1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <stdio.h>
#include <cmath>
#include <string>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/rational_polynomial_test.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include <hwy/tests/test_util-inl.h>
#include "lib/jxl/base/status.h"
#include "lib/jxl/common.h"
#include "lib/jxl/rational_polynomial-inl.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
using T = float; // required by EvalLog2
using D = HWY_FULL(T);
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::GetLane;
using hwy::HWY_NAMESPACE::ShiftLeft;
using hwy::HWY_NAMESPACE::ShiftRight;
using hwy::HWY_NAMESPACE::Sub;
// Generic: only computes polynomial
struct EvalPoly {
template <size_t NP, size_t NQ>
T operator()(T x, const T (&p)[NP], const T (&q)[NQ]) const {
const HWY_FULL(T) d;
const auto vx = Set(d, x);
const auto approx = EvalRationalPolynomial(d, vx, p, q);
return GetLane(approx);
}
};
// Range reduction for log2
struct EvalLog2 {
template <size_t NP, size_t NQ>
T operator()(T x, const T (&p)[NP], const T (&q)[NQ]) const {
const HWY_FULL(T) d;
auto vx = Set(d, x);
const HWY_FULL(int32_t) di;
const auto x_bits = BitCast(di, vx);
// Cannot handle negative numbers / NaN.
JXL_DASSERT(AllTrue(di, Eq(Abs(x_bits), x_bits)));
// Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops
const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3
// Shifted exponent = log2; also used to clear mantissa.
const auto exp_shifted = ShiftRight<23>(exp_bits);
const auto mantissa = BitCast(d, Sub(x_bits, ShiftLeft<23>(exp_shifted)));
const auto exp_val = ConvertTo(d, exp_shifted);
vx = Sub(mantissa, Set(d, 1.0f));
const auto approx = Add(EvalRationalPolynomial(d, vx, p, q), exp_val);
return GetLane(approx);
}
};
// Functions to approximate:
T LinearToSrgb8Direct(T val) {
if (val < 0.0) return 0.0;
if (val >= 255.0) return 255.0;
if (val <= 10.0 / 12.92) return val * 12.92;
return 255.0 * (std::pow(val / 255.0, 1.0 / 2.4) * 1.055 - 0.055);
}
T SimpleGamma(T v) {
static const T kGamma = 0.387494322593;
static const T limit = 43.01745241042018;
T bright = v - limit;
if (bright >= 0) {
static const T mul = 0.0383723643799;
v -= bright * mul;
}
static const T limit2 = 94.68634353321337;
T bright2 = v - limit2;
if (bright2 >= 0) {
static const T mul = 0.22885405968;
v -= bright2 * mul;
}
static const T offset = 0.156775786057;
static const T scale = 8.898059160493739;
T retval = scale * (offset + pow(v, kGamma));
return retval;
}
// Runs CaratheodoryFejer and verifies the polynomial using a lot of samples to
// return the biggest error.
template <size_t NP, size_t NQ, class Eval>
T RunApproximation(T x0, T x1, const T (&p)[NP], const T (&q)[NQ],
const Eval& eval, T func_to_approx(T)) {
float maxerr = 0;
T lastPrint = 0;
// NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
for (T x = x0; x <= x1; x += (x1 - x0) / 10000.0) {
const T f = func_to_approx(x);
const T g = eval(x, p, q);
maxerr = std::max(fabsf(g - f), maxerr);
if (x == x0 || x - lastPrint > (x1 - x0) / 20.0) {
printf("x: %11.6f, f: %11.6f, g: %11.6f, e: %11.6f\n", x, f, g,
fabs(g - f));
lastPrint = x;
}
}
return maxerr;
}
void TestSimpleGamma() {
const T p[4 * (6 + 1)] = {
HWY_REP4(-5.0646949363741811E-05), HWY_REP4(6.7369380528439771E-05),
HWY_REP4(8.9376652530412794E-05), HWY_REP4(2.1153513301520462E-06),
HWY_REP4(-6.9130322970386449E-08), HWY_REP4(3.9424752749293728E-10),
HWY_REP4(1.2360288207619576E-13)};
const T q[4 * (6 + 1)] = {
HWY_REP4(-6.6389733798591366E-06), HWY_REP4(1.3299859726565908E-05),
HWY_REP4(3.8538748358398873E-06), HWY_REP4(-2.8707687262928236E-08),
HWY_REP4(-6.6897385800005434E-10), HWY_REP4(6.1428748869186003E-12),
HWY_REP4(-2.5475738169252870E-15)};
const T err = RunApproximation(0.77, 274.579999999999984, p, q, EvalPoly(),
SimpleGamma);
EXPECT_LT(err, 0.05);
}
void TestLinearToSrgb8Direct() {
const T p[4 * (5 + 1)] = {
HWY_REP4(-9.5357499040105154E-05), HWY_REP4(4.6761186249798248E-04),
HWY_REP4(2.5708174333943594E-04), HWY_REP4(1.5250087770436082E-05),
HWY_REP4(1.1946768008931187E-07), HWY_REP4(5.9916446295972850E-11)};
const T q[4 * (4 + 1)] = {
HWY_REP4(1.8932479758079768E-05), HWY_REP4(2.7312342474687321E-05),
HWY_REP4(4.3901204783327006E-06), HWY_REP4(1.0417787306920273E-07),
HWY_REP4(3.0084206762140419E-10)};
const T err =
RunApproximation(0.77, 255, p, q, EvalPoly(), LinearToSrgb8Direct);
EXPECT_LT(err, 0.05);
}
void TestExp() {
const T p[4 * (2 + 1)] = {HWY_REP4(9.6266879665530902E-01),
HWY_REP4(4.8961265681586763E-01),
HWY_REP4(8.2619259189548433E-02)};
const T q[4 * (2 + 1)] = {HWY_REP4(9.6259895571622622E-01),
HWY_REP4(-4.7272457588933831E-01),
HWY_REP4(7.4802088567547664E-02)};
const T err =
RunApproximation(-1, 1, p, q, EvalPoly(), [](T x) { return T(exp(x)); });
EXPECT_LT(err, 1E-4);
}
void TestNegExp() {
// 4,3 is the min required for monotonicity; max error in 0,10: 751 ppm
// no benefit for k>50.
const T p[4 * (4 + 1)] = {
HWY_REP4(5.9580258551150123E-02), HWY_REP4(-2.5073728806886408E-02),
HWY_REP4(4.1561830213689248E-03), HWY_REP4(-3.1815408488900372E-04),
HWY_REP4(9.3866690094906802E-06)};
const T q[4 * (3 + 1)] = {
HWY_REP4(5.9579108238812878E-02), HWY_REP4(3.4542074345478582E-02),
HWY_REP4(8.7263562483501714E-03), HWY_REP4(1.4095109143061216E-03)};
const T err =
RunApproximation(0, 10, p, q, EvalPoly(), [](T x) { return T(exp(-x)); });
EXPECT_LT(err, sizeof(T) == 8 ? 2E-5 : 3E-5);
}
void TestSin() {
const T p[4 * (6 + 1)] = {
HWY_REP4(1.5518122109203780E-05), HWY_REP4(2.3388958643675966E+00),
HWY_REP4(-8.6705520940849157E-01), HWY_REP4(-1.9702294764873535E-01),
HWY_REP4(1.2193404314472320E-01), HWY_REP4(-1.7373966109788839E-02),
HWY_REP4(7.8829435883034796E-04)};
const T q[4 * (5 + 1)] = {
HWY_REP4(2.3394371422557279E+00), HWY_REP4(-8.7028221081288615E-01),
HWY_REP4(2.0052872219658430E-01), HWY_REP4(-3.2460335995264836E-02),
HWY_REP4(3.1546157932479282E-03), HWY_REP4(-1.6692542019380155E-04)};
const T err = RunApproximation(0, Pi<T>(1) * 2, p, q, EvalPoly(),
[](T x) { return T(sin(x)); });
EXPECT_LT(err, sizeof(T) == 8 ? 5E-4 : 7E-4);
}
void TestLog() {
HWY_ALIGN const T p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06),
HWY_REP4(1.4287160470083755E+00),
HWY_REP4(7.4245873327820566E-01)};
HWY_ALIGN const T q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01),
HWY_REP4(1.0096718572241148E+00),
HWY_REP4(1.7409343003366853E-01)};
const T err = RunApproximation(1E-6, 1000, p, q, EvalLog2(), std::log2);
printf("%E\n", err);
}
HWY_NOINLINE void TestRationalPolynomial() {
TestSimpleGamma();
TestLinearToSrgb8Direct();
TestExp();
TestNegExp();
TestSin();
TestLog();
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
class RationalPolynomialTest : public hwy::TestWithParamTarget {};
HWY_TARGET_INSTANTIATE_TEST_SUITE_P(RationalPolynomialTest);
HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestSimpleGamma);
HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestLinearToSrgb8Direct);
HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestExp);
HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestNegExp);
HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestSin);
HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestLog);
} // namespace jxl
#endif // HWY_ONCE
|