summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/bit_buffer.cc
blob: 7dc7428fe9108630cfe951504cf182d882c7f70c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
 *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/bit_buffer.h"

#include <algorithm>
#include <limits>

#include "absl/numeric/bits.h"
#include "rtc_base/checks.h"

namespace {

// Returns the highest byte of `val` in a uint8_t.
uint8_t HighestByte(uint64_t val) {
  return static_cast<uint8_t>(val >> 56);
}

// Returns the result of writing partial data from `source`, of
// `source_bit_count` size in the highest bits, to `target` at
// `target_bit_offset` from the highest bit.
uint8_t WritePartialByte(uint8_t source,
                         size_t source_bit_count,
                         uint8_t target,
                         size_t target_bit_offset) {
  RTC_DCHECK(target_bit_offset < 8);
  RTC_DCHECK(source_bit_count < 9);
  RTC_DCHECK(source_bit_count <= (8 - target_bit_offset));
  // Generate a mask for just the bits we're going to overwrite, so:
  uint8_t mask =
      // The number of bits we want, in the most significant bits...
      static_cast<uint8_t>(0xFF << (8 - source_bit_count))
      // ...shifted over to the target offset from the most signficant bit.
      >> target_bit_offset;

  // We want the target, with the bits we'll overwrite masked off, or'ed with
  // the bits from the source we want.
  return (target & ~mask) | (source >> target_bit_offset);
}

}  // namespace

namespace rtc {

BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
    : writable_bytes_(bytes),
      byte_count_(byte_count),
      byte_offset_(),
      bit_offset_() {
  RTC_DCHECK(static_cast<uint64_t>(byte_count_) <=
             std::numeric_limits<uint32_t>::max());
}

uint64_t BitBufferWriter::RemainingBitCount() const {
  return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
}

bool BitBufferWriter::ConsumeBytes(size_t byte_count) {
  return ConsumeBits(byte_count * 8);
}

bool BitBufferWriter::ConsumeBits(size_t bit_count) {
  if (bit_count > RemainingBitCount()) {
    return false;
  }

  byte_offset_ += (bit_offset_ + bit_count) / 8;
  bit_offset_ = (bit_offset_ + bit_count) % 8;
  return true;
}

void BitBufferWriter::GetCurrentOffset(size_t* out_byte_offset,
                                       size_t* out_bit_offset) {
  RTC_CHECK(out_byte_offset != nullptr);
  RTC_CHECK(out_bit_offset != nullptr);
  *out_byte_offset = byte_offset_;
  *out_bit_offset = bit_offset_;
}

bool BitBufferWriter::Seek(size_t byte_offset, size_t bit_offset) {
  if (byte_offset > byte_count_ || bit_offset > 7 ||
      (byte_offset == byte_count_ && bit_offset > 0)) {
    return false;
  }
  byte_offset_ = byte_offset;
  bit_offset_ = bit_offset;
  return true;
}

bool BitBufferWriter::WriteUInt8(uint8_t val) {
  return WriteBits(val, sizeof(uint8_t) * 8);
}

bool BitBufferWriter::WriteUInt16(uint16_t val) {
  return WriteBits(val, sizeof(uint16_t) * 8);
}

bool BitBufferWriter::WriteUInt32(uint32_t val) {
  return WriteBits(val, sizeof(uint32_t) * 8);
}

bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
  if (bit_count > RemainingBitCount()) {
    return false;
  }
  size_t total_bits = bit_count;

  // For simplicity, push the bits we want to read from val to the highest bits.
  val <<= (sizeof(uint64_t) * 8 - bit_count);

  uint8_t* bytes = writable_bytes_ + byte_offset_;

  // The first byte is relatively special; the bit offset to write to may put us
  // in the middle of the byte, and the total bit count to write may require we
  // save the bits at the end of the byte.
  size_t remaining_bits_in_current_byte = 8 - bit_offset_;
  size_t bits_in_first_byte =
      std::min(bit_count, remaining_bits_in_current_byte);
  *bytes = WritePartialByte(HighestByte(val), bits_in_first_byte, *bytes,
                            bit_offset_);
  if (bit_count <= remaining_bits_in_current_byte) {
    // Nothing left to write, so quit early.
    return ConsumeBits(total_bits);
  }

  // Subtract what we've written from the bit count, shift it off the value, and
  // write the remaining full bytes.
  val <<= bits_in_first_byte;
  bytes++;
  bit_count -= bits_in_first_byte;
  while (bit_count >= 8) {
    *bytes++ = HighestByte(val);
    val <<= 8;
    bit_count -= 8;
  }

  // Last byte may also be partial, so write the remaining bits from the top of
  // val.
  if (bit_count > 0) {
    *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0);
  }

  // All done! Consume the bits we've written.
  return ConsumeBits(total_bits);
}

bool BitBufferWriter::WriteNonSymmetric(uint32_t val, uint32_t num_values) {
  RTC_DCHECK_LT(val, num_values);
  RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
  if (num_values == 1) {
    // When there is only one possible value, it requires zero bits to store it.
    // But WriteBits doesn't support writing zero bits.
    return true;
  }
  size_t count_bits = absl::bit_width(num_values);
  uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;

  return val < num_min_bits_values
             ? WriteBits(val, count_bits - 1)
             : WriteBits(val + num_min_bits_values, count_bits);
}

size_t BitBufferWriter::SizeNonSymmetricBits(uint32_t val,
                                             uint32_t num_values) {
  RTC_DCHECK_LT(val, num_values);
  RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
  size_t count_bits = absl::bit_width(num_values);
  uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;

  return val < num_min_bits_values ? (count_bits - 1) : count_bits;
}

bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
  // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
  // when encoded, so don't support writing it either.
  if (val == std::numeric_limits<uint32_t>::max()) {
    return false;
  }
  uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;

  // We need to write bit_width(val+1) 0s and then val+1. Since val (as a
  // uint64_t) has leading zeros, we can just write the total golomb encoded
  // size worth of bits, knowing the value will appear last.
  return WriteBits(val_to_encode, absl::bit_width(val_to_encode) * 2 - 1);
}

bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) {
  if (val == 0) {
    return WriteExponentialGolomb(0);
  } else if (val > 0) {
    uint32_t signed_val = val;
    return WriteExponentialGolomb((signed_val * 2) - 1);
  } else {
    if (val == std::numeric_limits<int32_t>::min())
      return false;  // Not supported, would cause overflow.
    uint32_t signed_val = -val;
    return WriteExponentialGolomb(signed_val * 2);
  }
}

}  // namespace rtc