1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/nat_socket_factory.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/nat_server.h"
#include "rtc_base/virtual_socket_server.h"
namespace rtc {
// Packs the given socketaddress into the buffer in buf, in the quasi-STUN
// format that the natserver uses.
// Returns 0 if an invalid address is passed.
size_t PackAddressForNAT(char* buf,
size_t buf_size,
const SocketAddress& remote_addr) {
const IPAddress& ip = remote_addr.ipaddr();
int family = ip.family();
buf[0] = 0;
buf[1] = family;
// Writes the port.
*(reinterpret_cast<uint16_t*>(&buf[2])) = HostToNetwork16(remote_addr.port());
if (family == AF_INET) {
RTC_DCHECK(buf_size >= kNATEncodedIPv4AddressSize);
in_addr v4addr = ip.ipv4_address();
memcpy(&buf[4], &v4addr, kNATEncodedIPv4AddressSize - 4);
return kNATEncodedIPv4AddressSize;
} else if (family == AF_INET6) {
RTC_DCHECK(buf_size >= kNATEncodedIPv6AddressSize);
in6_addr v6addr = ip.ipv6_address();
memcpy(&buf[4], &v6addr, kNATEncodedIPv6AddressSize - 4);
return kNATEncodedIPv6AddressSize;
}
return 0U;
}
// Decodes the remote address from a packet that has been encoded with the nat's
// quasi-STUN format. Returns the length of the address (i.e., the offset into
// data where the original packet starts).
size_t UnpackAddressFromNAT(const char* buf,
size_t buf_size,
SocketAddress* remote_addr) {
RTC_DCHECK(buf_size >= 8);
RTC_DCHECK(buf[0] == 0);
int family = buf[1];
uint16_t port =
NetworkToHost16(*(reinterpret_cast<const uint16_t*>(&buf[2])));
if (family == AF_INET) {
const in_addr* v4addr = reinterpret_cast<const in_addr*>(&buf[4]);
*remote_addr = SocketAddress(IPAddress(*v4addr), port);
return kNATEncodedIPv4AddressSize;
} else if (family == AF_INET6) {
RTC_DCHECK(buf_size >= 20);
const in6_addr* v6addr = reinterpret_cast<const in6_addr*>(&buf[4]);
*remote_addr = SocketAddress(IPAddress(*v6addr), port);
return kNATEncodedIPv6AddressSize;
}
return 0U;
}
// NATSocket
class NATSocket : public Socket, public sigslot::has_slots<> {
public:
explicit NATSocket(NATInternalSocketFactory* sf, int family, int type)
: sf_(sf),
family_(family),
type_(type),
connected_(false),
socket_(nullptr),
buf_(nullptr),
size_(0) {}
~NATSocket() override {
delete socket_;
delete[] buf_;
}
SocketAddress GetLocalAddress() const override {
return (socket_) ? socket_->GetLocalAddress() : SocketAddress();
}
SocketAddress GetRemoteAddress() const override {
return remote_addr_; // will be NIL if not connected
}
int Bind(const SocketAddress& addr) override {
if (socket_) { // already bound, bubble up error
return -1;
}
return BindInternal(addr);
}
int Connect(const SocketAddress& addr) override {
int result = 0;
// If we're not already bound (meaning `socket_` is null), bind to ANY
// address.
if (!socket_) {
result = BindInternal(SocketAddress(GetAnyIP(family_), 0));
if (result < 0) {
return result;
}
}
if (type_ == SOCK_STREAM) {
result = socket_->Connect(server_addr_.IsNil() ? addr : server_addr_);
} else {
connected_ = true;
}
if (result >= 0) {
remote_addr_ = addr;
}
return result;
}
int Send(const void* data, size_t size) override {
RTC_DCHECK(connected_);
return SendTo(data, size, remote_addr_);
}
int SendTo(const void* data,
size_t size,
const SocketAddress& addr) override {
RTC_DCHECK(!connected_ || addr == remote_addr_);
if (server_addr_.IsNil() || type_ == SOCK_STREAM) {
return socket_->SendTo(data, size, addr);
}
// This array will be too large for IPv4 packets, but only by 12 bytes.
std::unique_ptr<char[]> buf(new char[size + kNATEncodedIPv6AddressSize]);
size_t addrlength =
PackAddressForNAT(buf.get(), size + kNATEncodedIPv6AddressSize, addr);
size_t encoded_size = size + addrlength;
memcpy(buf.get() + addrlength, data, size);
int result = socket_->SendTo(buf.get(), encoded_size, server_addr_);
if (result >= 0) {
RTC_DCHECK(result == static_cast<int>(encoded_size));
result = result - static_cast<int>(addrlength);
}
return result;
}
int Recv(void* data, size_t size, int64_t* timestamp) override {
SocketAddress addr;
return RecvFrom(data, size, &addr, timestamp);
}
int RecvFrom(void* data,
size_t size,
SocketAddress* out_addr,
int64_t* timestamp) override {
if (server_addr_.IsNil() || type_ == SOCK_STREAM) {
return socket_->RecvFrom(data, size, out_addr, timestamp);
}
// Make sure we have enough room to read the requested amount plus the
// largest possible header address.
SocketAddress remote_addr;
Grow(size + kNATEncodedIPv6AddressSize);
// Read the packet from the socket.
int result = socket_->RecvFrom(buf_, size_, &remote_addr, timestamp);
if (result >= 0) {
RTC_DCHECK(remote_addr == server_addr_);
// TODO: we need better framing so we know how many bytes we can
// return before we need to read the next address. For UDP, this will be
// fine as long as the reader always reads everything in the packet.
RTC_DCHECK((size_t)result < size_);
// Decode the wire packet into the actual results.
SocketAddress real_remote_addr;
size_t addrlength = UnpackAddressFromNAT(buf_, result, &real_remote_addr);
memcpy(data, buf_ + addrlength, result - addrlength);
// Make sure this packet should be delivered before returning it.
if (!connected_ || (real_remote_addr == remote_addr_)) {
if (out_addr)
*out_addr = real_remote_addr;
result = result - static_cast<int>(addrlength);
} else {
RTC_LOG(LS_ERROR) << "Dropping packet from unknown remote address: "
<< real_remote_addr.ToString();
result = 0; // Tell the caller we didn't read anything
}
}
return result;
}
int Close() override {
int result = 0;
if (socket_) {
result = socket_->Close();
if (result >= 0) {
connected_ = false;
remote_addr_ = SocketAddress();
delete socket_;
socket_ = nullptr;
}
}
return result;
}
int Listen(int backlog) override { return socket_->Listen(backlog); }
Socket* Accept(SocketAddress* paddr) override {
return socket_->Accept(paddr);
}
int GetError() const override {
return socket_ ? socket_->GetError() : error_;
}
void SetError(int error) override {
if (socket_) {
socket_->SetError(error);
} else {
error_ = error;
}
}
ConnState GetState() const override {
return connected_ ? CS_CONNECTED : CS_CLOSED;
}
int GetOption(Option opt, int* value) override {
return socket_ ? socket_->GetOption(opt, value) : -1;
}
int SetOption(Option opt, int value) override {
return socket_ ? socket_->SetOption(opt, value) : -1;
}
void OnConnectEvent(Socket* socket) {
// If we're NATed, we need to send a message with the real addr to use.
RTC_DCHECK(socket == socket_);
if (server_addr_.IsNil()) {
connected_ = true;
SignalConnectEvent(this);
} else {
SendConnectRequest();
}
}
void OnReadEvent(Socket* socket) {
// If we're NATed, we need to process the connect reply.
RTC_DCHECK(socket == socket_);
if (type_ == SOCK_STREAM && !server_addr_.IsNil() && !connected_) {
HandleConnectReply();
} else {
SignalReadEvent(this);
}
}
void OnWriteEvent(Socket* socket) {
RTC_DCHECK(socket == socket_);
SignalWriteEvent(this);
}
void OnCloseEvent(Socket* socket, int error) {
RTC_DCHECK(socket == socket_);
SignalCloseEvent(this, error);
}
private:
int BindInternal(const SocketAddress& addr) {
RTC_DCHECK(!socket_);
int result;
socket_ = sf_->CreateInternalSocket(family_, type_, addr, &server_addr_);
result = (socket_) ? socket_->Bind(addr) : -1;
if (result >= 0) {
socket_->SignalConnectEvent.connect(this, &NATSocket::OnConnectEvent);
socket_->SignalReadEvent.connect(this, &NATSocket::OnReadEvent);
socket_->SignalWriteEvent.connect(this, &NATSocket::OnWriteEvent);
socket_->SignalCloseEvent.connect(this, &NATSocket::OnCloseEvent);
} else {
server_addr_.Clear();
delete socket_;
socket_ = nullptr;
}
return result;
}
// Makes sure the buffer is at least the given size.
void Grow(size_t new_size) {
if (size_ < new_size) {
delete[] buf_;
size_ = new_size;
buf_ = new char[size_];
}
}
// Sends the destination address to the server to tell it to connect.
void SendConnectRequest() {
char buf[kNATEncodedIPv6AddressSize];
size_t length = PackAddressForNAT(buf, arraysize(buf), remote_addr_);
socket_->Send(buf, length);
}
// Handles the byte sent back from the server and fires the appropriate event.
void HandleConnectReply() {
char code;
socket_->Recv(&code, sizeof(code), nullptr);
if (code == 0) {
connected_ = true;
SignalConnectEvent(this);
} else {
Close();
SignalCloseEvent(this, code);
}
}
NATInternalSocketFactory* sf_;
int family_;
int type_;
bool connected_;
SocketAddress remote_addr_;
SocketAddress server_addr_; // address of the NAT server
Socket* socket_;
// Need to hold error in case it occurs before the socket is created.
int error_ = 0;
char* buf_;
size_t size_;
};
// NATSocketFactory
NATSocketFactory::NATSocketFactory(SocketFactory* factory,
const SocketAddress& nat_udp_addr,
const SocketAddress& nat_tcp_addr)
: factory_(factory),
nat_udp_addr_(nat_udp_addr),
nat_tcp_addr_(nat_tcp_addr) {}
Socket* NATSocketFactory::CreateSocket(int family, int type) {
return new NATSocket(this, family, type);
}
Socket* NATSocketFactory::CreateInternalSocket(int family,
int type,
const SocketAddress& local_addr,
SocketAddress* nat_addr) {
if (type == SOCK_STREAM) {
*nat_addr = nat_tcp_addr_;
} else {
*nat_addr = nat_udp_addr_;
}
return factory_->CreateSocket(family, type);
}
// NATSocketServer
NATSocketServer::NATSocketServer(SocketServer* server)
: server_(server), msg_queue_(nullptr) {}
NATSocketServer::Translator* NATSocketServer::GetTranslator(
const SocketAddress& ext_ip) {
return nats_.Get(ext_ip);
}
NATSocketServer::Translator* NATSocketServer::AddTranslator(
const SocketAddress& ext_ip,
const SocketAddress& int_ip,
NATType type) {
// Fail if a translator already exists with this extternal address.
if (nats_.Get(ext_ip))
return nullptr;
return nats_.Add(ext_ip, new Translator(this, type, int_ip, server_, ext_ip));
}
void NATSocketServer::RemoveTranslator(const SocketAddress& ext_ip) {
nats_.Remove(ext_ip);
}
Socket* NATSocketServer::CreateSocket(int family, int type) {
return new NATSocket(this, family, type);
}
void NATSocketServer::SetMessageQueue(Thread* queue) {
msg_queue_ = queue;
server_->SetMessageQueue(queue);
}
bool NATSocketServer::Wait(webrtc::TimeDelta max_wait_duration,
bool process_io) {
return server_->Wait(max_wait_duration, process_io);
}
void NATSocketServer::WakeUp() {
server_->WakeUp();
}
Socket* NATSocketServer::CreateInternalSocket(int family,
int type,
const SocketAddress& local_addr,
SocketAddress* nat_addr) {
Socket* socket = nullptr;
Translator* nat = nats_.FindClient(local_addr);
if (nat) {
socket = nat->internal_factory()->CreateSocket(family, type);
*nat_addr = (type == SOCK_STREAM) ? nat->internal_tcp_address()
: nat->internal_udp_address();
} else {
socket = server_->CreateSocket(family, type);
}
return socket;
}
// NATSocketServer::Translator
NATSocketServer::Translator::Translator(NATSocketServer* server,
NATType type,
const SocketAddress& int_ip,
SocketFactory* ext_factory,
const SocketAddress& ext_ip)
: server_(server) {
// Create a new private network, and a NATServer running on the private
// network that bridges to the external network. Also tell the private
// network to use the same message queue as us.
internal_server_ = std::make_unique<VirtualSocketServer>();
internal_server_->SetMessageQueue(server_->queue());
nat_server_ = std::make_unique<NATServer>(
type, internal_server_.get(), int_ip, int_ip, ext_factory, ext_ip);
}
NATSocketServer::Translator::~Translator() {
internal_server_->SetMessageQueue(nullptr);
}
NATSocketServer::Translator* NATSocketServer::Translator::GetTranslator(
const SocketAddress& ext_ip) {
return nats_.Get(ext_ip);
}
NATSocketServer::Translator* NATSocketServer::Translator::AddTranslator(
const SocketAddress& ext_ip,
const SocketAddress& int_ip,
NATType type) {
// Fail if a translator already exists with this extternal address.
if (nats_.Get(ext_ip))
return nullptr;
AddClient(ext_ip);
return nats_.Add(ext_ip,
new Translator(server_, type, int_ip, server_, ext_ip));
}
void NATSocketServer::Translator::RemoveTranslator(
const SocketAddress& ext_ip) {
nats_.Remove(ext_ip);
RemoveClient(ext_ip);
}
bool NATSocketServer::Translator::AddClient(const SocketAddress& int_ip) {
// Fail if a client already exists with this internal address.
if (clients_.find(int_ip) != clients_.end())
return false;
clients_.insert(int_ip);
return true;
}
void NATSocketServer::Translator::RemoveClient(const SocketAddress& int_ip) {
std::set<SocketAddress>::iterator it = clients_.find(int_ip);
if (it != clients_.end()) {
clients_.erase(it);
}
}
NATSocketServer::Translator* NATSocketServer::Translator::FindClient(
const SocketAddress& int_ip) {
// See if we have the requested IP, or any of our children do.
return (clients_.find(int_ip) != clients_.end()) ? this
: nats_.FindClient(int_ip);
}
// NATSocketServer::TranslatorMap
NATSocketServer::TranslatorMap::~TranslatorMap() {
for (TranslatorMap::iterator it = begin(); it != end(); ++it) {
delete it->second;
}
}
NATSocketServer::Translator* NATSocketServer::TranslatorMap::Get(
const SocketAddress& ext_ip) {
TranslatorMap::iterator it = find(ext_ip);
return (it != end()) ? it->second : nullptr;
}
NATSocketServer::Translator* NATSocketServer::TranslatorMap::Add(
const SocketAddress& ext_ip,
Translator* nat) {
(*this)[ext_ip] = nat;
return nat;
}
void NATSocketServer::TranslatorMap::Remove(const SocketAddress& ext_ip) {
TranslatorMap::iterator it = find(ext_ip);
if (it != end()) {
delete it->second;
erase(it);
}
}
NATSocketServer::Translator* NATSocketServer::TranslatorMap::FindClient(
const SocketAddress& int_ip) {
Translator* nat = nullptr;
for (TranslatorMap::iterator it = begin(); it != end() && !nat; ++it) {
nat = it->second->FindClient(int_ip);
}
return nat;
}
} // namespace rtc
|