1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
/*
* Copyright 2018 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_queue_stdlib.h"
#include <string.h>
#include <algorithm>
#include <map>
#include <memory>
#include <queue>
#include <utility>
#include "absl/functional/any_invocable.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/divide_round.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
rtc::ThreadPriority TaskQueuePriorityToThreadPriority(
TaskQueueFactory::Priority priority) {
switch (priority) {
case TaskQueueFactory::Priority::HIGH:
return rtc::ThreadPriority::kRealtime;
case TaskQueueFactory::Priority::LOW:
return rtc::ThreadPriority::kLow;
case TaskQueueFactory::Priority::NORMAL:
return rtc::ThreadPriority::kNormal;
}
}
class TaskQueueStdlib final : public TaskQueueBase {
public:
TaskQueueStdlib(absl::string_view queue_name, rtc::ThreadPriority priority);
~TaskQueueStdlib() override = default;
void Delete() override;
void PostTask(absl::AnyInvocable<void() &&> task) override;
void PostDelayedTask(absl::AnyInvocable<void() &&> task,
TimeDelta delay) override;
void PostDelayedHighPrecisionTask(absl::AnyInvocable<void() &&> task,
TimeDelta delay) override;
private:
using OrderId = uint64_t;
struct DelayedEntryTimeout {
// TODO(bugs.webrtc.org/13756): Migrate to Timestamp.
int64_t next_fire_at_us{};
OrderId order{};
bool operator<(const DelayedEntryTimeout& o) const {
return std::tie(next_fire_at_us, order) <
std::tie(o.next_fire_at_us, o.order);
}
};
struct NextTask {
bool final_task = false;
absl::AnyInvocable<void() &&> run_task;
TimeDelta sleep_time = rtc::Event::kForever;
};
static rtc::PlatformThread InitializeThread(TaskQueueStdlib* me,
absl::string_view queue_name,
rtc::ThreadPriority priority);
NextTask GetNextTask();
void ProcessTasks();
void NotifyWake();
// Signaled whenever a new task is pending.
rtc::Event flag_notify_;
Mutex pending_lock_;
// Indicates if the worker thread needs to shutdown now.
bool thread_should_quit_ RTC_GUARDED_BY(pending_lock_) = false;
// Holds the next order to use for the next task to be
// put into one of the pending queues.
OrderId thread_posting_order_ RTC_GUARDED_BY(pending_lock_) = 0;
// The list of all pending tasks that need to be processed in the
// FIFO queue ordering on the worker thread.
std::queue<std::pair<OrderId, absl::AnyInvocable<void() &&>>> pending_queue_
RTC_GUARDED_BY(pending_lock_);
// The list of all pending tasks that need to be processed at a future
// time based upon a delay. On the off change the delayed task should
// happen at exactly the same time interval as another task then the
// task is processed based on FIFO ordering. std::priority_queue was
// considered but rejected due to its inability to extract the
// move-only value out of the queue without the presence of a hack.
std::map<DelayedEntryTimeout, absl::AnyInvocable<void() &&>> delayed_queue_
RTC_GUARDED_BY(pending_lock_);
// Contains the active worker thread assigned to processing
// tasks (including delayed tasks).
// Placing this last ensures the thread doesn't touch uninitialized attributes
// throughout it's lifetime.
rtc::PlatformThread thread_;
};
TaskQueueStdlib::TaskQueueStdlib(absl::string_view queue_name,
rtc::ThreadPriority priority)
: flag_notify_(/*manual_reset=*/false, /*initially_signaled=*/false),
thread_(InitializeThread(this, queue_name, priority)) {}
// static
rtc::PlatformThread TaskQueueStdlib::InitializeThread(
TaskQueueStdlib* me,
absl::string_view queue_name,
rtc::ThreadPriority priority) {
rtc::Event started;
auto thread = rtc::PlatformThread::SpawnJoinable(
[&started, me] {
CurrentTaskQueueSetter set_current(me);
started.Set();
me->ProcessTasks();
},
queue_name, rtc::ThreadAttributes().SetPriority(priority));
started.Wait(rtc::Event::kForever);
return thread;
}
void TaskQueueStdlib::Delete() {
RTC_DCHECK(!IsCurrent());
{
MutexLock lock(&pending_lock_);
thread_should_quit_ = true;
}
NotifyWake();
delete this;
}
void TaskQueueStdlib::PostTask(absl::AnyInvocable<void() &&> task) {
{
MutexLock lock(&pending_lock_);
pending_queue_.push(
std::make_pair(++thread_posting_order_, std::move(task)));
}
NotifyWake();
}
void TaskQueueStdlib::PostDelayedTask(absl::AnyInvocable<void() &&> task,
TimeDelta delay) {
DelayedEntryTimeout delayed_entry;
delayed_entry.next_fire_at_us = rtc::TimeMicros() + delay.us();
{
MutexLock lock(&pending_lock_);
delayed_entry.order = ++thread_posting_order_;
delayed_queue_[delayed_entry] = std::move(task);
}
NotifyWake();
}
void TaskQueueStdlib::PostDelayedHighPrecisionTask(
absl::AnyInvocable<void() &&> task,
TimeDelta delay) {
PostDelayedTask(std::move(task), delay);
}
TaskQueueStdlib::NextTask TaskQueueStdlib::GetNextTask() {
NextTask result;
const int64_t tick_us = rtc::TimeMicros();
MutexLock lock(&pending_lock_);
if (thread_should_quit_) {
result.final_task = true;
return result;
}
if (delayed_queue_.size() > 0) {
auto delayed_entry = delayed_queue_.begin();
const auto& delay_info = delayed_entry->first;
auto& delay_run = delayed_entry->second;
if (tick_us >= delay_info.next_fire_at_us) {
if (pending_queue_.size() > 0) {
auto& entry = pending_queue_.front();
auto& entry_order = entry.first;
auto& entry_run = entry.second;
if (entry_order < delay_info.order) {
result.run_task = std::move(entry_run);
pending_queue_.pop();
return result;
}
}
result.run_task = std::move(delay_run);
delayed_queue_.erase(delayed_entry);
return result;
}
result.sleep_time = TimeDelta::Millis(
DivideRoundUp(delay_info.next_fire_at_us - tick_us, 1'000));
}
if (pending_queue_.size() > 0) {
auto& entry = pending_queue_.front();
result.run_task = std::move(entry.second);
pending_queue_.pop();
}
return result;
}
void TaskQueueStdlib::ProcessTasks() {
while (true) {
auto task = GetNextTask();
if (task.final_task)
break;
if (task.run_task) {
// process entry immediately then try again
std::move(task.run_task)();
// Attempt to run more tasks before going to sleep.
continue;
}
flag_notify_.Wait(task.sleep_time);
}
// Ensure remaining deleted tasks are destroyed with Current() set up to this
// task queue.
std::queue<std::pair<OrderId, absl::AnyInvocable<void() &&>>> pending_queue;
{
MutexLock lock(&pending_lock_);
pending_queue_.swap(pending_queue);
}
pending_queue = {};
#if RTC_DCHECK_IS_ON
MutexLock lock(&pending_lock_);
RTC_DCHECK(pending_queue_.empty());
#endif
}
void TaskQueueStdlib::NotifyWake() {
// The queue holds pending tasks to complete. Either tasks are to be
// executed immediately or tasks are to be run at some future delayed time.
// For immediate tasks the task queue's thread is busy running the task and
// the thread will not be waiting on the flag_notify_ event. If no immediate
// tasks are available but a delayed task is pending then the thread will be
// waiting on flag_notify_ with a delayed time-out of the nearest timed task
// to run. If no immediate or pending tasks are available, the thread will
// wait on flag_notify_ until signaled that a task has been added (or the
// thread to be told to shutdown).
// In all cases, when a new immediate task, delayed task, or request to
// shutdown the thread is added the flag_notify_ is signaled after. If the
// thread was waiting then the thread will wake up immediately and re-assess
// what task needs to be run next (i.e. run a task now, wait for the nearest
// timed delayed task, or shutdown the thread). If the thread was not waiting
// then the thread will remained signaled to wake up the next time any
// attempt to wait on the flag_notify_ event occurs.
// Any immediate or delayed pending task (or request to shutdown the thread)
// must always be added to the queue prior to signaling flag_notify_ to wake
// up the possibly sleeping thread. This prevents a race condition where the
// thread is notified to wake up but the task queue's thread finds nothing to
// do so it waits once again to be signaled where such a signal may never
// happen.
flag_notify_.Set();
}
class TaskQueueStdlibFactory final : public TaskQueueFactory {
public:
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
absl::string_view name,
Priority priority) const override {
return std::unique_ptr<TaskQueueBase, TaskQueueDeleter>(
new TaskQueueStdlib(name, TaskQueuePriorityToThreadPriority(priority)));
}
};
} // namespace
std::unique_ptr<TaskQueueFactory> CreateTaskQueueStdlibFactory() {
return std::make_unique<TaskQueueStdlibFactory>();
}
} // namespace webrtc
|