPlaneRow(opsin, 1, y);
        const float* JXL_RESTRICT row_opsin_2 = rect.ConstPlaneRow(opsin, 2, y);
        float* JXL_RESTRICT row_linear_0 = linear->PlaneRow(0, y);
        float* JXL_RESTRICT row_linear_1 = linear->PlaneRow(1, y);
        float* JXL_RESTRICT row_linear_2 = linear->PlaneRow(2, y);

        const HWY_FULL(float) d;

        for (size_t x = 0; x < rect.xsize(); x += Lanes(d)) {
          const auto in_opsin_x = Load(d, row_opsin_0 + x);
          const auto in_opsin_y = Load(d, row_opsin_1 + x);
          const auto in_opsin_b = Load(d, row_opsin_2 + x);
          auto linear_r = Undefined(d);
          auto linear_g = Undefined(d);
          auto linear_b = Undefined(d);
          XybToRgb(d, in_opsin_x, in_opsin_y, in_opsin_b, opsin_params,
                   &linear_r, &linear_g, &linear_b);

          Store(linear_r, d, row_linear_0 + x);
          Store(linear_g, d, row_linear_1 + x);
          Store(linear_b, d, row_linear_2 + x);
        }
      },
      "OpsinToLinear(Rect)"));
  JXL_CHECK_IMAGE_INITIALIZED(*linear, rect);
}

// Transform YCbCr to RGB.
// Could be performed in-place (i.e. Y, Cb and Cr could alias R, B and B).
void YcbcrToRgb(const Image3F& ycbcr, Image3F* rgb, const Rect& rect) {
  JXL_CHECK_IMAGE_INITIALIZED(ycbcr, rect);
  const HWY_CAPPED(float, kBlockDim) df;
  const size_t S = Lanes(df);  // Step.

  const size_t xsize = rect.xsize();
  const size_t ysize = rect.ysize();
  if ((xsize == 0) || (ysize == 0)) return;

  // Full-range BT.601 as defined by JFIF Clause 7:
  // https://www.itu.int/rec/T-REC-T.871-201105-I/en
  const auto c128 = Set(df, 128.0f / 255);
  const auto crcr = Set(df, 1.402f);
  const auto cgcb = Set(df, -0.114f * 1.772f / 0.587f);
  const auto cgcr = Set(df, -0.299f * 1.402f / 0.587f);
  const auto cbcb = Set(df, 1.772f);

  for (size_t y = 0; y < ysize; y++) {
    const float* y_row = rect.ConstPlaneRow(ycbcr, 1, y);
    const float* cb_row = rect.ConstPlaneRow(ycbcr, 0, y);
    const float* cr_row = rect.ConstPlaneRow(ycbcr, 2, y);
    float* r_row = rect.PlaneRow(rgb, 0, y);
    float* g_row = rect.PlaneRow(rgb, 1, y);
    float* b_row = rect.PlaneRow(rgb, 2, y);
    for (size_t x = 0; x < xsize; x += S) {
      const auto y_vec = Add(Load(df, y_row + x), c128);
      const auto cb_vec = Load(df, cb_row + x);
      const auto cr_vec = Load(df, cr_row + x);
      const auto r_vec = MulAdd(crcr, cr_vec, y_vec);
      const auto g_vec = MulAdd(cgcr, cr_vec, MulAdd(cgcb, cb_vec, y_vec));
      const auto b_vec = MulAdd(cbcb, cb_vec, y_vec);
      Store(r_vec, df, r_row + x);
      Store(g_vec, df, g_row + x);
      Store(b_vec, df, b_row + x);
    }
  }
  JXL_CHECK_IMAGE_INITIALIZED(*rgb, rect);
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#if HWY_ONCE
namespace jxl {

HWY_EXPORT(OpsinToLinearInplace);
void OpsinToLinearInplace(Image3F* JXL_RESTRICT inout, ThreadPool* pool,
                          const OpsinParams& opsin_params) {
  return HWY_DYNAMIC_DISPATCH(OpsinToLinearInplace)(inout, pool, opsin_params);
}

HWY_EXPORT(OpsinToLinear);
void OpsinToLinear(const Image3F& opsin, const Rect& rect, ThreadPool* pool,
                   Image3F* JXL_RESTRICT linear,
                   const OpsinParams& opsin_params) {
  return HWY_DYNAMIC_DISPATCH(OpsinToLinear)(opsin, rect, pool, linear,
                                             opsin_params);
}

HWY_EXPORT(YcbcrToRgb);
void YcbcrToRgb(const Image3F& ycbcr, Image3F* rgb, const Rect& rect) {
  return HWY_DYNAMIC_DISPATCH(YcbcrToRgb)(ycbcr, rgb, rect);
}

HWY_EXPORT(HasFastXYBTosRGB8);
bool HasFastXYBTosRGB8() { return HWY_DYNAMIC_DISPATCH(HasFastXYBTosRGB8)(); }

HWY_EXPORT(FastXYBTosRGB8);
void FastXYBTosRGB8(const float* input[4], uint8_t* output, bool is_rgba,
                    size_t xsize) {
  return HWY_DYNAMIC_DISPATCH(FastXYBTosRGB8)(input, output, is_rgba, xsize);
}

void OpsinParams::Init(float intensity_target) {
  InitSIMDInverseMatrix(GetOpsinAbsorbanceInverseMatrix(), inverse_opsin_matrix,
                        intensity_target);
  memcpy(opsin_biases, kNegOpsinAbsorbanceBiasRGB,
         sizeof(kNegOpsinAbsorbanceBiasRGB));
  memcpy(quant_biases, kDefaultQuantBias, sizeof(kDefaultQuantBias));
  for (size_t c = 0; c < 4; c++) {
    opsin_biases_cbrt[c] = cbrtf(opsin_biases[c]);
  }
}

bool CanOutputToColorEncoding(const ColorEncoding& c_desired) {
  if (!c_desired.HaveFields()) {
    return false;
  }
  // TODO(veluca): keep in sync with dec_reconstruct.cc
  if (!c_desired.tf.IsPQ() && !c_desired.tf.IsSRGB() &&
      !c_desired.tf.IsGamma() && !c_desired.tf.IsLinear() &&
      !c_desired.tf.IsHLG() && !c_desired.tf.IsDCI() && !c_desired.tf.Is709()) {
    return false;
  }
  if (c_desired.IsGray() && c_desired.white_point != WhitePoint::kD65) {
    // TODO(veluca): figure out what should happen here.
    return false;
  }
  return true;
}

Status OutputEncodingInfo::SetFromMetadata(const CodecMetadata& metadata) {
  orig_color_encoding = metadata.m.color_encoding;
  orig_intensity_target = metadata.m.IntensityTarget();
  desired_intensity_target = orig_intensity_target;
  const auto& im = metadata.transform_data.opsin_inverse_matrix;
  memcpy(orig_inverse_matrix, im.inverse_matrix, sizeof(orig_inverse_matrix));
  default_transform = im.all_default;
  xyb_encoded = metadata.m.xyb_encoded;
  std::copy(std::begin(im.opsin_biases), std::end(im.opsin_biases),
            opsin_params.opsin_biases);
  for (int i = 0; i < 3; ++i) {
    opsin_params.opsin_biases_cbrt[i] = cbrtf(opsin_params.opsin_biases[i]);
  }
  opsin_params.opsin_biases_cbrt[3] = opsin_params.opsin_biases[3] = 1;
  std::copy(std::begin(im.quant_biases), std::end(im.quant_biases),
            opsin_params.quant_biases);
  bool orig_ok = CanOutputToColorEncoding(orig_color_encoding);
  bool orig_grey = orig_color_encoding.IsGray();
  return SetColorEncoding(!xyb_encoded || orig_ok
                              ? orig_color_encoding
                              : ColorEncoding::LinearSRGB(orig_grey));
}

Status OutputEncodingInfo::MaybeSetColorEncoding(
    const ColorEncoding& c_desired) {
  if (c_desired.GetColorSpace() == ColorSpace::kXYB &&
      ((color_encoding.GetColorSpace() == ColorSpace::kRGB &&
        color_encoding.primaries != Primaries::kSRGB) ||
       color_encoding.tf.IsPQ())) {
    return false;
  }
  if (!xyb_encoded && !CanOutputToColorEncoding(c_desired)) {
    return false;
  }
  return SetColorEncoding(c_desired);
}

Status OutputEncodingInfo::SetColorEncoding(const ColorEncoding& c_desired) {
  color_encoding = c_desired;
  color_encoding_is_original = orig_color_encoding.SameColorEncoding(c_desired);

  // Compute the opsin inverse matrix and luminances based on primaries and
  // white point.
  float inverse_matrix[9];
  bool inverse_matrix_is_default = default_transform;
  memcpy(inverse_matrix, orig_inverse_matrix, sizeof(inverse_matrix));
  constexpr float kSRGBLuminances[3] = {0.2126, 0.7152, 0.0722};
  memcpy(luminances, kSRGBLuminances, sizeof(luminances));
  if ((c_desired.primaries != Primaries::kSRGB ||
       c_desired.white_point != WhitePoint::kD65) &&
      !c_desired.IsGray()) {
    float srgb_to_xyzd50[9];
    const auto& srgb = ColorEncoding::SRGB(/*is_gray=*/false);
    JXL_CHECK(PrimariesToXYZD50(
        srgb.GetPrimaries().r.x, srgb.GetPrimaries().r.y,
        srgb.GetPrimaries().g.x, srgb.GetPrimaries().g.y,
        srgb.GetPrimaries().b.x, srgb.GetPrimaries().b.y,
        srgb.GetWhitePoint().x, srgb.GetWhitePoint().y, srgb_to_xyzd50));
    float original_to_xyz[3][3];
    JXL_RETURN_IF_ERROR(PrimariesToXYZ(
        c_desired.GetPrimaries().r.x, c_desired.GetPrimaries().r.y,
        c_desired.GetPrimaries().g.x, c_desired.GetPrimaries().g.y,
        c_desired.GetPrimaries().b.x, c_desired.GetPrimaries().b.y,
        c_desired.GetWhitePoint().x, c_desired.GetWhitePoint().y,
        &original_to_xyz[0][0]));
    memcpy(luminances, original_to_xyz[1], sizeof luminances);
    if (xyb_encoded) {
      float adapt_to_d50[9];
      JXL_RETURN_IF_ERROR(AdaptToXYZD50(c_desired.GetWhitePoint().x,
                                        c_desired.GetWhitePoint().y,
                                        adapt_to_d50));
      float xyzd50_to_original[9];
      Mul3x3Matrix(adapt_to_d50, &original_to_xyz[0][0], xyzd50_to_original);
      JXL_RETURN_IF_ERROR(Inv3x3Matrix(xyzd50_to_original));
      float srgb_to_original[9];
      Mul3x3Matrix(xyzd50_to_original, srgb_to_xyzd50, srgb_to_original);
      Mul3x3Matrix(srgb_to_original, orig_inverse_matrix, inverse_matrix);
      inverse_matrix_is_default = false;
    }
  }

  if (c_desired.IsGray()) {
    float tmp_inv_matrix[9];
    memcpy(tmp_inv_matrix, inverse_matrix, sizeof(inverse_matrix));
    float srgb_to_luma[9];
    memcpy(&srgb_to_luma[0], luminances, sizeof(luminances));
    memcpy(&srgb_to_luma[3], luminances, sizeof(luminances));
    memcpy(&srgb_to_luma[6], luminances, sizeof(luminances));
    Mul3x3Matrix(srgb_to_luma, tmp_inv_matrix, inverse_matrix);
  }

  // The internal XYB color space uses absolute luminance, so we scale back the
  // opsin inverse matrix to relative luminance where 1.0 corresponds to the
  // original intensity target, or to absolute luminance for PQ, where 1.0
  // corresponds to 10000 nits.
  if (xyb_encoded) {
    float intensity_target =
        (c_desired.tf.IsPQ() ? 10000 : orig_intensity_target);
    InitSIMDInverseMatrix(inverse_matrix, opsin_params.inverse_opsin_matrix,
                          intensity_target);
    all_default_opsin = (std::abs(intensity_target - 255.0) <= 0.1f &&
                         inverse_matrix_is_default);
  }

  // Set the inverse gamma based on color space transfer function.
  inverse_gamma = (c_desired.tf.IsGamma() ? c_desired.tf.GetGamma()
                   : c_desired.tf.IsDCI() ? 1.0f / 2.6f
                                          : 1.0);
  return true;
}

}  // namespace jxl
#endif  // HWY_ONCE