1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/input_volume_controller.h"
#include <algorithm>
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/agc2/gain_map_internal.h"
#include "modules/audio_processing/agc2/input_volume_stats_reporter.h"
#include "modules/audio_processing/include/audio_frame_view.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// Amount of error we tolerate in the microphone input volume (presumably due to
// OS quantization) before we assume the user has manually adjusted the volume.
constexpr int kVolumeQuantizationSlack = 25;
constexpr int kMaxInputVolume = 255;
static_assert(kGainMapSize > kMaxInputVolume, "gain map too small");
// Maximum absolute RMS error.
constexpr int KMaxAbsRmsErrorDbfs = 15;
static_assert(KMaxAbsRmsErrorDbfs > 0, "");
using Agc1ClippingPredictorConfig = AudioProcessing::Config::GainController1::
AnalogGainController::ClippingPredictor;
// TODO(webrtc:7494): Hardcode clipping predictor parameters and remove this
// function after no longer needed in the ctor.
Agc1ClippingPredictorConfig CreateClippingPredictorConfig(bool enabled) {
Agc1ClippingPredictorConfig config;
config.enabled = enabled;
return config;
}
// Returns an input volume in the [`min_input_volume`, `kMaxInputVolume`] range
// that reduces `gain_error_db`, which is a gain error estimated when
// `input_volume` was applied, according to a fixed gain map.
int ComputeVolumeUpdate(int gain_error_db,
int input_volume,
int min_input_volume) {
RTC_DCHECK_GE(input_volume, 0);
RTC_DCHECK_LE(input_volume, kMaxInputVolume);
if (gain_error_db == 0) {
return input_volume;
}
int new_volume = input_volume;
if (gain_error_db > 0) {
while (kGainMap[new_volume] - kGainMap[input_volume] < gain_error_db &&
new_volume < kMaxInputVolume) {
++new_volume;
}
} else {
while (kGainMap[new_volume] - kGainMap[input_volume] > gain_error_db &&
new_volume > min_input_volume) {
--new_volume;
}
}
return new_volume;
}
// Returns the proportion of samples in the buffer which are at full-scale
// (and presumably clipped).
float ComputeClippedRatio(const float* const* audio,
size_t num_channels,
size_t samples_per_channel) {
RTC_DCHECK_GT(samples_per_channel, 0);
int num_clipped = 0;
for (size_t ch = 0; ch < num_channels; ++ch) {
int num_clipped_in_ch = 0;
for (size_t i = 0; i < samples_per_channel; ++i) {
RTC_DCHECK(audio[ch]);
if (audio[ch][i] >= 32767.0f || audio[ch][i] <= -32768.0f) {
++num_clipped_in_ch;
}
}
num_clipped = std::max(num_clipped, num_clipped_in_ch);
}
return static_cast<float>(num_clipped) / (samples_per_channel);
}
void LogClippingMetrics(int clipping_rate) {
RTC_LOG(LS_INFO) << "[AGC2] Input clipping rate: " << clipping_rate << "%";
RTC_HISTOGRAM_COUNTS_LINEAR(/*name=*/"WebRTC.Audio.Agc.InputClippingRate",
/*sample=*/clipping_rate, /*min=*/0, /*max=*/100,
/*bucket_count=*/50);
}
// Compares `speech_level_dbfs` to the [`target_range_min_dbfs`,
// `target_range_max_dbfs`] range and returns the error to be compensated via
// input volume adjustment. Returns a positive value when the level is below
// the range, a negative value when the level is above the range, zero
// otherwise.
int GetSpeechLevelRmsErrorDb(float speech_level_dbfs,
int target_range_min_dbfs,
int target_range_max_dbfs) {
constexpr float kMinSpeechLevelDbfs = -90.0f;
constexpr float kMaxSpeechLevelDbfs = 30.0f;
RTC_DCHECK_GE(speech_level_dbfs, kMinSpeechLevelDbfs);
RTC_DCHECK_LE(speech_level_dbfs, kMaxSpeechLevelDbfs);
speech_level_dbfs = rtc::SafeClamp<float>(
speech_level_dbfs, kMinSpeechLevelDbfs, kMaxSpeechLevelDbfs);
int rms_error_db = 0;
if (speech_level_dbfs > target_range_max_dbfs) {
rms_error_db = std::round(target_range_max_dbfs - speech_level_dbfs);
} else if (speech_level_dbfs < target_range_min_dbfs) {
rms_error_db = std::round(target_range_min_dbfs - speech_level_dbfs);
}
return rms_error_db;
}
} // namespace
MonoInputVolumeController::MonoInputVolumeController(
int min_input_volume_after_clipping,
int min_input_volume,
int update_input_volume_wait_frames,
float speech_probability_threshold,
float speech_ratio_threshold)
: min_input_volume_(min_input_volume),
min_input_volume_after_clipping_(min_input_volume_after_clipping),
max_input_volume_(kMaxInputVolume),
update_input_volume_wait_frames_(
std::max(update_input_volume_wait_frames, 1)),
speech_probability_threshold_(speech_probability_threshold),
speech_ratio_threshold_(speech_ratio_threshold) {
RTC_DCHECK_GE(min_input_volume_, 0);
RTC_DCHECK_LE(min_input_volume_, 255);
RTC_DCHECK_GE(min_input_volume_after_clipping_, 0);
RTC_DCHECK_LE(min_input_volume_after_clipping_, 255);
RTC_DCHECK_GE(max_input_volume_, 0);
RTC_DCHECK_LE(max_input_volume_, 255);
RTC_DCHECK_GE(update_input_volume_wait_frames_, 0);
RTC_DCHECK_GE(speech_probability_threshold_, 0.0f);
RTC_DCHECK_LE(speech_probability_threshold_, 1.0f);
RTC_DCHECK_GE(speech_ratio_threshold_, 0.0f);
RTC_DCHECK_LE(speech_ratio_threshold_, 1.0f);
}
MonoInputVolumeController::~MonoInputVolumeController() = default;
void MonoInputVolumeController::Initialize() {
max_input_volume_ = kMaxInputVolume;
capture_output_used_ = true;
check_volume_on_next_process_ = true;
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = true;
}
// A speeh segment is considered active if at least
// `update_input_volume_wait_frames_` new frames have been processed since the
// previous update and the ratio of non-silence frames (i.e., frames with a
// `speech_probability` higher than `speech_probability_threshold_`) is at least
// `speech_ratio_threshold_`.
void MonoInputVolumeController::Process(absl::optional<int> rms_error_db,
float speech_probability) {
if (check_volume_on_next_process_) {
check_volume_on_next_process_ = false;
// We have to wait until the first process call to check the volume,
// because Chromium doesn't guarantee it to be valid any earlier.
CheckVolumeAndReset();
}
// Count frames with a high speech probability as speech.
if (speech_probability >= speech_probability_threshold_) {
++speech_frames_since_update_input_volume_;
}
// Reset the counters and maybe update the input volume.
if (++frames_since_update_input_volume_ >= update_input_volume_wait_frames_) {
const float speech_ratio =
static_cast<float>(speech_frames_since_update_input_volume_) /
static_cast<float>(update_input_volume_wait_frames_);
// Always reset the counters regardless of whether the volume changes or
// not.
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
// Update the input volume if allowed.
if (!is_first_frame_ && speech_ratio >= speech_ratio_threshold_ &&
rms_error_db.has_value()) {
UpdateInputVolume(*rms_error_db);
}
}
is_first_frame_ = false;
}
void MonoInputVolumeController::HandleClipping(int clipped_level_step) {
RTC_DCHECK_GT(clipped_level_step, 0);
// Always decrease the maximum input volume, even if the current input volume
// is below threshold.
SetMaxLevel(std::max(min_input_volume_after_clipping_,
max_input_volume_ - clipped_level_step));
if (log_to_histograms_) {
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed",
last_recommended_input_volume_ - clipped_level_step >=
min_input_volume_after_clipping_);
}
if (last_recommended_input_volume_ > min_input_volume_after_clipping_) {
// Don't try to adjust the input volume if we're already below the limit. As
// a consequence, if the user has brought the input volume above the limit,
// we will still not react until the postproc updates the input volume.
SetInputVolume(
std::max(min_input_volume_after_clipping_,
last_recommended_input_volume_ - clipped_level_step));
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = false;
}
}
void MonoInputVolumeController::SetInputVolume(int new_volume) {
int applied_input_volume = recommended_input_volume_;
if (applied_input_volume == 0) {
RTC_DLOG(LS_INFO)
<< "[AGC2] The applied input volume is zero, taking no action.";
return;
}
if (applied_input_volume < 0 || applied_input_volume > kMaxInputVolume) {
RTC_LOG(LS_ERROR) << "[AGC2] Invalid value for the applied input volume: "
<< applied_input_volume;
return;
}
// Detect manual input volume adjustments by checking if the
// `applied_input_volume` is outside of the `[last_recommended_input_volume_ -
// kVolumeQuantizationSlack, last_recommended_input_volume_ +
// kVolumeQuantizationSlack]` range.
if (applied_input_volume >
last_recommended_input_volume_ + kVolumeQuantizationSlack ||
applied_input_volume <
last_recommended_input_volume_ - kVolumeQuantizationSlack) {
RTC_DLOG(LS_INFO)
<< "[AGC2] The input volume was manually adjusted. Updating "
"stored input volume from "
<< last_recommended_input_volume_ << " to " << applied_input_volume;
last_recommended_input_volume_ = applied_input_volume;
// Always allow the user to increase the volume.
if (last_recommended_input_volume_ > max_input_volume_) {
SetMaxLevel(last_recommended_input_volume_);
}
// Take no action in this case, since we can't be sure when the volume
// was manually adjusted.
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = false;
return;
}
new_volume = std::min(new_volume, max_input_volume_);
if (new_volume == last_recommended_input_volume_) {
return;
}
recommended_input_volume_ = new_volume;
RTC_DLOG(LS_INFO) << "[AGC2] Applied input volume: " << applied_input_volume
<< " | last recommended input volume: "
<< last_recommended_input_volume_
<< " | newly recommended input volume: " << new_volume;
last_recommended_input_volume_ = new_volume;
}
void MonoInputVolumeController::SetMaxLevel(int input_volume) {
RTC_DCHECK_GE(input_volume, min_input_volume_after_clipping_);
max_input_volume_ = input_volume;
RTC_DLOG(LS_INFO) << "[AGC2] Maximum input volume updated: "
<< max_input_volume_;
}
void MonoInputVolumeController::HandleCaptureOutputUsedChange(
bool capture_output_used) {
if (capture_output_used_ == capture_output_used) {
return;
}
capture_output_used_ = capture_output_used;
if (capture_output_used) {
// When we start using the output, we should reset things to be safe.
check_volume_on_next_process_ = true;
}
}
int MonoInputVolumeController::CheckVolumeAndReset() {
int input_volume = recommended_input_volume_;
// Reasons for taking action at startup:
// 1) A person starting a call is expected to be heard.
// 2) Independent of interpretation of `input_volume` == 0 we should raise it
// so the AGC can do its job properly.
if (input_volume == 0 && !startup_) {
RTC_DLOG(LS_INFO)
<< "[AGC2] The applied input volume is zero, taking no action.";
return 0;
}
if (input_volume < 0 || input_volume > kMaxInputVolume) {
RTC_LOG(LS_ERROR) << "[AGC2] Invalid value for the applied input volume: "
<< input_volume;
return -1;
}
RTC_DLOG(LS_INFO) << "[AGC2] Initial input volume: " << input_volume;
if (input_volume < min_input_volume_) {
input_volume = min_input_volume_;
RTC_DLOG(LS_INFO)
<< "[AGC2] The initial input volume is too low, raising to "
<< input_volume;
recommended_input_volume_ = input_volume;
}
last_recommended_input_volume_ = input_volume;
startup_ = false;
frames_since_update_input_volume_ = 0;
speech_frames_since_update_input_volume_ = 0;
is_first_frame_ = true;
return 0;
}
void MonoInputVolumeController::UpdateInputVolume(int rms_error_db) {
RTC_DLOG(LS_INFO) << "[AGC2] RMS error: " << rms_error_db << " dB";
// Prevent too large microphone input volume changes by clamping the RMS
// error.
rms_error_db =
rtc::SafeClamp(rms_error_db, -KMaxAbsRmsErrorDbfs, KMaxAbsRmsErrorDbfs);
if (rms_error_db == 0) {
return;
}
SetInputVolume(ComputeVolumeUpdate(
rms_error_db, last_recommended_input_volume_, min_input_volume_));
}
InputVolumeController::InputVolumeController(int num_capture_channels,
const Config& config)
: num_capture_channels_(num_capture_channels),
min_input_volume_(config.min_input_volume),
capture_output_used_(true),
clipped_level_step_(config.clipped_level_step),
clipped_ratio_threshold_(config.clipped_ratio_threshold),
clipped_wait_frames_(config.clipped_wait_frames),
clipping_predictor_(CreateClippingPredictor(
num_capture_channels,
CreateClippingPredictorConfig(config.enable_clipping_predictor))),
use_clipping_predictor_step_(
!!clipping_predictor_ &&
CreateClippingPredictorConfig(config.enable_clipping_predictor)
.use_predicted_step),
frames_since_clipped_(config.clipped_wait_frames),
clipping_rate_log_counter_(0),
clipping_rate_log_(0.0f),
target_range_max_dbfs_(config.target_range_max_dbfs),
target_range_min_dbfs_(config.target_range_min_dbfs),
channel_controllers_(num_capture_channels) {
RTC_LOG(LS_INFO)
<< "[AGC2] Input volume controller enabled. Minimum input volume: "
<< min_input_volume_;
for (auto& controller : channel_controllers_) {
controller = std::make_unique<MonoInputVolumeController>(
config.clipped_level_min, min_input_volume_,
config.update_input_volume_wait_frames,
config.speech_probability_threshold, config.speech_ratio_threshold);
}
RTC_DCHECK(!channel_controllers_.empty());
RTC_DCHECK_GT(clipped_level_step_, 0);
RTC_DCHECK_LE(clipped_level_step_, 255);
RTC_DCHECK_GT(clipped_ratio_threshold_, 0.0f);
RTC_DCHECK_LT(clipped_ratio_threshold_, 1.0f);
RTC_DCHECK_GT(clipped_wait_frames_, 0);
channel_controllers_[0]->ActivateLogging();
}
InputVolumeController::~InputVolumeController() {}
void InputVolumeController::Initialize() {
for (auto& controller : channel_controllers_) {
controller->Initialize();
}
capture_output_used_ = true;
AggregateChannelLevels();
clipping_rate_log_ = 0.0f;
clipping_rate_log_counter_ = 0;
applied_input_volume_ = absl::nullopt;
}
void InputVolumeController::AnalyzeInputAudio(int applied_input_volume,
const AudioBuffer& audio_buffer) {
RTC_DCHECK_GE(applied_input_volume, 0);
RTC_DCHECK_LE(applied_input_volume, 255);
SetAppliedInputVolume(applied_input_volume);
RTC_DCHECK_EQ(audio_buffer.num_channels(), channel_controllers_.size());
const float* const* audio = audio_buffer.channels_const();
size_t samples_per_channel = audio_buffer.num_frames();
RTC_DCHECK(audio);
AggregateChannelLevels();
if (!capture_output_used_) {
return;
}
if (!!clipping_predictor_) {
AudioFrameView<const float> frame = AudioFrameView<const float>(
audio, num_capture_channels_, static_cast<int>(samples_per_channel));
clipping_predictor_->Analyze(frame);
}
// Check for clipped samples. We do this in the preprocessing phase in order
// to catch clipped echo as well.
//
// If we find a sufficiently clipped frame, drop the current microphone
// input volume and enforce a new maximum input volume, dropped the same
// amount from the current maximum. This harsh treatment is an effort to avoid
// repeated clipped echo events.
float clipped_ratio =
ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel);
clipping_rate_log_ = std::max(clipped_ratio, clipping_rate_log_);
clipping_rate_log_counter_++;
constexpr int kNumFramesIn30Seconds = 3000;
if (clipping_rate_log_counter_ == kNumFramesIn30Seconds) {
LogClippingMetrics(std::round(100.0f * clipping_rate_log_));
clipping_rate_log_ = 0.0f;
clipping_rate_log_counter_ = 0;
}
if (frames_since_clipped_ < clipped_wait_frames_) {
++frames_since_clipped_;
return;
}
const bool clipping_detected = clipped_ratio > clipped_ratio_threshold_;
bool clipping_predicted = false;
int predicted_step = 0;
if (!!clipping_predictor_) {
for (int channel = 0; channel < num_capture_channels_; ++channel) {
const auto step = clipping_predictor_->EstimateClippedLevelStep(
channel, recommended_input_volume_, clipped_level_step_,
channel_controllers_[channel]->min_input_volume_after_clipping(),
kMaxInputVolume);
if (step.has_value()) {
predicted_step = std::max(predicted_step, step.value());
clipping_predicted = true;
}
}
}
if (clipping_detected) {
RTC_DLOG(LS_INFO) << "[AGC2] Clipping detected (ratio: " << clipped_ratio
<< ")";
}
int step = clipped_level_step_;
if (clipping_predicted) {
predicted_step = std::max(predicted_step, clipped_level_step_);
RTC_DLOG(LS_INFO) << "[AGC2] Clipping predicted (volume down step: "
<< predicted_step << ")";
if (use_clipping_predictor_step_) {
step = predicted_step;
}
}
if (clipping_detected ||
(clipping_predicted && use_clipping_predictor_step_)) {
for (auto& state_ch : channel_controllers_) {
state_ch->HandleClipping(step);
}
frames_since_clipped_ = 0;
if (!!clipping_predictor_) {
clipping_predictor_->Reset();
}
}
AggregateChannelLevels();
}
absl::optional<int> InputVolumeController::RecommendInputVolume(
float speech_probability,
absl::optional<float> speech_level_dbfs) {
// Only process if applied input volume is set.
if (!applied_input_volume_.has_value()) {
RTC_LOG(LS_ERROR) << "[AGC2] Applied input volume not set.";
return absl::nullopt;
}
AggregateChannelLevels();
const int volume_after_clipping_handling = recommended_input_volume_;
if (!capture_output_used_) {
return applied_input_volume_;
}
absl::optional<int> rms_error_db;
if (speech_level_dbfs.has_value()) {
// Compute the error for all frames (both speech and non-speech frames).
rms_error_db = GetSpeechLevelRmsErrorDb(
*speech_level_dbfs, target_range_min_dbfs_, target_range_max_dbfs_);
}
for (auto& controller : channel_controllers_) {
controller->Process(rms_error_db, speech_probability);
}
AggregateChannelLevels();
if (volume_after_clipping_handling != recommended_input_volume_) {
// The recommended input volume was adjusted in order to match the target
// level.
UpdateHistogramOnRecommendedInputVolumeChangeToMatchTarget(
recommended_input_volume_);
}
applied_input_volume_ = absl::nullopt;
return recommended_input_volume();
}
void InputVolumeController::HandleCaptureOutputUsedChange(
bool capture_output_used) {
for (auto& controller : channel_controllers_) {
controller->HandleCaptureOutputUsedChange(capture_output_used);
}
capture_output_used_ = capture_output_used;
}
void InputVolumeController::SetAppliedInputVolume(int input_volume) {
applied_input_volume_ = input_volume;
for (auto& controller : channel_controllers_) {
controller->set_stream_analog_level(input_volume);
}
AggregateChannelLevels();
}
void InputVolumeController::AggregateChannelLevels() {
int new_recommended_input_volume =
channel_controllers_[0]->recommended_analog_level();
channel_controlling_gain_ = 0;
for (size_t ch = 1; ch < channel_controllers_.size(); ++ch) {
int input_volume = channel_controllers_[ch]->recommended_analog_level();
if (input_volume < new_recommended_input_volume) {
new_recommended_input_volume = input_volume;
channel_controlling_gain_ = static_cast<int>(ch);
}
}
// Enforce the minimum input volume when a recommendation is made.
if (applied_input_volume_.has_value() && *applied_input_volume_ > 0) {
new_recommended_input_volume =
std::max(new_recommended_input_volume, min_input_volume_);
}
recommended_input_volume_ = new_recommended_input_volume;
}
} // namespace webrtc
|