summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_tools/rtc_event_log_visualizer/analyzer_common.h
blob: b0b556aa62fc72d5769ef0553e77945519a63f3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 *  Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef RTC_TOOLS_RTC_EVENT_LOG_VISUALIZER_ANALYZER_COMMON_H_
#define RTC_TOOLS_RTC_EVENT_LOG_VISUALIZER_ANALYZER_COMMON_H_

#include <cstdint>
#include <string>

#include "absl/types/optional.h"
#include "api/function_view.h"
#include "logging/rtc_event_log/rtc_event_log_parser.h"
#include "rtc_tools/rtc_event_log_visualizer/plot_base.h"

namespace webrtc {

constexpr int kNumMicrosecsPerSec = 1000000;
constexpr int kNumMillisecsPerSec = 1000;
constexpr float kLeftMargin = 0.01f;
constexpr float kRightMargin = 0.02f;
constexpr float kBottomMargin = 0.02f;
constexpr float kTopMargin = 0.05f;

class AnalyzerConfig {
 public:
  float GetCallTimeSec(Timestamp timestamp) const {
    Timestamp offset = normalize_time_ ? begin_time_ : Timestamp::Zero();
    return static_cast<float>((timestamp - offset).us()) / 1000000;
  }

  float GetCallTimeSecFromMs(int64_t timestamp_ms) const {
    return GetCallTimeSec(Timestamp::Millis(timestamp_ms));
  }

  float CallBeginTimeSec() const { return GetCallTimeSec(begin_time_); }

  float CallEndTimeSec() const { return GetCallTimeSec(end_time_); }

  int64_t CallTimeToUtcOffsetMs() {
    if (normalize_time_) {
      Timestamp utc_begin_time_ = begin_time_ + rtc_to_utc_offset_;
      return utc_begin_time_.ms();
    }
    return rtc_to_utc_offset_.ms();
  }

  // Window and step size used for calculating moving averages, e.g. bitrate.
  // The generated data points will be `step_.ms()` milliseconds apart.
  // Only events occurring at most `window_duration_.ms()` milliseconds before
  // the current data point will be part of the average.
  TimeDelta window_duration_ = TimeDelta::Millis(250);
  TimeDelta step_ = TimeDelta::Millis(10);

  // First and last events of the log.
  Timestamp begin_time_ = Timestamp::MinusInfinity();
  Timestamp end_time_ = Timestamp::MinusInfinity();
  TimeDelta rtc_to_utc_offset_ = TimeDelta::Zero();
  bool normalize_time_;
};

struct LayerDescription {
  LayerDescription(uint32_t ssrc, uint8_t spatial_layer, uint8_t temporal_layer)
      : ssrc(ssrc),
        spatial_layer(spatial_layer),
        temporal_layer(temporal_layer) {}
  bool operator<(const LayerDescription& other) const {
    if (ssrc != other.ssrc)
      return ssrc < other.ssrc;
    if (spatial_layer != other.spatial_layer)
      return spatial_layer < other.spatial_layer;
    return temporal_layer < other.temporal_layer;
  }
  uint32_t ssrc;
  uint8_t spatial_layer;
  uint8_t temporal_layer;
};

bool IsRtxSsrc(const ParsedRtcEventLog& parsed_log,
               PacketDirection direction,
               uint32_t ssrc);
bool IsVideoSsrc(const ParsedRtcEventLog& parsed_log,
                 PacketDirection direction,
                 uint32_t ssrc);
bool IsAudioSsrc(const ParsedRtcEventLog& parsed_log,
                 PacketDirection direction,
                 uint32_t ssrc);

std::string GetStreamName(const ParsedRtcEventLog& parsed_log,
                          PacketDirection direction,
                          uint32_t ssrc);
std::string GetLayerName(LayerDescription layer);

// For each element in data_view, use `f()` to extract a y-coordinate and
// store the result in a TimeSeries.
template <typename DataType, typename IterableType>
void ProcessPoints(rtc::FunctionView<float(const DataType&)> fx,
                   rtc::FunctionView<absl::optional<float>(const DataType&)> fy,
                   const IterableType& data_view,
                   TimeSeries* result) {
  for (size_t i = 0; i < data_view.size(); i++) {
    const DataType& elem = data_view[i];
    float x = fx(elem);
    absl::optional<float> y = fy(elem);
    if (y)
      result->points.emplace_back(x, *y);
  }
}

// For each pair of adjacent elements in `data`, use `f()` to extract a
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
// will be the time of the second element in the pair.
template <typename DataType, typename ResultType, typename IterableType>
void ProcessPairs(
    rtc::FunctionView<float(const DataType&)> fx,
    rtc::FunctionView<absl::optional<ResultType>(const DataType&,
                                                 const DataType&)> fy,
    const IterableType& data,
    TimeSeries* result) {
  for (size_t i = 1; i < data.size(); i++) {
    float x = fx(data[i]);
    absl::optional<ResultType> y = fy(data[i - 1], data[i]);
    if (y)
      result->points.emplace_back(x, static_cast<float>(*y));
  }
}

// For each pair of adjacent elements in `data`, use `f()` to extract a
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
// will be the time of the second element in the pair.
template <typename DataType, typename ResultType, typename IterableType>
void AccumulatePairs(
    rtc::FunctionView<float(const DataType&)> fx,
    rtc::FunctionView<absl::optional<ResultType>(const DataType&,
                                                 const DataType&)> fy,
    const IterableType& data,
    TimeSeries* result) {
  ResultType sum = 0;
  for (size_t i = 1; i < data.size(); i++) {
    float x = fx(data[i]);
    absl::optional<ResultType> y = fy(data[i - 1], data[i]);
    if (y) {
      sum += *y;
      result->points.emplace_back(x, static_cast<float>(sum));
    }
  }
}

// Calculates a moving average of `data` and stores the result in a TimeSeries.
// A data point is generated every `step` microseconds from `begin_time`
// to `end_time`. The value of each data point is the average of the data
// during the preceding `window_duration_us` microseconds.
template <typename DataType, typename ResultType, typename IterableType>
void MovingAverage(
    rtc::FunctionView<absl::optional<ResultType>(const DataType&)> fy,
    const IterableType& data_view,
    AnalyzerConfig config,
    TimeSeries* result) {
  size_t window_index_begin = 0;
  size_t window_index_end = 0;
  ResultType sum_in_window = 0;

  for (Timestamp t = config.begin_time_; t < config.end_time_ + config.step_;
       t += config.step_) {
    while (window_index_end < data_view.size() &&
           data_view[window_index_end].log_time() < t) {
      absl::optional<ResultType> value = fy(data_view[window_index_end]);
      if (value)
        sum_in_window += *value;
      ++window_index_end;
    }
    while (window_index_begin < data_view.size() &&
           data_view[window_index_begin].log_time() <
               t - config.window_duration_) {
      absl::optional<ResultType> value = fy(data_view[window_index_begin]);
      if (value)
        sum_in_window -= *value;
      ++window_index_begin;
    }
    float window_duration_s =
        static_cast<float>(config.window_duration_.us()) / kNumMicrosecsPerSec;
    float x = config.GetCallTimeSec(t);
    float y = sum_in_window / window_duration_s;
    result->points.emplace_back(x, y);
  }
}

}  // namespace webrtc

#endif  // RTC_TOOLS_RTC_EVENT_LOG_VISUALIZER_ANALYZER_COMMON_H_