summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/neteq/background_noise.cc
blob: 2c95d3b390f7a045efb141db9017147a35a29704 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/neteq/background_noise.h"

#include <string.h>  // memcpy

#include <algorithm>  // min, max

#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_coding/neteq/audio_multi_vector.h"
#include "modules/audio_coding/neteq/cross_correlation.h"
#include "modules/audio_coding/neteq/post_decode_vad.h"

namespace webrtc {
namespace {

constexpr size_t kMaxSampleRate = 48000;

}  // namespace

// static
constexpr size_t BackgroundNoise::kMaxLpcOrder;

BackgroundNoise::BackgroundNoise(size_t num_channels)
    : num_channels_(num_channels),
      channel_parameters_(new ChannelParameters[num_channels_]) {
  Reset();
}

BackgroundNoise::~BackgroundNoise() {}

void BackgroundNoise::Reset() {
  initialized_ = false;
  for (size_t channel = 0; channel < num_channels_; ++channel) {
    channel_parameters_[channel].Reset();
  }
}

bool BackgroundNoise::Update(const AudioMultiVector& input,
                             const PostDecodeVad& vad) {
  bool filter_params_saved = false;
  if (vad.running() && vad.active_speech()) {
    // Do not update the background noise parameters if we know that the signal
    // is active speech.
    return filter_params_saved;
  }

  int32_t auto_correlation[kMaxLpcOrder + 1];
  int16_t fiter_output[kMaxLpcOrder + kResidualLength];
  int16_t reflection_coefficients[kMaxLpcOrder];
  int16_t lpc_coefficients[kMaxLpcOrder + 1];

  for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
    ChannelParameters& parameters = channel_parameters_[channel_ix];
    int16_t temp_signal_array[kVecLen + kMaxLpcOrder] = {0};
    int16_t* temp_signal = &temp_signal_array[kMaxLpcOrder];
    RTC_DCHECK_GE(input.Size(), kVecLen);
    input[channel_ix].CopyTo(kVecLen, input.Size() - kVecLen, temp_signal);
    int32_t sample_energy =
        CalculateAutoCorrelation(temp_signal, kVecLen, auto_correlation);

    if ((!vad.running() &&
         sample_energy < parameters.energy_update_threshold) ||
        (vad.running() && !vad.active_speech())) {
      // Generate LPC coefficients.
      if (auto_correlation[0] <= 0) {
        // Center value in auto-correlation is not positive. Do not update.
        return filter_params_saved;
      }

      // Regardless of whether the filter is actually updated or not,
      // update energy threshold levels, since we have in fact observed
      // a low energy signal.
      if (sample_energy < parameters.energy_update_threshold) {
        // Never go under 1.0 in average sample energy.
        parameters.energy_update_threshold = std::max(sample_energy, 1);
        parameters.low_energy_update_threshold = 0;
      }

      // Only update BGN if filter is stable, i.e., if return value from
      // Levinson-Durbin function is 1.
      if (WebRtcSpl_LevinsonDurbin(auto_correlation, lpc_coefficients,
                                   reflection_coefficients,
                                   kMaxLpcOrder) != 1) {
        return filter_params_saved;
      }

      // Generate the CNG gain factor by looking at the energy of the residual.
      WebRtcSpl_FilterMAFastQ12(temp_signal + kVecLen - kResidualLength,
                                fiter_output, lpc_coefficients,
                                kMaxLpcOrder + 1, kResidualLength);
      int32_t residual_energy = WebRtcSpl_DotProductWithScale(
          fiter_output, fiter_output, kResidualLength, 0);

      // Check spectral flatness.
      // Comparing the residual variance with the input signal variance tells
      // if the spectrum is flat or not.
      // If 5 * residual_energy >= 16 * sample_energy, the spectrum is flat
      // enough.  Also ensure that the energy is non-zero.
      if ((sample_energy > 0) &&
          (int64_t{5} * residual_energy >= int64_t{16} * sample_energy)) {
        // Spectrum is flat enough; save filter parameters.
        // `temp_signal` + `kVecLen` - `kMaxLpcOrder` points at the first of the
        // `kMaxLpcOrder` samples in the residual signal, which will form the
        // filter state for the next noise generation.
        SaveParameters(channel_ix, lpc_coefficients,
                       temp_signal + kVecLen - kMaxLpcOrder, sample_energy,
                       residual_energy);
        filter_params_saved = true;
      }
    } else {
      // Will only happen if post-decode VAD is disabled and `sample_energy` is
      // not low enough. Increase the threshold for update so that it increases
      // by a factor 4 in 4 seconds.
      IncrementEnergyThreshold(channel_ix, sample_energy);
    }
  }
  return filter_params_saved;
}

void BackgroundNoise::GenerateBackgroundNoise(
    rtc::ArrayView<const int16_t> random_vector,
    size_t channel,
    int mute_slope,
    bool too_many_expands,
    size_t num_noise_samples,
    int16_t* buffer) {
  constexpr size_t kNoiseLpcOrder = kMaxLpcOrder;
  int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
  RTC_DCHECK_LE(num_noise_samples, (kMaxSampleRate / 8000 * 125));
  RTC_DCHECK_GE(random_vector.size(), num_noise_samples);
  int16_t* noise_samples = &buffer[kNoiseLpcOrder];
  if (initialized()) {
    // Use background noise parameters.
    memcpy(noise_samples - kNoiseLpcOrder, FilterState(channel),
           sizeof(int16_t) * kNoiseLpcOrder);

    int dc_offset = 0;
    if (ScaleShift(channel) > 1) {
      dc_offset = 1 << (ScaleShift(channel) - 1);
    }

    // Scale random vector to correct energy level.
    WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector.data(),
                                    Scale(channel), dc_offset,
                                    ScaleShift(channel), num_noise_samples);

    WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
                              Filter(channel), kNoiseLpcOrder + 1,
                              num_noise_samples);

    SetFilterState(
        channel,
        {&(noise_samples[num_noise_samples - kNoiseLpcOrder]), kNoiseLpcOrder});

    // Unmute the background noise.
    int16_t bgn_mute_factor = MuteFactor(channel);
    if (bgn_mute_factor < 16384) {
      WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
                                      bgn_mute_factor, 8192, 14,
                                      num_noise_samples);
    }
    // Update mute_factor in BackgroundNoise class.
    SetMuteFactor(channel, bgn_mute_factor);
  } else {
    // BGN parameters have not been initialized; use zero noise.
    memset(noise_samples, 0, sizeof(int16_t) * num_noise_samples);
  }
}

int32_t BackgroundNoise::Energy(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].energy;
}

void BackgroundNoise::SetMuteFactor(size_t channel, int16_t value) {
  RTC_DCHECK_LT(channel, num_channels_);
  channel_parameters_[channel].mute_factor = value;
}

int16_t BackgroundNoise::MuteFactor(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].mute_factor;
}

const int16_t* BackgroundNoise::Filter(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].filter;
}

const int16_t* BackgroundNoise::FilterState(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].filter_state;
}

void BackgroundNoise::SetFilterState(size_t channel,
                                     rtc::ArrayView<const int16_t> input) {
  RTC_DCHECK_LT(channel, num_channels_);
  size_t length = std::min(input.size(), kMaxLpcOrder);
  memcpy(channel_parameters_[channel].filter_state, input.data(),
         length * sizeof(int16_t));
}

int16_t BackgroundNoise::Scale(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].scale;
}
int16_t BackgroundNoise::ScaleShift(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].scale_shift;
}

int32_t BackgroundNoise::CalculateAutoCorrelation(
    const int16_t* signal,
    size_t length,
    int32_t* auto_correlation) const {
  static const int kCorrelationStep = -1;
  const int correlation_scale =
      CrossCorrelationWithAutoShift(signal, signal, length, kMaxLpcOrder + 1,
                                    kCorrelationStep, auto_correlation);

  // Number of shifts to normalize energy to energy/sample.
  int energy_sample_shift = kLogVecLen - correlation_scale;
  return auto_correlation[0] >> energy_sample_shift;
}

void BackgroundNoise::IncrementEnergyThreshold(size_t channel,
                                               int32_t sample_energy) {
  // TODO(hlundin): Simplify the below threshold update. What this code
  // does is simply "threshold += (increment * threshold) >> 16", but due
  // to the limited-width operations, it is not exactly the same. The
  // difference should be inaudible, but bit-exactness would not be
  // maintained.
  RTC_DCHECK_LT(channel, num_channels_);
  ChannelParameters& parameters = channel_parameters_[channel];
  int32_t temp_energy =
      (kThresholdIncrement * parameters.low_energy_update_threshold) >> 16;
  temp_energy +=
      kThresholdIncrement * (parameters.energy_update_threshold & 0xFF);
  temp_energy +=
      (kThresholdIncrement * ((parameters.energy_update_threshold >> 8) & 0xFF))
      << 8;
  parameters.low_energy_update_threshold += temp_energy;

  parameters.energy_update_threshold +=
      kThresholdIncrement * (parameters.energy_update_threshold >> 16);
  parameters.energy_update_threshold +=
      parameters.low_energy_update_threshold >> 16;
  parameters.low_energy_update_threshold =
      parameters.low_energy_update_threshold & 0x0FFFF;

  // Update maximum energy.
  // Decrease by a factor 1/1024 each time.
  parameters.max_energy = parameters.max_energy - (parameters.max_energy >> 10);
  if (sample_energy > parameters.max_energy) {
    parameters.max_energy = sample_energy;
  }

  // Set `energy_update_threshold` to no less than 60 dB lower than
  // `max_energy_`. Adding 524288 assures proper rounding.
  int32_t energy_update_threshold = (parameters.max_energy + 524288) >> 20;
  if (energy_update_threshold > parameters.energy_update_threshold) {
    parameters.energy_update_threshold = energy_update_threshold;
  }
}

void BackgroundNoise::SaveParameters(size_t channel,
                                     const int16_t* lpc_coefficients,
                                     const int16_t* filter_state,
                                     int32_t sample_energy,
                                     int32_t residual_energy) {
  RTC_DCHECK_LT(channel, num_channels_);
  ChannelParameters& parameters = channel_parameters_[channel];
  memcpy(parameters.filter, lpc_coefficients,
         (kMaxLpcOrder + 1) * sizeof(int16_t));
  memcpy(parameters.filter_state, filter_state, kMaxLpcOrder * sizeof(int16_t));
  // Save energy level and update energy threshold levels.
  // Never get under 1.0 in average sample energy.
  parameters.energy = std::max(sample_energy, 1);
  parameters.energy_update_threshold = parameters.energy;
  parameters.low_energy_update_threshold = 0;

  // Normalize residual_energy to 29 or 30 bits before sqrt.
  int16_t norm_shift = WebRtcSpl_NormW32(residual_energy) - 1;
  if (norm_shift & 0x1) {
    norm_shift -= 1;  // Even number of shifts required.
  }
  residual_energy = WEBRTC_SPL_SHIFT_W32(residual_energy, norm_shift);

  // Calculate scale and shift factor.
  parameters.scale = static_cast<int16_t>(WebRtcSpl_SqrtFloor(residual_energy));
  // Add 13 to the `scale_shift_`, since the random numbers table is in
  // Q13.
  // TODO(hlundin): Move the "13" to where the `scale_shift_` is used?
  parameters.scale_shift =
      static_cast<int16_t>(13 + ((kLogResidualLength + norm_shift) / 2));

  initialized_ = true;
}

}  // namespace webrtc