1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/*
* Copyright 2004 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pc/srtp_session.h"
#include <string.h>
#include <string>
#include "media/base/fake_rtp.h"
#include "pc/test/srtp_test_util.h"
#include "rtc_base/byte_order.h"
#include "rtc_base/ssl_stream_adapter.h" // For rtc::SRTP_*
#include "system_wrappers/include/metrics.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
#include "third_party/libsrtp/include/srtp.h"
using ::testing::ElementsAre;
using ::testing::Pair;
namespace rtc {
std::vector<int> kEncryptedHeaderExtensionIds;
class SrtpSessionTest : public ::testing::Test {
public:
SrtpSessionTest() : s1_(field_trials_), s2_(field_trials_) {
webrtc::metrics::Reset();
}
protected:
virtual void SetUp() {
rtp_len_ = sizeof(kPcmuFrame);
rtcp_len_ = sizeof(kRtcpReport);
memcpy(rtp_packet_, kPcmuFrame, rtp_len_);
memcpy(rtcp_packet_, kRtcpReport, rtcp_len_);
}
void TestProtectRtp(const std::string& cs) {
int out_len = 0;
EXPECT_TRUE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
EXPECT_EQ(out_len, rtp_len_ + rtp_auth_tag_len(cs));
EXPECT_NE(0, memcmp(rtp_packet_, kPcmuFrame, rtp_len_));
rtp_len_ = out_len;
}
void TestProtectRtcp(const std::string& cs) {
int out_len = 0;
EXPECT_TRUE(s1_.ProtectRtcp(rtcp_packet_, rtcp_len_, sizeof(rtcp_packet_),
&out_len));
EXPECT_EQ(out_len, rtcp_len_ + 4 + rtcp_auth_tag_len(cs)); // NOLINT
EXPECT_NE(0, memcmp(rtcp_packet_, kRtcpReport, rtcp_len_));
rtcp_len_ = out_len;
}
void TestUnprotectRtp(const std::string& cs) {
int out_len = 0, expected_len = sizeof(kPcmuFrame);
EXPECT_TRUE(s2_.UnprotectRtp(rtp_packet_, rtp_len_, &out_len));
EXPECT_EQ(expected_len, out_len);
EXPECT_EQ(0, memcmp(rtp_packet_, kPcmuFrame, out_len));
}
void TestUnprotectRtcp(const std::string& cs) {
int out_len = 0, expected_len = sizeof(kRtcpReport);
EXPECT_TRUE(s2_.UnprotectRtcp(rtcp_packet_, rtcp_len_, &out_len));
EXPECT_EQ(expected_len, out_len);
EXPECT_EQ(0, memcmp(rtcp_packet_, kRtcpReport, out_len));
}
webrtc::test::ScopedKeyValueConfig field_trials_;
cricket::SrtpSession s1_;
cricket::SrtpSession s2_;
char rtp_packet_[sizeof(kPcmuFrame) + 10];
char rtcp_packet_[sizeof(kRtcpReport) + 4 + 10];
int rtp_len_;
int rtcp_len_;
};
// Test that we can set up the session and keys properly.
TEST_F(SrtpSessionTest, TestGoodSetup) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
}
// Test that we can't change the keys once set.
TEST_F(SrtpSessionTest, TestBadSetup) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey2, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey2, kTestKeyLen,
kEncryptedHeaderExtensionIds));
}
// Test that we fail keys of the wrong length.
TEST_F(SrtpSessionTest, TestKeysTooShort) {
EXPECT_FALSE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, 1,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, 1,
kEncryptedHeaderExtensionIds));
}
// Test that we can encrypt and decrypt RTP/RTCP using AES_CM_128_HMAC_SHA1_80.
TEST_F(SrtpSessionTest, TestProtect_AES_CM_128_HMAC_SHA1_80) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
TestProtectRtp(kCsAesCm128HmacSha1_80);
TestProtectRtcp(kCsAesCm128HmacSha1_80);
TestUnprotectRtp(kCsAesCm128HmacSha1_80);
TestUnprotectRtcp(kCsAesCm128HmacSha1_80);
}
// Test that we can encrypt and decrypt RTP/RTCP using AES_CM_128_HMAC_SHA1_32.
TEST_F(SrtpSessionTest, TestProtect_AES_CM_128_HMAC_SHA1_32) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_32, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_32, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
TestProtectRtp(kCsAesCm128HmacSha1_32);
TestProtectRtcp(kCsAesCm128HmacSha1_32);
TestUnprotectRtp(kCsAesCm128HmacSha1_32);
TestUnprotectRtcp(kCsAesCm128HmacSha1_32);
}
TEST_F(SrtpSessionTest, TestGetSendStreamPacketIndex) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_32, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
int64_t index;
int out_len = 0;
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_),
&out_len, &index));
// `index` will be shifted by 16.
int64_t be64_index = static_cast<int64_t>(NetworkToHost64(1 << 16));
EXPECT_EQ(be64_index, index);
}
// Test that we fail to unprotect if someone tampers with the RTP/RTCP paylaods.
TEST_F(SrtpSessionTest, TestTamperReject) {
int out_len;
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
TestProtectRtp(kCsAesCm128HmacSha1_80);
TestProtectRtcp(kCsAesCm128HmacSha1_80);
rtp_packet_[0] = 0x12;
rtcp_packet_[1] = 0x34;
EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_, rtp_len_, &out_len));
EXPECT_METRIC_THAT(
webrtc::metrics::Samples("WebRTC.PeerConnection.SrtpUnprotectError"),
ElementsAre(Pair(srtp_err_status_bad_param, 1)));
EXPECT_FALSE(s2_.UnprotectRtcp(rtcp_packet_, rtcp_len_, &out_len));
EXPECT_METRIC_THAT(
webrtc::metrics::Samples("WebRTC.PeerConnection.SrtcpUnprotectError"),
ElementsAre(Pair(srtp_err_status_auth_fail, 1)));
}
// Test that we fail to unprotect if the payloads are not authenticated.
TEST_F(SrtpSessionTest, TestUnencryptReject) {
int out_len;
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_, rtp_len_, &out_len));
EXPECT_METRIC_THAT(
webrtc::metrics::Samples("WebRTC.PeerConnection.SrtpUnprotectError"),
ElementsAre(Pair(srtp_err_status_auth_fail, 1)));
EXPECT_FALSE(s2_.UnprotectRtcp(rtcp_packet_, rtcp_len_, &out_len));
EXPECT_METRIC_THAT(
webrtc::metrics::Samples("WebRTC.PeerConnection.SrtcpUnprotectError"),
ElementsAre(Pair(srtp_err_status_cant_check, 1)));
}
// Test that we fail when using buffers that are too small.
TEST_F(SrtpSessionTest, TestBuffersTooSmall) {
int out_len;
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_) - 10,
&out_len));
EXPECT_FALSE(s1_.ProtectRtcp(rtcp_packet_, rtcp_len_,
sizeof(rtcp_packet_) - 14, &out_len));
}
TEST_F(SrtpSessionTest, TestReplay) {
static const uint16_t kMaxSeqnum = static_cast<uint16_t>(-1);
static const uint16_t seqnum_big = 62275;
static const uint16_t seqnum_small = 10;
static const uint16_t replay_window = 1024;
int out_len;
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetRecv(kSrtpAes128CmSha1_80, kTestKey1, kTestKeyLen,
kEncryptedHeaderExtensionIds));
// Initial sequence number.
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum_big);
EXPECT_TRUE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
// Replay within the 1024 window should succeed.
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2,
seqnum_big - replay_window + 1);
EXPECT_TRUE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
// Replay out side of the 1024 window should fail.
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2,
seqnum_big - replay_window - 1);
EXPECT_FALSE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
// Increment sequence number to a small number.
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum_small);
EXPECT_TRUE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
// Replay around 0 but out side of the 1024 window should fail.
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2,
kMaxSeqnum + seqnum_small - replay_window - 1);
EXPECT_FALSE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
// Replay around 0 but within the 1024 window should succeed.
for (uint16_t seqnum = 65000; seqnum < 65003; ++seqnum) {
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum);
EXPECT_TRUE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
}
// Go back to normal sequence nubmer.
// NOTE: without the fix in libsrtp, this would fail. This is because
// without the fix, the loop above would keep incrementing local sequence
// number in libsrtp, eventually the new sequence number would go out side
// of the window.
SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum_small + 1);
EXPECT_TRUE(
s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), &out_len));
}
} // namespace rtc
|