summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/neteq/histogram.cc
blob: e4b7f10379e10fbf2c29b5fbd956fa4c26f1c21b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/neteq/histogram.h"

#include <algorithm>
#include <cstdlib>
#include <numeric>

#include "absl/types/optional.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"

namespace webrtc {

Histogram::Histogram(size_t num_buckets,
                     int forget_factor,
                     absl::optional<double> start_forget_weight)
    : buckets_(num_buckets, 0),
      forget_factor_(0),
      base_forget_factor_(forget_factor),
      add_count_(0),
      start_forget_weight_(start_forget_weight) {
  RTC_DCHECK_LT(base_forget_factor_, 1 << 15);
}

Histogram::~Histogram() {}

// Each element in the vector is first multiplied by the forgetting factor
// `forget_factor_`. Then the vector element indicated by `iat_packets` is then
// increased (additive) by 1 - `forget_factor_`. This way, the probability of
// `value` is slightly increased, while the sum of the histogram remains
// constant (=1).
// Due to inaccuracies in the fixed-point arithmetic, the histogram may no
// longer sum up to 1 (in Q30) after the update. To correct this, a correction
// term is added or subtracted from the first element (or elements) of the
// vector.
// The forgetting factor `forget_factor_` is also updated. When the DelayManager
// is reset, the factor is set to 0 to facilitate rapid convergence in the
// beginning. With each update of the histogram, the factor is increased towards
// the steady-state value `base_forget_factor_`.
void Histogram::Add(int value) {
  RTC_DCHECK(value >= 0);
  RTC_DCHECK(value < static_cast<int>(buckets_.size()));
  int vector_sum = 0;  // Sum up the vector elements as they are processed.
  // Multiply each element in `buckets_` with `forget_factor_`.
  for (int& bucket : buckets_) {
    bucket = (static_cast<int64_t>(bucket) * forget_factor_) >> 15;
    vector_sum += bucket;
  }

  // Increase the probability for the currently observed inter-arrival time
  // by 1 - `forget_factor_`. The factor is in Q15, `buckets_` in Q30.
  // Thus, left-shift 15 steps to obtain result in Q30.
  buckets_[value] += (32768 - forget_factor_) << 15;
  vector_sum += (32768 - forget_factor_) << 15;  // Add to vector sum.

  // `buckets_` should sum up to 1 (in Q30), but it may not due to
  // fixed-point rounding errors.
  vector_sum -= 1 << 30;  // Should be zero. Compensate if not.
  if (vector_sum != 0) {
    // Modify a few values early in `buckets_`.
    int flip_sign = vector_sum > 0 ? -1 : 1;
    for (int& bucket : buckets_) {
      // Add/subtract 1/16 of the element, but not more than `vector_sum`.
      int correction = flip_sign * std::min(std::abs(vector_sum), bucket >> 4);
      bucket += correction;
      vector_sum += correction;
      if (std::abs(vector_sum) == 0) {
        break;
      }
    }
  }
  RTC_DCHECK(vector_sum == 0);  // Verify that the above is correct.

  ++add_count_;

  // Update `forget_factor_` (changes only during the first seconds after a
  // reset). The factor converges to `base_forget_factor_`.
  if (start_forget_weight_) {
    if (forget_factor_ != base_forget_factor_) {
      int old_forget_factor = forget_factor_;
      int forget_factor =
          (1 << 15) * (1 - start_forget_weight_.value() / (add_count_ + 1));
      forget_factor_ =
          std::max(0, std::min(base_forget_factor_, forget_factor));
      // The histogram is updated recursively by forgetting the old histogram
      // with `forget_factor_` and adding a new sample multiplied by |1 -
      // forget_factor_|. We need to make sure that the effective weight on the
      // new sample is no smaller than those on the old samples, i.e., to
      // satisfy the following DCHECK.
      RTC_DCHECK_GE((1 << 15) - forget_factor_,
                    ((1 << 15) - old_forget_factor) * forget_factor_ >> 15);
    }
  } else {
    forget_factor_ += (base_forget_factor_ - forget_factor_ + 3) >> 2;
  }
}

int Histogram::Quantile(int probability) {
  // Find the bucket for which the probability of observing an
  // inter-arrival time larger than or equal to `index` is larger than or
  // equal to `probability`. The sought probability is estimated using
  // the histogram as the reverse cumulant PDF, i.e., the sum of elements from
  // the end up until `index`. Now, since the sum of all elements is 1
  // (in Q30) by definition, and since the solution is often a low value for
  // `iat_index`, it is more efficient to start with `sum` = 1 and subtract
  // elements from the start of the histogram.
  int inverse_probability = (1 << 30) - probability;
  size_t index = 0;        // Start from the beginning of `buckets_`.
  int sum = 1 << 30;       // Assign to 1 in Q30.
  sum -= buckets_[index];

  while ((sum > inverse_probability) && (index < buckets_.size() - 1)) {
    // Subtract the probabilities one by one until the sum is no longer greater
    // than `inverse_probability`.
    ++index;
    sum -= buckets_[index];
  }
  return static_cast<int>(index);
}

// Set the histogram vector to an exponentially decaying distribution
// buckets_[i] = 0.5^(i+1), i = 0, 1, 2, ...
// buckets_ is in Q30.
void Histogram::Reset() {
  // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
  // of buckets_ is 1.
  uint16_t temp_prob = 0x4002;  // 16384 + 2 = 100000000000010 binary.
  for (int& bucket : buckets_) {
    temp_prob >>= 1;
    bucket = temp_prob << 16;
  }
  forget_factor_ = 0;  // Adapt the histogram faster for the first few packets.
  add_count_ = 0;
}

int Histogram::NumBuckets() const {
  return buckets_.size();
}

}  // namespace webrtc