1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGainDeathTest, NullOutputGains) {
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(1);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(1, {0.0f});
for (auto& S2_k : S2) {
S2_k.fill(0.1f);
}
FftData E;
FftData Y;
E.re.fill(0.0f);
E.im.fill(0.0f);
Y.re.fill(0.0f);
Y.im.fill(0.0f);
float high_bands_gain;
AecState aec_state(EchoCanceller3Config{}, 1);
EXPECT_DEATH(
SuppressionGain(EchoCanceller3Config{}, DetectOptimization(), 16000, 1)
.GetGain(E2, S2, R2, R2_unbounded, N2,
RenderSignalAnalyzer((EchoCanceller3Config{})), aec_state,
Block(3, 1), false, &high_bands_gain, nullptr),
"");
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
constexpr size_t kNumRenderChannels = 1;
constexpr size_t kNumCaptureChannels = 2;
constexpr int kSampleRateHz = 16000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
SuppressionGain suppression_gain(EchoCanceller3Config(), DetectOptimization(),
kSampleRateHz, kNumCaptureChannels);
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
float high_bands_gain;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(kNumCaptureChannels,
{0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(
kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(kNumCaptureChannels);
std::array<float, kFftLengthBy2Plus1> g;
std::vector<SubtractorOutput> output(kNumCaptureChannels);
Block x(kNumBands, kNumRenderChannels);
EchoCanceller3Config config;
AecState aec_state(config, kNumCaptureChannels);
ApmDataDumper data_dumper(42);
Subtractor subtractor(config, kNumRenderChannels, kNumCaptureChannels,
&data_dumper, DetectOptimization());
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels));
absl::optional<DelayEstimate> delay_estimate;
// Ensure that a strong noise is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(10.f);
Y2[ch].fill(10.f);
R2[ch].fill(0.1f);
R2_unbounded[ch].fill(0.1f);
N2[ch].fill(100.0f);
}
for (auto& subtractor_output : output) {
subtractor_output.Reset();
}
// Ensure that the gain is no longer forced to zero.
for (int k = 0; k <= kNumBlocksPerSecond / 5 + 1; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.0f, a, 0.001f); });
// Ensure that a strong nearend is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(100.f);
Y2[ch].fill(100.f);
R2[ch].fill(0.1f);
R2_unbounded[ch].fill(0.1f);
S2[ch].fill(0.1f);
N2[ch].fill(0.f);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.0f, a, 0.001f); });
// Add a strong echo to one of the channels and ensure that it is suppressed.
E2[1].fill(1000000000.0f);
R2[1].fill(10000000000000.0f);
R2_unbounded[1].fill(10000000000000.0f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.0f, a, 0.001f); });
}
} // namespace aec3
} // namespace webrtc
|