summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/agc2/clipping_predictor.cc
blob: fd759c63e8519fc8655cb873c3d7fc04e209e03d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc2/clipping_predictor.h"

#include <algorithm>
#include <memory>

#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc2/clipping_predictor_level_buffer.h"
#include "modules/audio_processing/agc2/gain_map_internal.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"

namespace webrtc {
namespace {

constexpr int kClippingPredictorMaxGainChange = 15;

// Returns an input volume in the [`min_input_volume`, `max_input_volume`] range
// that reduces `gain_error_db`, which is a gain error estimated when
// `input_volume` was applied, according to a fixed gain map.
int ComputeVolumeUpdate(int gain_error_db,
                        int input_volume,
                        int min_input_volume,
                        int max_input_volume) {
  RTC_DCHECK_GE(input_volume, 0);
  RTC_DCHECK_LE(input_volume, max_input_volume);
  if (gain_error_db == 0) {
    return input_volume;
  }
  int new_volume = input_volume;
  if (gain_error_db > 0) {
    while (kGainMap[new_volume] - kGainMap[input_volume] < gain_error_db &&
           new_volume < max_input_volume) {
      ++new_volume;
    }
  } else {
    while (kGainMap[new_volume] - kGainMap[input_volume] > gain_error_db &&
           new_volume > min_input_volume) {
      --new_volume;
    }
  }
  return new_volume;
}

float ComputeCrestFactor(const ClippingPredictorLevelBuffer::Level& level) {
  const float crest_factor =
      FloatS16ToDbfs(level.max) - FloatS16ToDbfs(std::sqrt(level.average));
  return crest_factor;
}

// Crest factor-based clipping prediction and clipped level step estimation.
class ClippingEventPredictor : public ClippingPredictor {
 public:
  // ClippingEventPredictor with `num_channels` channels (limited to values
  // higher than zero); window size `window_length` and reference window size
  // `reference_window_length` (both referring to the number of frames in the
  // respective sliding windows and limited to values higher than zero);
  // reference window delay `reference_window_delay` (delay in frames, limited
  // to values zero and higher with an additional requirement of
  // `window_length` < `reference_window_length` + reference_window_delay`);
  // and an estimation peak threshold `clipping_threshold` and a crest factor
  // drop threshold `crest_factor_margin` (both in dB).
  ClippingEventPredictor(int num_channels,
                         int window_length,
                         int reference_window_length,
                         int reference_window_delay,
                         float clipping_threshold,
                         float crest_factor_margin)
      : window_length_(window_length),
        reference_window_length_(reference_window_length),
        reference_window_delay_(reference_window_delay),
        clipping_threshold_(clipping_threshold),
        crest_factor_margin_(crest_factor_margin) {
    RTC_DCHECK_GT(num_channels, 0);
    RTC_DCHECK_GT(window_length, 0);
    RTC_DCHECK_GT(reference_window_length, 0);
    RTC_DCHECK_GE(reference_window_delay, 0);
    RTC_DCHECK_GT(reference_window_length + reference_window_delay,
                  window_length);
    const int buffer_length = GetMinFramesProcessed();
    RTC_DCHECK_GT(buffer_length, 0);
    for (int i = 0; i < num_channels; ++i) {
      ch_buffers_.push_back(
          std::make_unique<ClippingPredictorLevelBuffer>(buffer_length));
    }
  }

  ClippingEventPredictor(const ClippingEventPredictor&) = delete;
  ClippingEventPredictor& operator=(const ClippingEventPredictor&) = delete;
  ~ClippingEventPredictor() {}

  void Reset() {
    const int num_channels = ch_buffers_.size();
    for (int i = 0; i < num_channels; ++i) {
      ch_buffers_[i]->Reset();
    }
  }

  // Analyzes a frame of audio and stores the framewise metrics in
  // `ch_buffers_`.
  void Analyze(const AudioFrameView<const float>& frame) {
    const int num_channels = frame.num_channels();
    RTC_DCHECK_EQ(num_channels, ch_buffers_.size());
    const int samples_per_channel = frame.samples_per_channel();
    RTC_DCHECK_GT(samples_per_channel, 0);
    for (int channel = 0; channel < num_channels; ++channel) {
      float sum_squares = 0.0f;
      float peak = 0.0f;
      for (const auto& sample : frame.channel(channel)) {
        sum_squares += sample * sample;
        peak = std::max(std::fabs(sample), peak);
      }
      ch_buffers_[channel]->Push(
          {sum_squares / static_cast<float>(samples_per_channel), peak});
    }
  }

  // Estimates the analog gain adjustment for channel `channel` using a
  // sliding window over the frame-wise metrics in `ch_buffers_`. Returns an
  // estimate for the clipped level step equal to `default_clipped_level_step_`
  // if at least `GetMinFramesProcessed()` frames have been processed since the
  // last reset and a clipping event is predicted. `level`, `min_mic_level`, and
  // `max_mic_level` are limited to [0, 255] and `default_step` to [1, 255].
  absl::optional<int> EstimateClippedLevelStep(int channel,
                                               int level,
                                               int default_step,
                                               int min_mic_level,
                                               int max_mic_level) const {
    RTC_CHECK_GE(channel, 0);
    RTC_CHECK_LT(channel, ch_buffers_.size());
    RTC_DCHECK_GE(level, 0);
    RTC_DCHECK_LE(level, 255);
    RTC_DCHECK_GT(default_step, 0);
    RTC_DCHECK_LE(default_step, 255);
    RTC_DCHECK_GE(min_mic_level, 0);
    RTC_DCHECK_LE(min_mic_level, 255);
    RTC_DCHECK_GE(max_mic_level, 0);
    RTC_DCHECK_LE(max_mic_level, 255);
    if (level <= min_mic_level) {
      return absl::nullopt;
    }
    if (PredictClippingEvent(channel)) {
      const int new_level =
          rtc::SafeClamp(level - default_step, min_mic_level, max_mic_level);
      const int step = level - new_level;
      if (step > 0) {
        return step;
      }
    }
    return absl::nullopt;
  }

 private:
  int GetMinFramesProcessed() const {
    return reference_window_delay_ + reference_window_length_;
  }

  // Predicts clipping events based on the processed audio frames. Returns
  // true if a clipping event is likely.
  bool PredictClippingEvent(int channel) const {
    const auto metrics =
        ch_buffers_[channel]->ComputePartialMetrics(0, window_length_);
    if (!metrics.has_value() ||
        !(FloatS16ToDbfs(metrics.value().max) > clipping_threshold_)) {
      return false;
    }
    const auto reference_metrics = ch_buffers_[channel]->ComputePartialMetrics(
        reference_window_delay_, reference_window_length_);
    if (!reference_metrics.has_value()) {
      return false;
    }
    const float crest_factor = ComputeCrestFactor(metrics.value());
    const float reference_crest_factor =
        ComputeCrestFactor(reference_metrics.value());
    if (crest_factor < reference_crest_factor - crest_factor_margin_) {
      return true;
    }
    return false;
  }

  std::vector<std::unique_ptr<ClippingPredictorLevelBuffer>> ch_buffers_;
  const int window_length_;
  const int reference_window_length_;
  const int reference_window_delay_;
  const float clipping_threshold_;
  const float crest_factor_margin_;
};

// Performs crest factor-based clipping peak prediction.
class ClippingPeakPredictor : public ClippingPredictor {
 public:
  // Ctor. ClippingPeakPredictor with `num_channels` channels (limited to values
  // higher than zero); window size `window_length` and reference window size
  // `reference_window_length` (both referring to the number of frames in the
  // respective sliding windows and limited to values higher than zero);
  // reference window delay `reference_window_delay` (delay in frames, limited
  // to values zero and higher with an additional requirement of
  // `window_length` < `reference_window_length` + reference_window_delay`);
  // and a clipping prediction threshold `clipping_threshold` (in dB). Adaptive
  // clipped level step estimation is used if `adaptive_step_estimation` is
  // true.
  explicit ClippingPeakPredictor(int num_channels,
                                 int window_length,
                                 int reference_window_length,
                                 int reference_window_delay,
                                 int clipping_threshold,
                                 bool adaptive_step_estimation)
      : window_length_(window_length),
        reference_window_length_(reference_window_length),
        reference_window_delay_(reference_window_delay),
        clipping_threshold_(clipping_threshold),
        adaptive_step_estimation_(adaptive_step_estimation) {
    RTC_DCHECK_GT(num_channels, 0);
    RTC_DCHECK_GT(window_length, 0);
    RTC_DCHECK_GT(reference_window_length, 0);
    RTC_DCHECK_GE(reference_window_delay, 0);
    RTC_DCHECK_GT(reference_window_length + reference_window_delay,
                  window_length);
    const int buffer_length = GetMinFramesProcessed();
    RTC_DCHECK_GT(buffer_length, 0);
    for (int i = 0; i < num_channels; ++i) {
      ch_buffers_.push_back(
          std::make_unique<ClippingPredictorLevelBuffer>(buffer_length));
    }
  }

  ClippingPeakPredictor(const ClippingPeakPredictor&) = delete;
  ClippingPeakPredictor& operator=(const ClippingPeakPredictor&) = delete;
  ~ClippingPeakPredictor() {}

  void Reset() {
    const int num_channels = ch_buffers_.size();
    for (int i = 0; i < num_channels; ++i) {
      ch_buffers_[i]->Reset();
    }
  }

  // Analyzes a frame of audio and stores the framewise metrics in
  // `ch_buffers_`.
  void Analyze(const AudioFrameView<const float>& frame) {
    const int num_channels = frame.num_channels();
    RTC_DCHECK_EQ(num_channels, ch_buffers_.size());
    const int samples_per_channel = frame.samples_per_channel();
    RTC_DCHECK_GT(samples_per_channel, 0);
    for (int channel = 0; channel < num_channels; ++channel) {
      float sum_squares = 0.0f;
      float peak = 0.0f;
      for (const auto& sample : frame.channel(channel)) {
        sum_squares += sample * sample;
        peak = std::max(std::fabs(sample), peak);
      }
      ch_buffers_[channel]->Push(
          {sum_squares / static_cast<float>(samples_per_channel), peak});
    }
  }

  // Estimates the analog gain adjustment for channel `channel` using a
  // sliding window over the frame-wise metrics in `ch_buffers_`. Returns an
  // estimate for the clipped level step (equal to
  // `default_clipped_level_step_` if `adaptive_estimation_` is false) if at
  // least `GetMinFramesProcessed()` frames have been processed since the last
  // reset and a clipping event is predicted. `level`, `min_mic_level`, and
  // `max_mic_level` are limited to [0, 255] and `default_step` to [1, 255].
  absl::optional<int> EstimateClippedLevelStep(int channel,
                                               int level,
                                               int default_step,
                                               int min_mic_level,
                                               int max_mic_level) const {
    RTC_DCHECK_GE(channel, 0);
    RTC_DCHECK_LT(channel, ch_buffers_.size());
    RTC_DCHECK_GE(level, 0);
    RTC_DCHECK_LE(level, 255);
    RTC_DCHECK_GT(default_step, 0);
    RTC_DCHECK_LE(default_step, 255);
    RTC_DCHECK_GE(min_mic_level, 0);
    RTC_DCHECK_LE(min_mic_level, 255);
    RTC_DCHECK_GE(max_mic_level, 0);
    RTC_DCHECK_LE(max_mic_level, 255);
    if (level <= min_mic_level) {
      return absl::nullopt;
    }
    absl::optional<float> estimate_db = EstimatePeakValue(channel);
    if (estimate_db.has_value() && estimate_db.value() > clipping_threshold_) {
      int step = 0;
      if (!adaptive_step_estimation_) {
        step = default_step;
      } else {
        const int estimated_gain_change =
            rtc::SafeClamp(-static_cast<int>(std::ceil(estimate_db.value())),
                           -kClippingPredictorMaxGainChange, 0);
        step =
            std::max(level - ComputeVolumeUpdate(estimated_gain_change, level,
                                                 min_mic_level, max_mic_level),
                     default_step);
      }
      const int new_level =
          rtc::SafeClamp(level - step, min_mic_level, max_mic_level);
      if (level > new_level) {
        return level - new_level;
      }
    }
    return absl::nullopt;
  }

 private:
  int GetMinFramesProcessed() {
    return reference_window_delay_ + reference_window_length_;
  }

  // Predicts clipping sample peaks based on the processed audio frames.
  // Returns the estimated peak value if clipping is predicted. Otherwise
  // returns absl::nullopt.
  absl::optional<float> EstimatePeakValue(int channel) const {
    const auto reference_metrics = ch_buffers_[channel]->ComputePartialMetrics(
        reference_window_delay_, reference_window_length_);
    if (!reference_metrics.has_value()) {
      return absl::nullopt;
    }
    const auto metrics =
        ch_buffers_[channel]->ComputePartialMetrics(0, window_length_);
    if (!metrics.has_value() ||
        !(FloatS16ToDbfs(metrics.value().max) > clipping_threshold_)) {
      return absl::nullopt;
    }
    const float reference_crest_factor =
        ComputeCrestFactor(reference_metrics.value());
    const float& mean_squares = metrics.value().average;
    const float projected_peak =
        reference_crest_factor + FloatS16ToDbfs(std::sqrt(mean_squares));
    return projected_peak;
  }

  std::vector<std::unique_ptr<ClippingPredictorLevelBuffer>> ch_buffers_;
  const int window_length_;
  const int reference_window_length_;
  const int reference_window_delay_;
  const int clipping_threshold_;
  const bool adaptive_step_estimation_;
};

}  // namespace

std::unique_ptr<ClippingPredictor> CreateClippingPredictor(
    int num_channels,
    const AudioProcessing::Config::GainController1::AnalogGainController::
        ClippingPredictor& config) {
  if (!config.enabled) {
    RTC_LOG(LS_INFO) << "[AGC2] Clipping prediction disabled.";
    return nullptr;
  }
  RTC_LOG(LS_INFO) << "[AGC2] Clipping prediction enabled.";
  using ClippingPredictorMode = AudioProcessing::Config::GainController1::
      AnalogGainController::ClippingPredictor::Mode;
  switch (config.mode) {
    case ClippingPredictorMode::kClippingEventPrediction:
      return std::make_unique<ClippingEventPredictor>(
          num_channels, config.window_length, config.reference_window_length,
          config.reference_window_delay, config.clipping_threshold,
          config.crest_factor_margin);
    case ClippingPredictorMode::kAdaptiveStepClippingPeakPrediction:
      return std::make_unique<ClippingPeakPredictor>(
          num_channels, config.window_length, config.reference_window_length,
          config.reference_window_delay, config.clipping_threshold,
          /*adaptive_step_estimation=*/true);
    case ClippingPredictorMode::kFixedStepClippingPeakPrediction:
      return std::make_unique<ClippingPeakPredictor>(
          num_channels, config.window_length, config.reference_window_length,
          config.reference_window_delay, config.clipping_threshold,
          /*adaptive_step_estimation=*/false);
  }
  RTC_DCHECK_NOTREACHED();
}

}  // namespace webrtc