summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/video/video_stream_encoder.cc
blob: c680fe12c8fa205e3c7cc4055ab0ded14c7bb2e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "video/video_stream_encoder.h"

#include <algorithm>
#include <array>
#include <limits>
#include <memory>
#include <numeric>
#include <utility>

#include "absl/algorithm/container.h"
#include "absl/cleanup/cleanup.h"
#include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/sequence_checker.h"
#include "api/task_queue/task_queue_base.h"
#include "api/video/encoded_image.h"
#include "api/video/i420_buffer.h"
#include "api/video/render_resolution.h"
#include "api/video/video_adaptation_reason.h"
#include "api/video/video_bitrate_allocator_factory.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_layers_allocation.h"
#include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_encoder.h"
#include "call/adaptation/resource_adaptation_processor.h"
#include "call/adaptation/video_source_restrictions.h"
#include "call/adaptation/video_stream_adapter.h"
#include "media/base/media_channel.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/svc/svc_rate_allocator.h"
#include "modules/video_coding/utility/vp8_constants.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/experiments/alr_experiment.h"
#include "rtc_base/experiments/encoder_info_settings.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/system/no_unique_address.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/metrics.h"
#include "video/adaptation/video_stream_encoder_resource_manager.h"
#include "video/alignment_adjuster.h"
#include "video/config/encoder_stream_factory.h"
#include "video/frame_cadence_adapter.h"

namespace webrtc {

namespace {

// Time interval for logging frame counts.
const int64_t kFrameLogIntervalMs = 60000;

// Time to keep a single cached pending frame in paused state.
const int64_t kPendingFrameTimeoutMs = 1000;

constexpr char kFrameDropperFieldTrial[] = "WebRTC-FrameDropper";

// TODO(bugs.webrtc.org/13572): Remove this kill switch after deploying the
// feature.
constexpr char kSwitchEncoderOnInitializationFailuresFieldTrial[] =
    "WebRTC-SwitchEncoderOnInitializationFailures";

const size_t kDefaultPayloadSize = 1440;

const int64_t kParameterUpdateIntervalMs = 1000;

// Animation is capped to 720p.
constexpr int kMaxAnimationPixels = 1280 * 720;

constexpr int kDefaultMinScreenSharebps = 1200000;

bool RequiresEncoderReset(const VideoCodec& prev_send_codec,
                          const VideoCodec& new_send_codec,
                          bool was_encode_called_since_last_initialization) {
  // Does not check max/minBitrate or maxFramerate.
  if (new_send_codec.codecType != prev_send_codec.codecType ||
      new_send_codec.width != prev_send_codec.width ||
      new_send_codec.height != prev_send_codec.height ||
      new_send_codec.qpMax != prev_send_codec.qpMax ||
      new_send_codec.numberOfSimulcastStreams !=
          prev_send_codec.numberOfSimulcastStreams ||
      new_send_codec.mode != prev_send_codec.mode ||
      new_send_codec.GetFrameDropEnabled() !=
          prev_send_codec.GetFrameDropEnabled()) {
    return true;
  }

  if (!was_encode_called_since_last_initialization &&
      (new_send_codec.startBitrate != prev_send_codec.startBitrate)) {
    // If start bitrate has changed reconfigure encoder only if encoding had not
    // yet started.
    return true;
  }

  switch (new_send_codec.codecType) {
    case kVideoCodecVP8:
      if (new_send_codec.VP8() != prev_send_codec.VP8()) {
        return true;
      }
      break;

    case kVideoCodecVP9:
      if (new_send_codec.VP9() != prev_send_codec.VP9()) {
        return true;
      }
      break;

    case kVideoCodecH264:
      if (new_send_codec.H264() != prev_send_codec.H264()) {
        return true;
      }
      break;

    default:
      break;
  }

  for (unsigned char i = 0; i < new_send_codec.numberOfSimulcastStreams; ++i) {
    if (!new_send_codec.simulcastStream[i].active) {
      // No need to reset when stream is inactive.
      continue;
    }

    if (!prev_send_codec.simulcastStream[i].active ||
        new_send_codec.simulcastStream[i].width !=
            prev_send_codec.simulcastStream[i].width ||
        new_send_codec.simulcastStream[i].height !=
            prev_send_codec.simulcastStream[i].height ||
        new_send_codec.simulcastStream[i].numberOfTemporalLayers !=
            prev_send_codec.simulcastStream[i].numberOfTemporalLayers ||
        new_send_codec.simulcastStream[i].qpMax !=
            prev_send_codec.simulcastStream[i].qpMax) {
      return true;
    }
  }

  if (new_send_codec.codecType == kVideoCodecVP9) {
    size_t num_spatial_layers = new_send_codec.VP9().numberOfSpatialLayers;
    for (unsigned char i = 0; i < num_spatial_layers; ++i) {
      if (!new_send_codec.spatialLayers[i].active) {
        // No need to reset when layer is inactive.
        continue;
      }
      if (new_send_codec.spatialLayers[i].width !=
              prev_send_codec.spatialLayers[i].width ||
          new_send_codec.spatialLayers[i].height !=
              prev_send_codec.spatialLayers[i].height ||
          new_send_codec.spatialLayers[i].numberOfTemporalLayers !=
              prev_send_codec.spatialLayers[i].numberOfTemporalLayers ||
          new_send_codec.spatialLayers[i].qpMax !=
              prev_send_codec.spatialLayers[i].qpMax ||
          !prev_send_codec.spatialLayers[i].active) {
        return true;
      }
    }
  }

  if (new_send_codec.GetScalabilityMode() !=
      prev_send_codec.GetScalabilityMode()) {
    return true;
  }

  return false;
}

std::array<uint8_t, 2> GetExperimentGroups() {
  std::array<uint8_t, 2> experiment_groups;
  absl::optional<AlrExperimentSettings> experiment_settings =
      AlrExperimentSettings::CreateFromFieldTrial(
          AlrExperimentSettings::kStrictPacingAndProbingExperimentName);
  if (experiment_settings) {
    experiment_groups[0] = experiment_settings->group_id + 1;
  } else {
    experiment_groups[0] = 0;
  }
  experiment_settings = AlrExperimentSettings::CreateFromFieldTrial(
      AlrExperimentSettings::kScreenshareProbingBweExperimentName);
  if (experiment_settings) {
    experiment_groups[1] = experiment_settings->group_id + 1;
  } else {
    experiment_groups[1] = 0;
  }
  return experiment_groups;
}

// Limit allocation across TLs in bitrate allocation according to number of TLs
// in EncoderInfo.
VideoBitrateAllocation UpdateAllocationFromEncoderInfo(
    const VideoBitrateAllocation& allocation,
    const VideoEncoder::EncoderInfo& encoder_info) {
  if (allocation.get_sum_bps() == 0) {
    return allocation;
  }
  VideoBitrateAllocation new_allocation;
  for (int si = 0; si < kMaxSpatialLayers; ++si) {
    if (encoder_info.fps_allocation[si].size() == 1 &&
        allocation.IsSpatialLayerUsed(si)) {
      // One TL is signalled to be used by the encoder. Do not distribute
      // bitrate allocation across TLs (use sum at ti:0).
      new_allocation.SetBitrate(si, 0, allocation.GetSpatialLayerSum(si));
    } else {
      for (int ti = 0; ti < kMaxTemporalStreams; ++ti) {
        if (allocation.HasBitrate(si, ti))
          new_allocation.SetBitrate(si, ti, allocation.GetBitrate(si, ti));
      }
    }
  }
  new_allocation.set_bw_limited(allocation.is_bw_limited());
  return new_allocation;
}

// Converts a VideoBitrateAllocation that contains allocated bitrate per layer,
// and an EncoderInfo that contains information about the actual encoder
// structure used by a codec. Stream structures can be Ksvc, Full SVC, Simulcast
// etc.
VideoLayersAllocation CreateVideoLayersAllocation(
    const VideoCodec& encoder_config,
    const VideoEncoder::RateControlParameters& current_rate,
    const VideoEncoder::EncoderInfo& encoder_info) {
  const VideoBitrateAllocation& target_bitrate = current_rate.target_bitrate;
  VideoLayersAllocation layers_allocation;
  if (target_bitrate.get_sum_bps() == 0) {
    return layers_allocation;
  }

  if (encoder_config.numberOfSimulcastStreams > 1) {
    layers_allocation.resolution_and_frame_rate_is_valid = true;
    for (int si = 0; si < encoder_config.numberOfSimulcastStreams; ++si) {
      if (!target_bitrate.IsSpatialLayerUsed(si) ||
          target_bitrate.GetSpatialLayerSum(si) == 0) {
        continue;
      }
      layers_allocation.active_spatial_layers.emplace_back();
      VideoLayersAllocation::SpatialLayer& spatial_layer =
          layers_allocation.active_spatial_layers.back();
      spatial_layer.width = encoder_config.simulcastStream[si].width;
      spatial_layer.height = encoder_config.simulcastStream[si].height;
      spatial_layer.rtp_stream_index = si;
      spatial_layer.spatial_id = 0;
      auto frame_rate_fraction =
          VideoEncoder::EncoderInfo::kMaxFramerateFraction;
      if (encoder_info.fps_allocation[si].size() == 1) {
        // One TL is signalled to be used by the encoder. Do not distribute
        // bitrate allocation across TLs (use sum at tl:0).
        spatial_layer.target_bitrate_per_temporal_layer.push_back(
            DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si)));
        frame_rate_fraction = encoder_info.fps_allocation[si][0];
      } else {  // Temporal layers are supported.
        uint32_t temporal_layer_bitrate_bps = 0;
        for (size_t ti = 0;
             ti < encoder_config.simulcastStream[si].numberOfTemporalLayers;
             ++ti) {
          if (!target_bitrate.HasBitrate(si, ti)) {
            break;
          }
          if (ti < encoder_info.fps_allocation[si].size()) {
            // Use frame rate of the top used temporal layer.
            frame_rate_fraction = encoder_info.fps_allocation[si][ti];
          }
          temporal_layer_bitrate_bps += target_bitrate.GetBitrate(si, ti);
          spatial_layer.target_bitrate_per_temporal_layer.push_back(
              DataRate::BitsPerSec(temporal_layer_bitrate_bps));
        }
      }
      // Encoder may drop frames internally if `maxFramerate` is set.
      spatial_layer.frame_rate_fps = std::min<uint8_t>(
          encoder_config.simulcastStream[si].maxFramerate,
          rtc::saturated_cast<uint8_t>(
              (current_rate.framerate_fps * frame_rate_fraction) /
              VideoEncoder::EncoderInfo::kMaxFramerateFraction));
    }
  } else if (encoder_config.numberOfSimulcastStreams == 1) {
    // TODO(bugs.webrtc.org/12000): Implement support for AV1 with
    // scalability.
    const bool higher_spatial_depend_on_lower =
        encoder_config.codecType == kVideoCodecVP9 &&
        encoder_config.VP9().interLayerPred == InterLayerPredMode::kOn;
    layers_allocation.resolution_and_frame_rate_is_valid = true;

    std::vector<DataRate> aggregated_spatial_bitrate(
        webrtc::kMaxTemporalStreams, DataRate::Zero());
    for (int si = 0; si < webrtc::kMaxSpatialLayers; ++si) {
      layers_allocation.resolution_and_frame_rate_is_valid = true;
      if (!target_bitrate.IsSpatialLayerUsed(si) ||
          target_bitrate.GetSpatialLayerSum(si) == 0) {
        break;
      }
      layers_allocation.active_spatial_layers.emplace_back();
      VideoLayersAllocation::SpatialLayer& spatial_layer =
          layers_allocation.active_spatial_layers.back();
      spatial_layer.width = encoder_config.spatialLayers[si].width;
      spatial_layer.height = encoder_config.spatialLayers[si].height;
      spatial_layer.rtp_stream_index = 0;
      spatial_layer.spatial_id = si;
      auto frame_rate_fraction =
          VideoEncoder::EncoderInfo::kMaxFramerateFraction;
      if (encoder_info.fps_allocation[si].size() == 1) {
        // One TL is signalled to be used by the encoder. Do not distribute
        // bitrate allocation across TLs (use sum at tl:0).
        DataRate aggregated_temporal_bitrate =
            DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si));
        aggregated_spatial_bitrate[0] += aggregated_temporal_bitrate;
        if (higher_spatial_depend_on_lower) {
          spatial_layer.target_bitrate_per_temporal_layer.push_back(
              aggregated_spatial_bitrate[0]);
        } else {
          spatial_layer.target_bitrate_per_temporal_layer.push_back(
              aggregated_temporal_bitrate);
        }
        frame_rate_fraction = encoder_info.fps_allocation[si][0];
      } else {  // Temporal layers are supported.
        DataRate aggregated_temporal_bitrate = DataRate::Zero();
        for (size_t ti = 0;
             ti < encoder_config.spatialLayers[si].numberOfTemporalLayers;
             ++ti) {
          if (!target_bitrate.HasBitrate(si, ti)) {
            break;
          }
          if (ti < encoder_info.fps_allocation[si].size()) {
            // Use frame rate of the top used temporal layer.
            frame_rate_fraction = encoder_info.fps_allocation[si][ti];
          }
          aggregated_temporal_bitrate +=
              DataRate::BitsPerSec(target_bitrate.GetBitrate(si, ti));
          if (higher_spatial_depend_on_lower) {
            spatial_layer.target_bitrate_per_temporal_layer.push_back(
                aggregated_temporal_bitrate + aggregated_spatial_bitrate[ti]);
            aggregated_spatial_bitrate[ti] += aggregated_temporal_bitrate;
          } else {
            spatial_layer.target_bitrate_per_temporal_layer.push_back(
                aggregated_temporal_bitrate);
          }
        }
      }
      // Encoder may drop frames internally if `maxFramerate` is set.
      spatial_layer.frame_rate_fps = std::min<uint8_t>(
          encoder_config.spatialLayers[si].maxFramerate,
          rtc::saturated_cast<uint8_t>(
              (current_rate.framerate_fps * frame_rate_fraction) /
              VideoEncoder::EncoderInfo::kMaxFramerateFraction));
    }
  }

  return layers_allocation;
}

VideoEncoder::EncoderInfo GetEncoderInfoWithBitrateLimitUpdate(
    const VideoEncoder::EncoderInfo& info,
    const VideoEncoderConfig& encoder_config,
    bool default_limits_allowed) {
  if (!default_limits_allowed || !info.resolution_bitrate_limits.empty() ||
      encoder_config.simulcast_layers.size() <= 1) {
    return info;
  }
  // Bitrate limits are not configured and more than one layer is used, use
  // the default limits (bitrate limits are not used for simulcast).
  VideoEncoder::EncoderInfo new_info = info;
  new_info.resolution_bitrate_limits =
      EncoderInfoSettings::GetDefaultSinglecastBitrateLimits(
          encoder_config.codec_type);
  return new_info;
}

int NumActiveStreams(const std::vector<VideoStream>& streams) {
  int num_active = 0;
  for (const auto& stream : streams) {
    if (stream.active)
      ++num_active;
  }
  return num_active;
}

void ApplyVp9BitrateLimits(const VideoEncoder::EncoderInfo& encoder_info,
                           const VideoEncoderConfig& encoder_config,
                           VideoCodec* codec) {
  if (codec->codecType != VideoCodecType::kVideoCodecVP9 ||
      encoder_config.simulcast_layers.size() <= 1 ||
      VideoStreamEncoderResourceManager::IsSimulcastOrMultipleSpatialLayers(
          encoder_config)) {
    // Resolution bitrate limits usage is restricted to singlecast.
    return;
  }

  // Get bitrate limits for active stream.
  absl::optional<uint32_t> pixels =
      VideoStreamAdapter::GetSingleActiveLayerPixels(*codec);
  if (!pixels.has_value()) {
    return;
  }
  absl::optional<VideoEncoder::ResolutionBitrateLimits> bitrate_limits =
      encoder_info.GetEncoderBitrateLimitsForResolution(*pixels);
  if (!bitrate_limits.has_value()) {
    return;
  }

  // Index for the active stream.
  absl::optional<size_t> index;
  for (size_t i = 0; i < encoder_config.simulcast_layers.size(); ++i) {
    if (encoder_config.simulcast_layers[i].active)
      index = i;
  }
  if (!index.has_value()) {
    return;
  }

  int min_bitrate_bps;
  if (encoder_config.simulcast_layers[*index].min_bitrate_bps <= 0) {
    min_bitrate_bps = bitrate_limits->min_bitrate_bps;
  } else {
    min_bitrate_bps =
        std::max(bitrate_limits->min_bitrate_bps,
                 encoder_config.simulcast_layers[*index].min_bitrate_bps);
  }
  int max_bitrate_bps;
  if (encoder_config.simulcast_layers[*index].max_bitrate_bps <= 0) {
    max_bitrate_bps = bitrate_limits->max_bitrate_bps;
  } else {
    max_bitrate_bps =
        std::min(bitrate_limits->max_bitrate_bps,
                 encoder_config.simulcast_layers[*index].max_bitrate_bps);
  }
  if (min_bitrate_bps >= max_bitrate_bps) {
    RTC_LOG(LS_WARNING) << "Bitrate limits not used, min_bitrate_bps "
                        << min_bitrate_bps << " >= max_bitrate_bps "
                        << max_bitrate_bps;
    return;
  }

  for (int i = 0; i < codec->VP9()->numberOfSpatialLayers; ++i) {
    if (codec->spatialLayers[i].active) {
      codec->spatialLayers[i].minBitrate = min_bitrate_bps / 1000;
      codec->spatialLayers[i].maxBitrate = max_bitrate_bps / 1000;
      codec->spatialLayers[i].targetBitrate =
          std::min(codec->spatialLayers[i].targetBitrate,
                   codec->spatialLayers[i].maxBitrate);
      break;
    }
  }
}

void ApplyEncoderBitrateLimitsIfSingleActiveStream(
    const VideoEncoder::EncoderInfo& encoder_info,
    const std::vector<VideoStream>& encoder_config_layers,
    std::vector<VideoStream>* streams) {
  // Apply limits if simulcast with one active stream (expect lowest).
  bool single_active_stream =
      streams->size() > 1 && NumActiveStreams(*streams) == 1 &&
      !streams->front().active && NumActiveStreams(encoder_config_layers) == 1;
  if (!single_active_stream) {
    return;
  }

  // Index for the active stream.
  size_t index = 0;
  for (size_t i = 0; i < encoder_config_layers.size(); ++i) {
    if (encoder_config_layers[i].active)
      index = i;
  }
  if (streams->size() < (index + 1) || !(*streams)[index].active) {
    return;
  }

  // Get bitrate limits for active stream.
  absl::optional<VideoEncoder::ResolutionBitrateLimits> encoder_bitrate_limits =
      encoder_info.GetEncoderBitrateLimitsForResolution(
          (*streams)[index].width * (*streams)[index].height);
  if (!encoder_bitrate_limits) {
    return;
  }

  // If bitrate limits are set by RtpEncodingParameters, use intersection.
  int min_bitrate_bps;
  if (encoder_config_layers[index].min_bitrate_bps <= 0) {
    min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps;
  } else {
    min_bitrate_bps = std::max(encoder_bitrate_limits->min_bitrate_bps,
                               (*streams)[index].min_bitrate_bps);
  }
  int max_bitrate_bps;
  if (encoder_config_layers[index].max_bitrate_bps <= 0) {
    max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps;
  } else {
    max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps,
                               (*streams)[index].max_bitrate_bps);
  }
  if (min_bitrate_bps >= max_bitrate_bps) {
    RTC_LOG(LS_WARNING) << "Encoder bitrate limits"
                        << " (min=" << encoder_bitrate_limits->min_bitrate_bps
                        << ", max=" << encoder_bitrate_limits->max_bitrate_bps
                        << ") do not intersect with stream limits"
                        << " (min=" << (*streams)[index].min_bitrate_bps
                        << ", max=" << (*streams)[index].max_bitrate_bps
                        << "). Encoder bitrate limits not used.";
    return;
  }

  (*streams)[index].min_bitrate_bps = min_bitrate_bps;
  (*streams)[index].max_bitrate_bps = max_bitrate_bps;
  (*streams)[index].target_bitrate_bps =
      std::min((*streams)[index].target_bitrate_bps,
               encoder_bitrate_limits->max_bitrate_bps);
}

absl::optional<int> ParseVp9LowTierCoreCountThreshold(
    const FieldTrialsView& trials) {
  FieldTrialFlag disable_low_tier("Disabled");
  FieldTrialParameter<int> max_core_count("max_core_count", 2);
  ParseFieldTrial({&disable_low_tier, &max_core_count},
                  trials.Lookup("WebRTC-VP9-LowTierOptimizations"));
  if (disable_low_tier.Get()) {
    return absl::nullopt;
  }
  return max_core_count.Get();
}

absl::optional<VideoSourceRestrictions> MergeRestrictions(
    const std::vector<absl::optional<VideoSourceRestrictions>>& list) {
  absl::optional<VideoSourceRestrictions> return_value;
  for (const auto& res : list) {
    if (!res) {
      continue;
    }
    if (!return_value) {
      return_value = *res;
      continue;
    }
    return_value->UpdateMin(*res);
  }
  return return_value;
}

}  //  namespace

VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings()
    : rate_control(),
      encoder_target(DataRate::Zero()),
      stable_encoder_target(DataRate::Zero()) {}

VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings(
    const VideoBitrateAllocation& bitrate,
    double framerate_fps,
    DataRate bandwidth_allocation,
    DataRate encoder_target,
    DataRate stable_encoder_target)
    : rate_control(bitrate, framerate_fps, bandwidth_allocation),
      encoder_target(encoder_target),
      stable_encoder_target(stable_encoder_target) {}

bool VideoStreamEncoder::EncoderRateSettings::operator==(
    const EncoderRateSettings& rhs) const {
  return rate_control == rhs.rate_control &&
         encoder_target == rhs.encoder_target &&
         stable_encoder_target == rhs.stable_encoder_target;
}

bool VideoStreamEncoder::EncoderRateSettings::operator!=(
    const EncoderRateSettings& rhs) const {
  return !(*this == rhs);
}

class VideoStreamEncoder::DegradationPreferenceManager
    : public DegradationPreferenceProvider {
 public:
  explicit DegradationPreferenceManager(
      VideoStreamAdapter* video_stream_adapter)
      : degradation_preference_(DegradationPreference::DISABLED),
        is_screenshare_(false),
        effective_degradation_preference_(DegradationPreference::DISABLED),
        video_stream_adapter_(video_stream_adapter) {
    RTC_DCHECK(video_stream_adapter_);
    sequence_checker_.Detach();
  }

  ~DegradationPreferenceManager() override = default;

  DegradationPreference degradation_preference() const override {
    RTC_DCHECK_RUN_ON(&sequence_checker_);
    return effective_degradation_preference_;
  }

  void SetDegradationPreference(DegradationPreference degradation_preference) {
    RTC_DCHECK_RUN_ON(&sequence_checker_);
    degradation_preference_ = degradation_preference;
    MaybeUpdateEffectiveDegradationPreference();
  }

  void SetIsScreenshare(bool is_screenshare) {
    RTC_DCHECK_RUN_ON(&sequence_checker_);
    is_screenshare_ = is_screenshare;
    MaybeUpdateEffectiveDegradationPreference();
  }

 private:
  void MaybeUpdateEffectiveDegradationPreference()
      RTC_RUN_ON(&sequence_checker_) {
    DegradationPreference effective_degradation_preference =
        (is_screenshare_ &&
         degradation_preference_ == DegradationPreference::BALANCED)
            ? DegradationPreference::MAINTAIN_RESOLUTION
            : degradation_preference_;

    if (effective_degradation_preference != effective_degradation_preference_) {
      effective_degradation_preference_ = effective_degradation_preference;
      video_stream_adapter_->SetDegradationPreference(
          effective_degradation_preference);
    }
  }

  RTC_NO_UNIQUE_ADDRESS SequenceChecker sequence_checker_;
  DegradationPreference degradation_preference_
      RTC_GUARDED_BY(&sequence_checker_);
  bool is_screenshare_ RTC_GUARDED_BY(&sequence_checker_);
  DegradationPreference effective_degradation_preference_
      RTC_GUARDED_BY(&sequence_checker_);
  VideoStreamAdapter* video_stream_adapter_ RTC_GUARDED_BY(&sequence_checker_);
};

VideoStreamEncoder::VideoStreamEncoder(
    Clock* clock,
    uint32_t number_of_cores,
    VideoStreamEncoderObserver* encoder_stats_observer,
    const VideoStreamEncoderSettings& settings,
    std::unique_ptr<OveruseFrameDetector> overuse_detector,
    std::unique_ptr<FrameCadenceAdapterInterface> frame_cadence_adapter,
    std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>
        encoder_queue,
    BitrateAllocationCallbackType allocation_cb_type,
    const FieldTrialsView& field_trials,
    webrtc::VideoEncoderFactory::EncoderSelectorInterface* encoder_selector)
    : field_trials_(field_trials),
      worker_queue_(TaskQueueBase::Current()),
      number_of_cores_(number_of_cores),
      sink_(nullptr),
      settings_(settings),
      allocation_cb_type_(allocation_cb_type),
      rate_control_settings_(RateControlSettings::ParseFromFieldTrials()),
      encoder_selector_from_constructor_(encoder_selector),
      encoder_selector_from_factory_(
          encoder_selector_from_constructor_
              ? nullptr
              : settings.encoder_factory->GetEncoderSelector()),
      encoder_selector_(encoder_selector_from_constructor_
                            ? encoder_selector_from_constructor_
                            : encoder_selector_from_factory_.get()),
      encoder_stats_observer_(encoder_stats_observer),
      cadence_callback_(*this),
      frame_cadence_adapter_(std::move(frame_cadence_adapter)),
      encoder_initialized_(false),
      max_framerate_(-1),
      pending_encoder_reconfiguration_(false),
      pending_encoder_creation_(false),
      crop_width_(0),
      crop_height_(0),
      encoder_target_bitrate_bps_(absl::nullopt),
      max_data_payload_length_(0),
      encoder_paused_and_dropped_frame_(false),
      was_encode_called_since_last_initialization_(false),
      encoder_failed_(false),
      clock_(clock),
      last_captured_timestamp_(0),
      delta_ntp_internal_ms_(clock_->CurrentNtpInMilliseconds() -
                             clock_->TimeInMilliseconds()),
      last_frame_log_ms_(clock_->TimeInMilliseconds()),
      captured_frame_count_(0),
      dropped_frame_cwnd_pushback_count_(0),
      dropped_frame_encoder_block_count_(0),
      pending_frame_post_time_us_(0),
      accumulated_update_rect_{0, 0, 0, 0},
      accumulated_update_rect_is_valid_(true),
      animation_start_time_(Timestamp::PlusInfinity()),
      cap_resolution_due_to_video_content_(false),
      expect_resize_state_(ExpectResizeState::kNoResize),
      fec_controller_override_(nullptr),
      force_disable_frame_dropper_(false),
      pending_frame_drops_(0),
      cwnd_frame_counter_(0),
      next_frame_types_(1, VideoFrameType::kVideoFrameDelta),
      frame_encode_metadata_writer_(this),
      experiment_groups_(GetExperimentGroups()),
      automatic_animation_detection_experiment_(
          ParseAutomatincAnimationDetectionFieldTrial()),
      input_state_provider_(encoder_stats_observer),
      video_stream_adapter_(
          std::make_unique<VideoStreamAdapter>(&input_state_provider_,
                                               encoder_stats_observer,
                                               field_trials)),
      degradation_preference_manager_(
          std::make_unique<DegradationPreferenceManager>(
              video_stream_adapter_.get())),
      adaptation_constraints_(),
      stream_resource_manager_(&input_state_provider_,
                               encoder_stats_observer,
                               clock_,
                               settings_.experiment_cpu_load_estimator,
                               std::move(overuse_detector),
                               degradation_preference_manager_.get(),
                               field_trials),
      video_source_sink_controller_(/*sink=*/frame_cadence_adapter_.get(),
                                    /*source=*/nullptr),
      default_limits_allowed_(
          !field_trials.IsEnabled("WebRTC-DefaultBitrateLimitsKillSwitch")),
      qp_parsing_allowed_(
          !field_trials.IsEnabled("WebRTC-QpParsingKillSwitch")),
      switch_encoder_on_init_failures_(!field_trials.IsDisabled(
          kSwitchEncoderOnInitializationFailuresFieldTrial)),
      vp9_low_tier_core_threshold_(
          ParseVp9LowTierCoreCountThreshold(field_trials)),
      encoder_queue_(std::move(encoder_queue)) {
  TRACE_EVENT0("webrtc", "VideoStreamEncoder::VideoStreamEncoder");
  RTC_DCHECK_RUN_ON(worker_queue_);
  RTC_DCHECK(encoder_stats_observer);
  RTC_DCHECK_GE(number_of_cores, 1);

  frame_cadence_adapter_->Initialize(&cadence_callback_);
  stream_resource_manager_.Initialize(encoder_queue_.Get());

  encoder_queue_.PostTask([this] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);

    resource_adaptation_processor_ =
        std::make_unique<ResourceAdaptationProcessor>(
            video_stream_adapter_.get());

    stream_resource_manager_.SetAdaptationProcessor(
        resource_adaptation_processor_.get(), video_stream_adapter_.get());
    resource_adaptation_processor_->AddResourceLimitationsListener(
        &stream_resource_manager_);
    video_stream_adapter_->AddRestrictionsListener(&stream_resource_manager_);
    video_stream_adapter_->AddRestrictionsListener(this);
    stream_resource_manager_.MaybeInitializePixelLimitResource();

    // Add the stream resource manager's resources to the processor.
    adaptation_constraints_ = stream_resource_manager_.AdaptationConstraints();
    for (auto* constraint : adaptation_constraints_) {
      video_stream_adapter_->AddAdaptationConstraint(constraint);
    }
  });
}

VideoStreamEncoder::~VideoStreamEncoder() {
  RTC_DCHECK_RUN_ON(worker_queue_);
  RTC_DCHECK(!video_source_sink_controller_.HasSource())
      << "Must call ::Stop() before destruction.";
}

void VideoStreamEncoder::Stop() {
  RTC_DCHECK_RUN_ON(worker_queue_);
  video_source_sink_controller_.SetSource(nullptr);

  rtc::Event shutdown_event;
  absl::Cleanup shutdown = [&shutdown_event] { shutdown_event.Set(); };
  encoder_queue_.PostTask(
      [this, shutdown = std::move(shutdown)] {
        RTC_DCHECK_RUN_ON(&encoder_queue_);
        if (resource_adaptation_processor_) {
          stream_resource_manager_.StopManagedResources();
          for (auto* constraint : adaptation_constraints_) {
            video_stream_adapter_->RemoveAdaptationConstraint(constraint);
          }
          for (auto& resource : additional_resources_) {
            stream_resource_manager_.RemoveResource(resource);
          }
          additional_resources_.clear();
          video_stream_adapter_->RemoveRestrictionsListener(this);
          video_stream_adapter_->RemoveRestrictionsListener(
              &stream_resource_manager_);
          resource_adaptation_processor_->RemoveResourceLimitationsListener(
              &stream_resource_manager_);
          stream_resource_manager_.SetAdaptationProcessor(nullptr, nullptr);
          resource_adaptation_processor_.reset();
        }
        rate_allocator_ = nullptr;
        ReleaseEncoder();
        encoder_ = nullptr;
        frame_cadence_adapter_ = nullptr;
      });
  shutdown_event.Wait(rtc::Event::kForever);
}

void VideoStreamEncoder::SetFecControllerOverride(
    FecControllerOverride* fec_controller_override) {
  encoder_queue_.PostTask([this, fec_controller_override] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    RTC_DCHECK(!fec_controller_override_);
    fec_controller_override_ = fec_controller_override;
    if (encoder_) {
      encoder_->SetFecControllerOverride(fec_controller_override_);
    }
  });
}

void VideoStreamEncoder::AddAdaptationResource(
    rtc::scoped_refptr<Resource> resource) {
  RTC_DCHECK_RUN_ON(worker_queue_);
  TRACE_EVENT0("webrtc", "VideoStreamEncoder::AddAdaptationResource");
  // Map any externally added resources as kCpu for the sake of stats reporting.
  // TODO(hbos): Make the manager map any unknown resources to kCpu and get rid
  // of this MapResourceToReason() call.
  TRACE_EVENT_ASYNC_BEGIN0(
      "webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this);
  encoder_queue_.PostTask([this, resource = std::move(resource)] {
    TRACE_EVENT_ASYNC_END0(
        "webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this);
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    additional_resources_.push_back(resource);
    stream_resource_manager_.AddResource(resource, VideoAdaptationReason::kCpu);
  });
}

std::vector<rtc::scoped_refptr<Resource>>
VideoStreamEncoder::GetAdaptationResources() {
  RTC_DCHECK_RUN_ON(worker_queue_);
  // In practice, this method is only called by tests to verify operations that
  // run on the encoder queue. So rather than force PostTask() operations to
  // be accompanied by an event and a `Wait()`, we'll use PostTask + Wait()
  // here.
  rtc::Event event;
  std::vector<rtc::scoped_refptr<Resource>> resources;
  encoder_queue_.PostTask([&] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    resources = resource_adaptation_processor_->GetResources();
    event.Set();
  });
  event.Wait(rtc::Event::kForever);
  return resources;
}

void VideoStreamEncoder::SetSource(
    rtc::VideoSourceInterface<VideoFrame>* source,
    const DegradationPreference& degradation_preference) {
  RTC_DCHECK_RUN_ON(worker_queue_);
  video_source_sink_controller_.SetSource(source);
  input_state_provider_.OnHasInputChanged(source);

  // This may trigger reconfiguring the QualityScaler on the encoder queue.
  encoder_queue_.PostTask([this, degradation_preference] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    degradation_preference_manager_->SetDegradationPreference(
        degradation_preference);
    stream_resource_manager_.SetDegradationPreferences(degradation_preference);
    if (encoder_) {
      stream_resource_manager_.ConfigureQualityScaler(
          encoder_->GetEncoderInfo());
      stream_resource_manager_.ConfigureBandwidthQualityScaler(
          encoder_->GetEncoderInfo());
    }
  });
}

void VideoStreamEncoder::SetSink(EncoderSink* sink, bool rotation_applied) {
  RTC_DCHECK_RUN_ON(worker_queue_);
  video_source_sink_controller_.SetRotationApplied(rotation_applied);
  video_source_sink_controller_.PushSourceSinkSettings();

  encoder_queue_.PostTask([this, sink] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    sink_ = sink;
  });
}

void VideoStreamEncoder::SetStartBitrate(int start_bitrate_bps) {
  encoder_queue_.PostTask([this, start_bitrate_bps] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    RTC_LOG(LS_INFO) << "SetStartBitrate " << start_bitrate_bps;
    encoder_target_bitrate_bps_ =
        start_bitrate_bps != 0 ? absl::optional<uint32_t>(start_bitrate_bps)
                               : absl::nullopt;
    stream_resource_manager_.SetStartBitrate(
        DataRate::BitsPerSec(start_bitrate_bps));
  });
}

void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config,
                                          size_t max_data_payload_length) {
  ConfigureEncoder(std::move(config), max_data_payload_length, nullptr);
}

void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config,
                                          size_t max_data_payload_length,
                                          SetParametersCallback callback) {
  RTC_DCHECK_RUN_ON(worker_queue_);
  encoder_queue_.PostTask(
      [this, config = std::move(config), max_data_payload_length,
       callback = std::move(callback)]() mutable {
        RTC_DCHECK_RUN_ON(&encoder_queue_);
        RTC_DCHECK(sink_);
        RTC_LOG(LS_INFO) << "ConfigureEncoder requested.";

        // Set up the frame cadence adapter according to if we're going to do
        // screencast. The final number of spatial layers is based on info
        // in `send_codec_`, which is computed based on incoming frame
        // dimensions which can only be determined later.
        //
        // Note: zero-hertz mode isn't enabled by this alone. Constraints also
        // have to be set up with min_fps = 0 and max_fps > 0.
        if (config.content_type == VideoEncoderConfig::ContentType::kScreen) {
          frame_cadence_adapter_->SetZeroHertzModeEnabled(
              FrameCadenceAdapterInterface::ZeroHertzModeParams{});
        } else {
          frame_cadence_adapter_->SetZeroHertzModeEnabled(absl::nullopt);
        }

        pending_encoder_creation_ =
            (!encoder_ || encoder_config_.video_format != config.video_format ||
             max_data_payload_length_ != max_data_payload_length);
        encoder_config_ = std::move(config);
        max_data_payload_length_ = max_data_payload_length;
        pending_encoder_reconfiguration_ = true;

        // Reconfigure the encoder now if the frame resolution is known.
        // Otherwise, the reconfiguration is deferred until the next frame to
        // minimize the number of reconfigurations. The codec configuration
        // depends on incoming video frame size.
        if (last_frame_info_) {
          if (callback) {
            encoder_configuration_callbacks_.push_back(std::move(callback));
          }

          ReconfigureEncoder();
        } else {
          webrtc::InvokeSetParametersCallback(callback, webrtc::RTCError::OK());
        }
      });
}

// We should reduce the number of 'full' ReconfigureEncoder(). If only need
// subset of it at runtime, consider handle it in
// VideoStreamEncoder::EncodeVideoFrame() when encoder_info_ != info.
void VideoStreamEncoder::ReconfigureEncoder() {
  // Running on the encoder queue.
  RTC_DCHECK(pending_encoder_reconfiguration_);

  bool encoder_reset_required = false;
  if (pending_encoder_creation_) {
    // Destroy existing encoder instance before creating a new one. Otherwise
    // attempt to create another instance will fail if encoder factory
    // supports only single instance of encoder of given type.
    encoder_.reset();

    encoder_ = settings_.encoder_factory->CreateVideoEncoder(
        encoder_config_.video_format);
    if (!encoder_) {
      RTC_LOG(LS_ERROR) << "CreateVideoEncoder failed, failing encoder format: "
                        << encoder_config_.video_format.ToString();
      RequestEncoderSwitch();
      return;
    }

    if (encoder_selector_) {
      encoder_selector_->OnCurrentEncoder(encoder_config_.video_format);
    }

    encoder_->SetFecControllerOverride(fec_controller_override_);

    encoder_reset_required = true;
  }

  // TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory
  // Possibly adjusts scale_resolution_down_by in `encoder_config_` to limit the
  // alignment value.
  AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors(
      encoder_->GetEncoderInfo(), &encoder_config_, absl::nullopt);

  std::vector<VideoStream> streams;
  if (encoder_config_.video_stream_factory) {
    // Note: only tests set their own EncoderStreamFactory...
    streams = encoder_config_.video_stream_factory->CreateEncoderStreams(
        last_frame_info_->width, last_frame_info_->height, encoder_config_);
  } else {
    rtc::scoped_refptr<VideoEncoderConfig::VideoStreamFactoryInterface>
        factory = rtc::make_ref_counted<cricket::EncoderStreamFactory>(
            encoder_config_.video_format.name, encoder_config_.max_qp,
            encoder_config_.content_type ==
                webrtc::VideoEncoderConfig::ContentType::kScreen,
            encoder_config_.legacy_conference_mode, encoder_->GetEncoderInfo(),
            MergeRestrictions({latest_restrictions_, animate_restrictions_}),
            &field_trials_);

    streams = factory->CreateEncoderStreams(
        last_frame_info_->width, last_frame_info_->height, encoder_config_);
  }

  // TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory
  // Get alignment when actual number of layers are known.
  int alignment = AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors(
      encoder_->GetEncoderInfo(), &encoder_config_, streams.size());

  // Check that the higher layers do not try to set number of temporal layers
  // to less than 1.
  // TODO(brandtr): Get rid of the wrapping optional as it serves no purpose
  // at this layer.
#if RTC_DCHECK_IS_ON
  for (const auto& stream : streams) {
    RTC_DCHECK_GE(stream.num_temporal_layers.value_or(1), 1);
  }
#endif

  // TODO(ilnik): If configured resolution is significantly less than provided,
  // e.g. because there are not enough SSRCs for all simulcast streams,
  // signal new resolutions via SinkWants to video source.

  // Stream dimensions may be not equal to given because of a simulcast
  // restrictions.
  auto highest_stream = absl::c_max_element(
      streams, [](const webrtc::VideoStream& a, const webrtc::VideoStream& b) {
        return std::tie(a.width, a.height) < std::tie(b.width, b.height);
      });
  int highest_stream_width = static_cast<int>(highest_stream->width);
  int highest_stream_height = static_cast<int>(highest_stream->height);
  // Dimension may be reduced to be, e.g. divisible by 4.
  RTC_CHECK_GE(last_frame_info_->width, highest_stream_width);
  RTC_CHECK_GE(last_frame_info_->height, highest_stream_height);
  crop_width_ = last_frame_info_->width - highest_stream_width;
  crop_height_ = last_frame_info_->height - highest_stream_height;

  if (!encoder_->GetEncoderInfo().is_qp_trusted.value_or(true)) {
    // when qp is not trusted, we priorities to using the
    // |resolution_bitrate_limits| provided by the decoder.
    const std::vector<VideoEncoder::ResolutionBitrateLimits>& bitrate_limits =
        encoder_->GetEncoderInfo().resolution_bitrate_limits.empty()
            ? EncoderInfoSettings::
                  GetDefaultSinglecastBitrateLimitsWhenQpIsUntrusted()
            : encoder_->GetEncoderInfo().resolution_bitrate_limits;

    // For BandwidthQualityScaler, its implement based on a certain pixel_count
    // correspond a certain bps interval. In fact, WebRTC default max_bps is
    // 2500Kbps when width * height > 960 * 540. For example, we assume:
    // 1.the camera support 1080p.
    // 2.ResolutionBitrateLimits set 720p bps interval is [1500Kbps,2000Kbps].
    // 3.ResolutionBitrateLimits set 1080p bps interval is [2000Kbps,2500Kbps].
    // We will never be stable at 720p due to actual encoding bps of 720p and
    // 1080p are both 2500Kbps. So it is necessary to do a linear interpolation
    // to get a certain bitrate for certain pixel_count. It also doesn't work
    // for 960*540 and 640*520, we will nerver be stable at 640*520 due to their
    // |target_bitrate_bps| are both 2000Kbps.
    absl::optional<VideoEncoder::ResolutionBitrateLimits>
        qp_untrusted_bitrate_limit = EncoderInfoSettings::
            GetSinglecastBitrateLimitForResolutionWhenQpIsUntrusted(
                last_frame_info_->width * last_frame_info_->height,
                bitrate_limits);

    if (qp_untrusted_bitrate_limit) {
      // bandwidth_quality_scaler is only used for singlecast.
      if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) {
        streams.back().min_bitrate_bps =
            qp_untrusted_bitrate_limit->min_bitrate_bps;
        streams.back().max_bitrate_bps =
            qp_untrusted_bitrate_limit->max_bitrate_bps;
        // If it is screen share mode, the minimum value of max_bitrate should
        // be greater than/equal to 1200kbps.
        if (encoder_config_.content_type ==
            VideoEncoderConfig::ContentType::kScreen) {
          streams.back().max_bitrate_bps = std::max(
              streams.back().max_bitrate_bps, kDefaultMinScreenSharebps);
        }
        streams.back().target_bitrate_bps =
            qp_untrusted_bitrate_limit->max_bitrate_bps;
      }
    }
  } else {
    absl::optional<VideoEncoder::ResolutionBitrateLimits>
        encoder_bitrate_limits =
            encoder_->GetEncoderInfo().GetEncoderBitrateLimitsForResolution(
                last_frame_info_->width * last_frame_info_->height);

    if (encoder_bitrate_limits) {
      if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) {
        // Bitrate limits can be set by app (in SDP or RtpEncodingParameters)
        // or/and can be provided by encoder. In presence of both set of
        // limits, the final set is derived as their intersection.
        int min_bitrate_bps;
        if (encoder_config_.simulcast_layers.empty() ||
            encoder_config_.simulcast_layers[0].min_bitrate_bps <= 0) {
          min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps;
        } else {
          min_bitrate_bps = std::max(encoder_bitrate_limits->min_bitrate_bps,
                                     streams.back().min_bitrate_bps);
        }

        int max_bitrate_bps;
        // We don't check encoder_config_.simulcast_layers[0].max_bitrate_bps
        // here since encoder_config_.max_bitrate_bps is derived from it (as
        // well as from other inputs).
        if (encoder_config_.max_bitrate_bps <= 0) {
          max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps;
        } else {
          max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps,
                                     streams.back().max_bitrate_bps);
        }

        if (min_bitrate_bps < max_bitrate_bps) {
          streams.back().min_bitrate_bps = min_bitrate_bps;
          streams.back().max_bitrate_bps = max_bitrate_bps;
          streams.back().target_bitrate_bps =
              std::min(streams.back().target_bitrate_bps,
                       encoder_bitrate_limits->max_bitrate_bps);
        } else {
          RTC_LOG(LS_WARNING)
              << "Bitrate limits provided by encoder"
              << " (min=" << encoder_bitrate_limits->min_bitrate_bps
              << ", max=" << encoder_bitrate_limits->max_bitrate_bps
              << ") do not intersect with limits set by app"
              << " (min=" << streams.back().min_bitrate_bps
              << ", max=" << encoder_config_.max_bitrate_bps
              << "). The app bitrate limits will be used.";
        }
      }
    }
  }

  ApplyEncoderBitrateLimitsIfSingleActiveStream(
      GetEncoderInfoWithBitrateLimitUpdate(
          encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_),
      encoder_config_.simulcast_layers, &streams);

  VideoCodec codec;
  if (!VideoCodecInitializer::SetupCodec(encoder_config_, streams, &codec)) {
    RTC_LOG(LS_ERROR) << "Failed to create encoder configuration.";
  }

  if (encoder_config_.codec_type == kVideoCodecVP9) {
    // Spatial layers configuration might impose some parity restrictions,
    // thus some cropping might be needed.
    crop_width_ = last_frame_info_->width - codec.width;
    crop_height_ = last_frame_info_->height - codec.height;
    ApplyVp9BitrateLimits(GetEncoderInfoWithBitrateLimitUpdate(
                              encoder_->GetEncoderInfo(), encoder_config_,
                              default_limits_allowed_),
                          encoder_config_, &codec);
  }

  char log_stream_buf[4 * 1024];
  rtc::SimpleStringBuilder log_stream(log_stream_buf);
  log_stream << "ReconfigureEncoder:\n";
  log_stream << "Simulcast streams:\n";
  for (size_t i = 0; i < codec.numberOfSimulcastStreams; ++i) {
    log_stream << i << ": " << codec.simulcastStream[i].width << "x"
               << codec.simulcastStream[i].height
               << " min_kbps: " << codec.simulcastStream[i].minBitrate
               << " target_kbps: " << codec.simulcastStream[i].targetBitrate
               << " max_kbps: " << codec.simulcastStream[i].maxBitrate
               << " max_fps: " << codec.simulcastStream[i].maxFramerate
               << " max_qp: " << codec.simulcastStream[i].qpMax
               << " num_tl: " << codec.simulcastStream[i].numberOfTemporalLayers
               << " active: "
               << (codec.simulcastStream[i].active ? "true" : "false") << "\n";
  }
  if (encoder_config_.codec_type == kVideoCodecVP9) {
    size_t num_spatial_layers = codec.VP9()->numberOfSpatialLayers;
    log_stream << "Spatial layers:\n";
    for (size_t i = 0; i < num_spatial_layers; ++i) {
      log_stream << i << ": " << codec.spatialLayers[i].width << "x"
                 << codec.spatialLayers[i].height
                 << " min_kbps: " << codec.spatialLayers[i].minBitrate
                 << " target_kbps: " << codec.spatialLayers[i].targetBitrate
                 << " max_kbps: " << codec.spatialLayers[i].maxBitrate
                 << " max_fps: " << codec.spatialLayers[i].maxFramerate
                 << " max_qp: " << codec.spatialLayers[i].qpMax
                 << " num_tl: " << codec.spatialLayers[i].numberOfTemporalLayers
                 << " active: "
                 << (codec.spatialLayers[i].active ? "true" : "false") << "\n";
    }
  }
  RTC_LOG(LS_INFO) << log_stream.str();

  codec.startBitrate = std::max(encoder_target_bitrate_bps_.value_or(0) / 1000,
                                codec.minBitrate);
  codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate);
  codec.expect_encode_from_texture = last_frame_info_->is_texture;
  // Make sure the start bit rate is sane...
  RTC_DCHECK_LE(codec.startBitrate, 1000000);
  max_framerate_ = codec.maxFramerate;

  // Inform source about max configured framerate,
  // requested_resolution and which layers are active.
  int max_framerate = 0;
  // Is any layer active.
  bool active = false;
  // The max requested_resolution.
  absl::optional<rtc::VideoSinkWants::FrameSize> requested_resolution;
  for (const auto& stream : streams) {
    max_framerate = std::max(stream.max_framerate, max_framerate);
    active |= stream.active;
    // Note: we propagate the highest requested_resolution regardless
    // if layer is active or not.
    if (stream.requested_resolution) {
      if (!requested_resolution) {
        requested_resolution.emplace(stream.requested_resolution->width,
                                     stream.requested_resolution->height);
      } else {
        requested_resolution.emplace(
            std::max(stream.requested_resolution->width,
                     requested_resolution->width),
            std::max(stream.requested_resolution->height,
                     requested_resolution->height));
      }
    }
  }

  // The resolutions that we're actually encoding with.
  std::vector<rtc::VideoSinkWants::FrameSize> encoder_resolutions;
  // TODO(hbos): For the case of SVC, also make use of `codec.spatialLayers`.
  // For now, SVC layers are handled by the VP9 encoder.
  for (const auto& simulcastStream : codec.simulcastStream) {
    if (!simulcastStream.active)
      continue;
    encoder_resolutions.emplace_back(simulcastStream.width,
                                     simulcastStream.height);
  }

  worker_queue_->PostTask(SafeTask(
      task_safety_.flag(),
      [this, max_framerate, alignment,
       encoder_resolutions = std::move(encoder_resolutions),
       requested_resolution = std::move(requested_resolution), active]() {
        RTC_DCHECK_RUN_ON(worker_queue_);
        if (max_framerate !=
                video_source_sink_controller_.frame_rate_upper_limit() ||
            alignment != video_source_sink_controller_.resolution_alignment() ||
            encoder_resolutions !=
                video_source_sink_controller_.resolutions() ||
            (video_source_sink_controller_.requested_resolution() !=
             requested_resolution) ||
            (video_source_sink_controller_.active() != active)) {
          video_source_sink_controller_.SetFrameRateUpperLimit(max_framerate);
          video_source_sink_controller_.SetResolutionAlignment(alignment);
          video_source_sink_controller_.SetResolutions(
              std::move(encoder_resolutions));
          video_source_sink_controller_.SetRequestedResolution(
              requested_resolution);
          video_source_sink_controller_.SetActive(active);
          video_source_sink_controller_.PushSourceSinkSettings();
        }
      }));

  rate_allocator_ =
      settings_.bitrate_allocator_factory->CreateVideoBitrateAllocator(codec);
  rate_allocator_->SetLegacyConferenceMode(
      encoder_config_.legacy_conference_mode);

  // Reset (release existing encoder) if one exists and anything except
  // start bitrate or max framerate has changed.
  if (!encoder_reset_required) {
    encoder_reset_required = RequiresEncoderReset(
        send_codec_, codec, was_encode_called_since_last_initialization_);
  }

  if (codec.codecType == VideoCodecType::kVideoCodecVP9 &&
      number_of_cores_ <= vp9_low_tier_core_threshold_.value_or(0)) {
    codec.SetVideoEncoderComplexity(VideoCodecComplexity::kComplexityLow);
  }

  send_codec_ = codec;

  // Keep the same encoder, as long as the video_format is unchanged.
  // Encoder creation block is split in two since EncoderInfo needed to start
  // CPU adaptation with the correct settings should be polled after
  // encoder_->InitEncode().
  if (encoder_reset_required) {
    ReleaseEncoder();
    const size_t max_data_payload_length = max_data_payload_length_ > 0
                                               ? max_data_payload_length_
                                               : kDefaultPayloadSize;
    if (encoder_->InitEncode(
            &send_codec_,
            VideoEncoder::Settings(settings_.capabilities, number_of_cores_,
                                   max_data_payload_length)) != 0) {
      RTC_LOG(LS_ERROR) << "Failed to initialize the encoder associated with "
                           "codec type: "
                        << CodecTypeToPayloadString(send_codec_.codecType)
                        << " (" << send_codec_.codecType << ")";
      ReleaseEncoder();
    } else {
      encoder_initialized_ = true;
      encoder_->RegisterEncodeCompleteCallback(this);
      frame_encode_metadata_writer_.OnEncoderInit(send_codec_);
      next_frame_types_.clear();
      next_frame_types_.resize(
          std::max(static_cast<int>(codec.numberOfSimulcastStreams), 1),
          VideoFrameType::kVideoFrameKey);
    }

    frame_encode_metadata_writer_.Reset();
    last_encode_info_ms_ = absl::nullopt;
    was_encode_called_since_last_initialization_ = false;
  }

  // Inform dependents of updated encoder settings.
  OnEncoderSettingsChanged();

  if (encoder_initialized_) {
    RTC_LOG(LS_VERBOSE) << " max bitrate " << codec.maxBitrate
                        << " start bitrate " << codec.startBitrate
                        << " max frame rate " << codec.maxFramerate
                        << " max payload size " << max_data_payload_length_;
  } else {
    RTC_LOG(LS_ERROR) << "Failed to configure encoder.";
    rate_allocator_ = nullptr;
  }

  if (pending_encoder_creation_) {
    stream_resource_manager_.ConfigureEncodeUsageResource();
    pending_encoder_creation_ = false;
  }

  int num_layers;
  if (codec.codecType == kVideoCodecVP8) {
    num_layers = codec.VP8()->numberOfTemporalLayers;
  } else if (codec.codecType == kVideoCodecVP9) {
    num_layers = codec.VP9()->numberOfTemporalLayers;
  } else if (codec.codecType == kVideoCodecH264) {
    num_layers = codec.H264()->numberOfTemporalLayers;
  } else if (codec.codecType == kVideoCodecGeneric &&
             codec.numberOfSimulcastStreams > 0) {
    // This is mainly for unit testing, disabling frame dropping.
    // TODO(sprang): Add a better way to disable frame dropping.
    num_layers = codec.simulcastStream[0].numberOfTemporalLayers;
  } else {
    num_layers = 1;
  }

  frame_dropper_.Reset();
  frame_dropper_.SetRates(codec.startBitrate, max_framerate_);
  // Force-disable frame dropper if either:
  //  * We have screensharing with layers.
  //  * "WebRTC-FrameDropper" field trial is "Disabled".
  force_disable_frame_dropper_ =
      field_trials_.IsDisabled(kFrameDropperFieldTrial) ||
      (num_layers > 1 && codec.mode == VideoCodecMode::kScreensharing);

  VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo();
  if (rate_control_settings_.UseEncoderBitrateAdjuster()) {
    bitrate_adjuster_ = std::make_unique<EncoderBitrateAdjuster>(codec);
    bitrate_adjuster_->OnEncoderInfo(info);
  }

  if (rate_allocator_ && last_encoder_rate_settings_) {
    // We have a new rate allocator instance and already configured target
    // bitrate. Update the rate allocation and notify observers.
    // We must invalidate the last_encoder_rate_settings_ to ensure
    // the changes get propagated to all listeners.
    EncoderRateSettings rate_settings = *last_encoder_rate_settings_;
    last_encoder_rate_settings_.reset();
    rate_settings.rate_control.framerate_fps = GetInputFramerateFps();

    SetEncoderRates(UpdateBitrateAllocation(rate_settings));
  }

  encoder_stats_observer_->OnEncoderReconfigured(encoder_config_, streams);

  pending_encoder_reconfiguration_ = false;

  bool is_svc = false;
  // Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9
  // and leave only one stream containing all necessary information.
  if (encoder_config_.codec_type == kVideoCodecVP9) {
    // Lower max bitrate to the level codec actually can produce.
    streams[0].max_bitrate_bps =
        std::min(streams[0].max_bitrate_bps,
                 SvcRateAllocator::GetMaxBitrate(codec).bps<int>());
    streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000;
    // target_bitrate_bps specifies the maximum padding bitrate.
    streams[0].target_bitrate_bps =
        SvcRateAllocator::GetPaddingBitrate(codec).bps<int>();
    streams[0].width = streams.back().width;
    streams[0].height = streams.back().height;
    is_svc = codec.VP9()->numberOfSpatialLayers > 1;
    streams.resize(1);
  }

  sink_->OnEncoderConfigurationChanged(
      std::move(streams), is_svc, encoder_config_.content_type,
      encoder_config_.min_transmit_bitrate_bps);

  stream_resource_manager_.ConfigureQualityScaler(info);
  stream_resource_manager_.ConfigureBandwidthQualityScaler(info);

  webrtc::RTCError encoder_configuration_result = webrtc::RTCError::OK();

  if (!encoder_initialized_) {
    RTC_LOG(LS_WARNING) << "Failed to initialize "
                        << CodecTypeToPayloadString(codec.codecType)
                        << " encoder."
                        << "switch_encoder_on_init_failures: "
                        << switch_encoder_on_init_failures_;

    if (switch_encoder_on_init_failures_) {
      RequestEncoderSwitch();
    } else {
      encoder_configuration_result =
          webrtc::RTCError(RTCErrorType::UNSUPPORTED_OPERATION);
    }
  }

  if (!encoder_configuration_callbacks_.empty()) {
    for (auto& callback : encoder_configuration_callbacks_) {
      webrtc::InvokeSetParametersCallback(callback,
                                          encoder_configuration_result);
    }
    encoder_configuration_callbacks_.clear();
  }
}

void VideoStreamEncoder::RequestEncoderSwitch() {
  bool is_encoder_switching_supported =
      settings_.encoder_switch_request_callback != nullptr;
  bool is_encoder_selector_available = encoder_selector_ != nullptr;

  RTC_LOG(LS_INFO) << "RequestEncoderSwitch."
                   << " is_encoder_selector_available: "
                   << is_encoder_selector_available
                   << " is_encoder_switching_supported: "
                   << is_encoder_switching_supported;

  if (!is_encoder_switching_supported) {
    return;
  }

  // If encoder selector is available, switch to the encoder it prefers.
  // Otherwise try switching to VP8 (default WebRTC codec).
  absl::optional<SdpVideoFormat> preferred_fallback_encoder;
  if (is_encoder_selector_available) {
    preferred_fallback_encoder = encoder_selector_->OnEncoderBroken();
  }

  if (!preferred_fallback_encoder) {
    preferred_fallback_encoder =
        SdpVideoFormat(CodecTypeToPayloadString(kVideoCodecVP8));
  }

  settings_.encoder_switch_request_callback->RequestEncoderSwitch(
      *preferred_fallback_encoder, /*allow_default_fallback=*/true);
}

void VideoStreamEncoder::OnEncoderSettingsChanged() {
  EncoderSettings encoder_settings(
      GetEncoderInfoWithBitrateLimitUpdate(
          encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_),
      encoder_config_.Copy(), send_codec_);
  stream_resource_manager_.SetEncoderSettings(encoder_settings);
  input_state_provider_.OnEncoderSettingsChanged(encoder_settings);
  bool is_screenshare = encoder_settings.encoder_config().content_type ==
                        VideoEncoderConfig::ContentType::kScreen;
  degradation_preference_manager_->SetIsScreenshare(is_screenshare);
  if (is_screenshare) {
    frame_cadence_adapter_->SetZeroHertzModeEnabled(
        FrameCadenceAdapterInterface::ZeroHertzModeParams{
            send_codec_.numberOfSimulcastStreams});
  }
}

void VideoStreamEncoder::OnFrame(Timestamp post_time,
                                 int frames_scheduled_for_processing,
                                 const VideoFrame& video_frame) {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  VideoFrame incoming_frame = video_frame;

  // In some cases, e.g., when the frame from decoder is fed to encoder,
  // the timestamp may be set to the future. As the encoding pipeline assumes
  // capture time to be less than present time, we should reset the capture
  // timestamps here. Otherwise there may be issues with RTP send stream.
  if (incoming_frame.timestamp_us() > post_time.us())
    incoming_frame.set_timestamp_us(post_time.us());

  // Capture time may come from clock with an offset and drift from clock_.
  int64_t capture_ntp_time_ms;
  if (video_frame.ntp_time_ms() > 0) {
    capture_ntp_time_ms = video_frame.ntp_time_ms();
  } else if (video_frame.render_time_ms() != 0) {
    capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_;
  } else {
    capture_ntp_time_ms = post_time.ms() + delta_ntp_internal_ms_;
  }
  incoming_frame.set_ntp_time_ms(capture_ntp_time_ms);

  // Convert NTP time, in ms, to RTP timestamp.
  const int kMsToRtpTimestamp = 90;
  incoming_frame.set_timestamp(
      kMsToRtpTimestamp * static_cast<uint32_t>(incoming_frame.ntp_time_ms()));

  if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) {
    // We don't allow the same capture time for two frames, drop this one.
    RTC_LOG(LS_WARNING) << "Same/old NTP timestamp ("
                        << incoming_frame.ntp_time_ms()
                        << " <= " << last_captured_timestamp_
                        << ") for incoming frame. Dropping.";
    encoder_queue_.PostTask([this, incoming_frame]() {
      RTC_DCHECK_RUN_ON(&encoder_queue_);
      accumulated_update_rect_.Union(incoming_frame.update_rect());
      accumulated_update_rect_is_valid_ &= incoming_frame.has_update_rect();
    });
    return;
  }

  bool log_stats = false;
  if (post_time.ms() - last_frame_log_ms_ > kFrameLogIntervalMs) {
    last_frame_log_ms_ = post_time.ms();
    log_stats = true;
  }

  last_captured_timestamp_ = incoming_frame.ntp_time_ms();

  encoder_stats_observer_->OnIncomingFrame(incoming_frame.width(),
                                           incoming_frame.height());
  ++captured_frame_count_;
  CheckForAnimatedContent(incoming_frame, post_time.us());
  bool cwnd_frame_drop =
      cwnd_frame_drop_interval_ &&
      (cwnd_frame_counter_++ % cwnd_frame_drop_interval_.value() == 0);
  if (frames_scheduled_for_processing == 1 && !cwnd_frame_drop) {
    MaybeEncodeVideoFrame(incoming_frame, post_time.us());
  } else {
    if (cwnd_frame_drop) {
      // Frame drop by congestion window pushback. Do not encode this
      // frame.
      ++dropped_frame_cwnd_pushback_count_;
      encoder_stats_observer_->OnFrameDropped(
          VideoStreamEncoderObserver::DropReason::kCongestionWindow);
    } else {
      // There is a newer frame in flight. Do not encode this frame.
      RTC_LOG(LS_VERBOSE)
          << "Incoming frame dropped due to that the encoder is blocked.";
      ++dropped_frame_encoder_block_count_;
      encoder_stats_observer_->OnFrameDropped(
          VideoStreamEncoderObserver::DropReason::kEncoderQueue);
    }
    accumulated_update_rect_.Union(incoming_frame.update_rect());
    accumulated_update_rect_is_valid_ &= incoming_frame.has_update_rect();
  }
  if (log_stats) {
    RTC_LOG(LS_INFO) << "Number of frames: captured " << captured_frame_count_
                     << ", dropped (due to congestion window pushback) "
                     << dropped_frame_cwnd_pushback_count_
                     << ", dropped (due to encoder blocked) "
                     << dropped_frame_encoder_block_count_ << ", interval_ms "
                     << kFrameLogIntervalMs;
    captured_frame_count_ = 0;
    dropped_frame_cwnd_pushback_count_ = 0;
    dropped_frame_encoder_block_count_ = 0;
  }
}

void VideoStreamEncoder::OnDiscardedFrame() {
  encoder_stats_observer_->OnFrameDropped(
      VideoStreamEncoderObserver::DropReason::kSource);
}

bool VideoStreamEncoder::EncoderPaused() const {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  // Pause video if paused by caller or as long as the network is down or the
  // pacer queue has grown too large in buffered mode.
  // If the pacer queue has grown too large or the network is down,
  // `last_encoder_rate_settings_->encoder_target` will be 0.
  return !last_encoder_rate_settings_ ||
         last_encoder_rate_settings_->encoder_target == DataRate::Zero();
}

void VideoStreamEncoder::TraceFrameDropStart() {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  // Start trace event only on the first frame after encoder is paused.
  if (!encoder_paused_and_dropped_frame_) {
    TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this);
  }
  encoder_paused_and_dropped_frame_ = true;
}

void VideoStreamEncoder::TraceFrameDropEnd() {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  // End trace event on first frame after encoder resumes, if frame was dropped.
  if (encoder_paused_and_dropped_frame_) {
    TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this);
  }
  encoder_paused_and_dropped_frame_ = false;
}

VideoStreamEncoder::EncoderRateSettings
VideoStreamEncoder::UpdateBitrateAllocation(
    const EncoderRateSettings& rate_settings) {
  VideoBitrateAllocation new_allocation;
  // Only call allocators if bitrate > 0 (ie, not suspended), otherwise they
  // might cap the bitrate to the min bitrate configured.
  if (rate_allocator_ && rate_settings.encoder_target > DataRate::Zero()) {
    new_allocation = rate_allocator_->Allocate(VideoBitrateAllocationParameters(
        rate_settings.encoder_target, rate_settings.stable_encoder_target,
        rate_settings.rate_control.framerate_fps));
  }

  EncoderRateSettings new_rate_settings = rate_settings;
  new_rate_settings.rate_control.target_bitrate = new_allocation;
  new_rate_settings.rate_control.bitrate = new_allocation;
  // VideoBitrateAllocator subclasses may allocate a bitrate higher than the
  // target in order to sustain the min bitrate of the video codec. In this
  // case, make sure the bandwidth allocation is at least equal the allocation
  // as that is part of the document contract for that field.
  new_rate_settings.rate_control.bandwidth_allocation =
      std::max(new_rate_settings.rate_control.bandwidth_allocation,
               DataRate::BitsPerSec(
                   new_rate_settings.rate_control.bitrate.get_sum_bps()));

  if (bitrate_adjuster_) {
    VideoBitrateAllocation adjusted_allocation =
        bitrate_adjuster_->AdjustRateAllocation(new_rate_settings.rate_control);
    RTC_LOG(LS_VERBOSE) << "Adjusting allocation, fps = "
                        << rate_settings.rate_control.framerate_fps << ", from "
                        << new_allocation.ToString() << ", to "
                        << adjusted_allocation.ToString();
    new_rate_settings.rate_control.bitrate = adjusted_allocation;
  }

  return new_rate_settings;
}

uint32_t VideoStreamEncoder::GetInputFramerateFps() {
  const uint32_t default_fps = max_framerate_ != -1 ? max_framerate_ : 30;

  // This method may be called after we cleared out the frame_cadence_adapter_
  // reference in Stop(). In such a situation it's probably not important with a
  // decent estimate.
  absl::optional<uint32_t> input_fps =
      frame_cadence_adapter_ ? frame_cadence_adapter_->GetInputFrameRateFps()
                             : absl::nullopt;
  if (!input_fps || *input_fps == 0) {
    return default_fps;
  }
  return *input_fps;
}

void VideoStreamEncoder::SetEncoderRates(
    const EncoderRateSettings& rate_settings) {
  RTC_DCHECK_GT(rate_settings.rate_control.framerate_fps, 0.0);
  bool rate_control_changed =
      (!last_encoder_rate_settings_.has_value() ||
       last_encoder_rate_settings_->rate_control != rate_settings.rate_control);
  // For layer allocation signal we care only about the target bitrate (not the
  // adjusted one) and the target fps.
  bool layer_allocation_changed =
      !last_encoder_rate_settings_.has_value() ||
      last_encoder_rate_settings_->rate_control.target_bitrate !=
          rate_settings.rate_control.target_bitrate ||
      last_encoder_rate_settings_->rate_control.framerate_fps !=
          rate_settings.rate_control.framerate_fps;

  if (last_encoder_rate_settings_ != rate_settings) {
    last_encoder_rate_settings_ = rate_settings;
  }

  if (!encoder_)
    return;

  // Make the cadence adapter know if streams were disabled.
  for (int spatial_index = 0;
       spatial_index != send_codec_.numberOfSimulcastStreams; ++spatial_index) {
    frame_cadence_adapter_->UpdateLayerStatus(
        spatial_index,
        /*enabled=*/rate_settings.rate_control.target_bitrate
                .GetSpatialLayerSum(spatial_index) > 0);
  }

  // `bitrate_allocation` is 0 it means that the network is down or the send
  // pacer is full. We currently don't pass this on to the encoder since it is
  // unclear how current encoder implementations behave when given a zero target
  // bitrate.
  // TODO(perkj): Make sure all known encoder implementations handle zero
  // target bitrate and remove this check.
  if (rate_settings.rate_control.bitrate.get_sum_bps() == 0)
    return;

  if (rate_control_changed) {
    encoder_->SetRates(rate_settings.rate_control);

    encoder_stats_observer_->OnBitrateAllocationUpdated(
        send_codec_, rate_settings.rate_control.bitrate);
    frame_encode_metadata_writer_.OnSetRates(
        rate_settings.rate_control.bitrate,
        static_cast<uint32_t>(rate_settings.rate_control.framerate_fps + 0.5));
    stream_resource_manager_.SetEncoderRates(rate_settings.rate_control);
    if (layer_allocation_changed &&
        allocation_cb_type_ ==
            BitrateAllocationCallbackType::kVideoLayersAllocation) {
      sink_->OnVideoLayersAllocationUpdated(CreateVideoLayersAllocation(
          send_codec_, rate_settings.rate_control, encoder_->GetEncoderInfo()));
    }
  }
  if ((allocation_cb_type_ ==
       BitrateAllocationCallbackType::kVideoBitrateAllocation) ||
      (encoder_config_.content_type ==
           VideoEncoderConfig::ContentType::kScreen &&
       allocation_cb_type_ == BitrateAllocationCallbackType::
                                  kVideoBitrateAllocationWhenScreenSharing)) {
    sink_->OnBitrateAllocationUpdated(
        // Update allocation according to info from encoder. An encoder may
        // choose to not use all layers due to for example HW.
        UpdateAllocationFromEncoderInfo(
            rate_settings.rate_control.target_bitrate,
            encoder_->GetEncoderInfo()));
  }
}

void VideoStreamEncoder::MaybeEncodeVideoFrame(const VideoFrame& video_frame,
                                               int64_t time_when_posted_us) {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  input_state_provider_.OnFrameSizeObserved(video_frame.size());

  if (!last_frame_info_ || video_frame.width() != last_frame_info_->width ||
      video_frame.height() != last_frame_info_->height ||
      video_frame.is_texture() != last_frame_info_->is_texture) {
    if ((!last_frame_info_ || video_frame.width() != last_frame_info_->width ||
         video_frame.height() != last_frame_info_->height) &&
        settings_.encoder_switch_request_callback && encoder_selector_) {
      if (auto encoder = encoder_selector_->OnResolutionChange(
              {video_frame.width(), video_frame.height()})) {
        settings_.encoder_switch_request_callback->RequestEncoderSwitch(
            *encoder, /*allow_default_fallback=*/false);
      }
    }

    pending_encoder_reconfiguration_ = true;
    last_frame_info_ = VideoFrameInfo(video_frame.width(), video_frame.height(),
                                      video_frame.is_texture());
    RTC_LOG(LS_INFO) << "Video frame parameters changed: dimensions="
                     << last_frame_info_->width << "x"
                     << last_frame_info_->height
                     << ", texture=" << last_frame_info_->is_texture << ".";
    // Force full frame update, since resolution has changed.
    accumulated_update_rect_ =
        VideoFrame::UpdateRect{0, 0, video_frame.width(), video_frame.height()};
  }

  // We have to create the encoder before the frame drop logic,
  // because the latter depends on encoder_->GetScalingSettings.
  // According to the testcase
  // InitialFrameDropOffWhenEncoderDisabledScaling, the return value
  // from GetScalingSettings should enable or disable the frame drop.

  // Update input frame rate before we start using it. If we update it after
  // any potential frame drop we are going to artificially increase frame sizes.
  // Poll the rate before updating, otherwise we risk the rate being estimated
  // a little too high at the start of the call when then window is small.
  uint32_t framerate_fps = GetInputFramerateFps();
  frame_cadence_adapter_->UpdateFrameRate();

  int64_t now_ms = clock_->TimeInMilliseconds();
  if (pending_encoder_reconfiguration_) {
    ReconfigureEncoder();
    last_parameters_update_ms_.emplace(now_ms);
  } else if (!last_parameters_update_ms_ ||
             now_ms - *last_parameters_update_ms_ >=
                 kParameterUpdateIntervalMs) {
    if (last_encoder_rate_settings_) {
      // Clone rate settings before update, so that SetEncoderRates() will
      // actually detect the change between the input and
      // `last_encoder_rate_setings_`, triggering the call to SetRate() on the
      // encoder.
      EncoderRateSettings new_rate_settings = *last_encoder_rate_settings_;
      new_rate_settings.rate_control.framerate_fps =
          static_cast<double>(framerate_fps);
      SetEncoderRates(UpdateBitrateAllocation(new_rate_settings));
    }
    last_parameters_update_ms_.emplace(now_ms);
  }

  // Because pending frame will be dropped in any case, we need to
  // remember its updated region.
  if (pending_frame_) {
    encoder_stats_observer_->OnFrameDropped(
        VideoStreamEncoderObserver::DropReason::kEncoderQueue);
    accumulated_update_rect_.Union(pending_frame_->update_rect());
    accumulated_update_rect_is_valid_ &= pending_frame_->has_update_rect();
  }

  if (DropDueToSize(video_frame.size())) {
    RTC_LOG(LS_INFO) << "Dropping frame. Too large for target bitrate.";
    stream_resource_manager_.OnFrameDroppedDueToSize();
    // Storing references to a native buffer risks blocking frame capture.
    if (video_frame.video_frame_buffer()->type() !=
        VideoFrameBuffer::Type::kNative) {
      pending_frame_ = video_frame;
      pending_frame_post_time_us_ = time_when_posted_us;
    } else {
      // Ensure that any previously stored frame is dropped.
      pending_frame_.reset();
      accumulated_update_rect_.Union(video_frame.update_rect());
      accumulated_update_rect_is_valid_ &= video_frame.has_update_rect();
      encoder_stats_observer_->OnFrameDropped(
          VideoStreamEncoderObserver::DropReason::kEncoderQueue);
    }
    return;
  }
  stream_resource_manager_.OnMaybeEncodeFrame();

  if (EncoderPaused()) {
    // Storing references to a native buffer risks blocking frame capture.
    if (video_frame.video_frame_buffer()->type() !=
        VideoFrameBuffer::Type::kNative) {
      if (pending_frame_)
        TraceFrameDropStart();
      pending_frame_ = video_frame;
      pending_frame_post_time_us_ = time_when_posted_us;
    } else {
      // Ensure that any previously stored frame is dropped.
      pending_frame_.reset();
      TraceFrameDropStart();
      accumulated_update_rect_.Union(video_frame.update_rect());
      accumulated_update_rect_is_valid_ &= video_frame.has_update_rect();
      encoder_stats_observer_->OnFrameDropped(
          VideoStreamEncoderObserver::DropReason::kEncoderQueue);
    }
    return;
  }

  pending_frame_.reset();

  frame_dropper_.Leak(framerate_fps);
  // Frame dropping is enabled iff frame dropping is not force-disabled, and
  // rate controller is not trusted.
  const bool frame_dropping_enabled =
      !force_disable_frame_dropper_ &&
      !encoder_info_.has_trusted_rate_controller;
  frame_dropper_.Enable(frame_dropping_enabled);
  if (frame_dropping_enabled && frame_dropper_.DropFrame()) {
    RTC_LOG(LS_VERBOSE)
        << "Drop Frame: "
           "target bitrate "
        << (last_encoder_rate_settings_
                ? last_encoder_rate_settings_->encoder_target.bps()
                : 0)
        << ", input frame rate " << framerate_fps;
    OnDroppedFrame(
        EncodedImageCallback::DropReason::kDroppedByMediaOptimizations);
    accumulated_update_rect_.Union(video_frame.update_rect());
    accumulated_update_rect_is_valid_ &= video_frame.has_update_rect();
    return;
  }

  EncodeVideoFrame(video_frame, time_when_posted_us);
}

void VideoStreamEncoder::EncodeVideoFrame(const VideoFrame& video_frame,
                                          int64_t time_when_posted_us) {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  RTC_LOG(LS_VERBOSE) << __func__ << " posted " << time_when_posted_us
                      << " ntp time " << video_frame.ntp_time_ms();

  // If the encoder fail we can't continue to encode frames. When this happens
  // the WebrtcVideoSender is notified and the whole VideoSendStream is
  // recreated.
  if (encoder_failed_ || !encoder_initialized_)
    return;

  // It's possible that EncodeVideoFrame can be called after we've completed
  // a Stop() operation. Check if the encoder_ is set before continuing.
  // See: bugs.webrtc.org/12857
  if (!encoder_)
    return;

  TraceFrameDropEnd();

  // Encoder metadata needs to be updated before encode complete callback.
  VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo();
  if (info.implementation_name != encoder_info_.implementation_name ||
      info.is_hardware_accelerated != encoder_info_.is_hardware_accelerated) {
    encoder_stats_observer_->OnEncoderImplementationChanged({
        .name = info.implementation_name,
        .is_hardware_accelerated = info.is_hardware_accelerated,
    });
    if (bitrate_adjuster_) {
      // Encoder implementation changed, reset overshoot detector states.
      bitrate_adjuster_->Reset();
    }
  }

  if (encoder_info_ != info) {
    OnEncoderSettingsChanged();
    stream_resource_manager_.ConfigureEncodeUsageResource();
    // Re-configure scalers when encoder info changed. Consider two cases:
    // 1. When the status of the scaler changes from enabled to disabled, if we
    // don't do this CL, scaler will adapt up/down to trigger an unnecessary
    // full ReconfigureEncoder() when the scaler should be banned.
    // 2. When the status of the scaler changes from disabled to enabled, if we
    // don't do this CL, scaler will not work until some code trigger
    // ReconfigureEncoder(). In extreme cases, the scaler doesn't even work for
    // a long time when we expect that the scaler should work.
    stream_resource_manager_.ConfigureQualityScaler(info);
    stream_resource_manager_.ConfigureBandwidthQualityScaler(info);

    RTC_LOG(LS_INFO) << "Encoder info changed to " << info.ToString();
  }

  if (bitrate_adjuster_) {
    for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
      if (info.fps_allocation[si] != encoder_info_.fps_allocation[si]) {
        bitrate_adjuster_->OnEncoderInfo(info);
        break;
      }
    }
  }
  encoder_info_ = info;
  last_encode_info_ms_ = clock_->TimeInMilliseconds();

  VideoFrame out_frame(video_frame);
  // Crop or scale the frame if needed. Dimension may be reduced to fit encoder
  // requirements, e.g. some encoders may require them to be divisible by 4.
  if ((crop_width_ > 0 || crop_height_ > 0) &&
      (out_frame.video_frame_buffer()->type() !=
           VideoFrameBuffer::Type::kNative ||
       !info.supports_native_handle)) {
    int cropped_width = video_frame.width() - crop_width_;
    int cropped_height = video_frame.height() - crop_height_;
    rtc::scoped_refptr<VideoFrameBuffer> cropped_buffer;
    // TODO(ilnik): Remove scaling if cropping is too big, as it should never
    // happen after SinkWants signaled correctly from ReconfigureEncoder.
    VideoFrame::UpdateRect update_rect = video_frame.update_rect();
    if (crop_width_ < 4 && crop_height_ < 4) {
      // The difference is small, crop without scaling.
      cropped_buffer = video_frame.video_frame_buffer()->CropAndScale(
          crop_width_ / 2, crop_height_ / 2, cropped_width, cropped_height,
          cropped_width, cropped_height);
      update_rect.offset_x -= crop_width_ / 2;
      update_rect.offset_y -= crop_height_ / 2;
      update_rect.Intersect(
          VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height});

    } else {
      // The difference is large, scale it.
      cropped_buffer = video_frame.video_frame_buffer()->Scale(cropped_width,
                                                               cropped_height);
      if (!update_rect.IsEmpty()) {
        // Since we can't reason about pixels after scaling, we invalidate whole
        // picture, if anything changed.
        update_rect =
            VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height};
      }
    }
    if (!cropped_buffer) {
      RTC_LOG(LS_ERROR) << "Cropping and scaling frame failed, dropping frame.";
      return;
    }

    out_frame.set_video_frame_buffer(cropped_buffer);
    out_frame.set_update_rect(update_rect);
    out_frame.set_ntp_time_ms(video_frame.ntp_time_ms());
    // Since accumulated_update_rect_ is constructed before cropping,
    // we can't trust it. If any changes were pending, we invalidate whole
    // frame here.
    if (!accumulated_update_rect_.IsEmpty()) {
      accumulated_update_rect_ =
          VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()};
      accumulated_update_rect_is_valid_ = false;
    }
  }

  if (!accumulated_update_rect_is_valid_) {
    out_frame.clear_update_rect();
  } else if (!accumulated_update_rect_.IsEmpty() &&
             out_frame.has_update_rect()) {
    accumulated_update_rect_.Union(out_frame.update_rect());
    accumulated_update_rect_.Intersect(
        VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()});
    out_frame.set_update_rect(accumulated_update_rect_);
    accumulated_update_rect_.MakeEmptyUpdate();
  }
  accumulated_update_rect_is_valid_ = true;

  TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame.render_time_ms(),
                          "Encode");

  stream_resource_manager_.OnEncodeStarted(out_frame, time_when_posted_us);

  // The encoder should get the size that it expects.
  RTC_DCHECK(send_codec_.width <= out_frame.width() &&
             send_codec_.height <= out_frame.height())
      << "Encoder configured to " << send_codec_.width << "x"
      << send_codec_.height << " received a too small frame "
      << out_frame.width() << "x" << out_frame.height();

  TRACE_EVENT1("webrtc", "VCMGenericEncoder::Encode", "timestamp",
               out_frame.timestamp());

  frame_encode_metadata_writer_.OnEncodeStarted(out_frame);

  const int32_t encode_status = encoder_->Encode(out_frame, &next_frame_types_);
  was_encode_called_since_last_initialization_ = true;

  if (encode_status < 0) {
    RTC_LOG(LS_ERROR) << "Encoder failed, failing encoder format: "
                      << encoder_config_.video_format.ToString();
    RequestEncoderSwitch();
    return;
  }

  for (auto& it : next_frame_types_) {
    it = VideoFrameType::kVideoFrameDelta;
  }
}

void VideoStreamEncoder::RequestRefreshFrame() {
  worker_queue_->PostTask(SafeTask(task_safety_.flag(), [this] {
    RTC_DCHECK_RUN_ON(worker_queue_);
    video_source_sink_controller_.RequestRefreshFrame();
  }));
}

void VideoStreamEncoder::SendKeyFrame(
    const std::vector<VideoFrameType>& layers) {
  if (!encoder_queue_.IsCurrent()) {
    encoder_queue_.PostTask([this, layers] { SendKeyFrame(layers); });
    return;
  }
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  TRACE_EVENT0("webrtc", "OnKeyFrameRequest");
  RTC_DCHECK(!next_frame_types_.empty());

  if (frame_cadence_adapter_)
    frame_cadence_adapter_->ProcessKeyFrameRequest();

  if (!encoder_) {
    RTC_DLOG(LS_INFO) << __func__ << " no encoder.";
    return;  // Shutting down, or not configured yet.
  }

  if (!layers.empty()) {
    RTC_DCHECK_EQ(layers.size(), next_frame_types_.size());
    for (size_t i = 0; i < layers.size() && i < next_frame_types_.size(); i++) {
      next_frame_types_[i] = layers[i];
    }
  } else {
    std::fill(next_frame_types_.begin(), next_frame_types_.end(),
              VideoFrameType::kVideoFrameKey);
  }
}

void VideoStreamEncoder::OnLossNotification(
    const VideoEncoder::LossNotification& loss_notification) {
  if (!encoder_queue_.IsCurrent()) {
    encoder_queue_.PostTask(
        [this, loss_notification] { OnLossNotification(loss_notification); });
    return;
  }

  RTC_DCHECK_RUN_ON(&encoder_queue_);
  if (encoder_) {
    encoder_->OnLossNotification(loss_notification);
  }
}

EncodedImage VideoStreamEncoder::AugmentEncodedImage(
    const EncodedImage& encoded_image,
    const CodecSpecificInfo* codec_specific_info) {
  EncodedImage image_copy(encoded_image);
  const size_t spatial_idx = encoded_image.SpatialIndex().value_or(0);
  frame_encode_metadata_writer_.FillTimingInfo(spatial_idx, &image_copy);
  frame_encode_metadata_writer_.UpdateBitstream(codec_specific_info,
                                                &image_copy);
  VideoCodecType codec_type = codec_specific_info
                                  ? codec_specific_info->codecType
                                  : VideoCodecType::kVideoCodecGeneric;
  if (image_copy.qp_ < 0 && qp_parsing_allowed_) {
    // Parse encoded frame QP if that was not provided by encoder.
    image_copy.qp_ = qp_parser_
                         .Parse(codec_type, spatial_idx, image_copy.data(),
                                image_copy.size())
                         .value_or(-1);
  }
  RTC_LOG(LS_VERBOSE) << __func__ << " spatial_idx " << spatial_idx << " qp "
                      << image_copy.qp_;
  image_copy.SetAtTargetQuality(codec_type == kVideoCodecVP8 &&
                                image_copy.qp_ <= kVp8SteadyStateQpThreshold);

  // Piggyback ALR experiment group id and simulcast id into the content type.
  const uint8_t experiment_id =
      experiment_groups_[videocontenttypehelpers::IsScreenshare(
          image_copy.content_type_)];

  // TODO(ilnik): This will force content type extension to be present even
  // for realtime video. At the expense of miniscule overhead we will get
  // sliced receive statistics.
  RTC_CHECK(videocontenttypehelpers::SetExperimentId(&image_copy.content_type_,
                                                     experiment_id));
  // We count simulcast streams from 1 on the wire. That's why we set simulcast
  // id in content type to +1 of that is actual simulcast index. This is because
  // value 0 on the wire is reserved for 'no simulcast stream specified'.
  RTC_CHECK(videocontenttypehelpers::SetSimulcastId(
      &image_copy.content_type_, static_cast<uint8_t>(spatial_idx + 1)));

  return image_copy;
}

EncodedImageCallback::Result VideoStreamEncoder::OnEncodedImage(
    const EncodedImage& encoded_image,
    const CodecSpecificInfo* codec_specific_info) {
  TRACE_EVENT_INSTANT1("webrtc", "VCMEncodedFrameCallback::Encoded",
                       "timestamp", encoded_image.Timestamp());

  // TODO(bugs.webrtc.org/10520): Signal the simulcast id explicitly.

  const size_t spatial_idx = encoded_image.SpatialIndex().value_or(0);
  const VideoCodecType codec_type = codec_specific_info
                                        ? codec_specific_info->codecType
                                        : VideoCodecType::kVideoCodecGeneric;
  EncodedImage image_copy =
      AugmentEncodedImage(encoded_image, codec_specific_info);

  // Post a task because `send_codec_` requires `encoder_queue_` lock and we
  // need to update on quality convergence.
  unsigned int image_width = image_copy._encodedWidth;
  unsigned int image_height = image_copy._encodedHeight;
  encoder_queue_.PostTask([this, codec_type, image_width, image_height,
                           spatial_idx,
                           at_target_quality = image_copy.IsAtTargetQuality()] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);

    // Let the frame cadence adapter know about quality convergence.
    if (frame_cadence_adapter_)
      frame_cadence_adapter_->UpdateLayerQualityConvergence(spatial_idx,
                                                            at_target_quality);

    // Currently, the internal quality scaler is used for VP9 instead of the
    // webrtc qp scaler (in the no-svc case or if only a single spatial layer is
    // encoded). It has to be explicitly detected and reported to adaptation
    // metrics.
    if (codec_type == VideoCodecType::kVideoCodecVP9 &&
        send_codec_.VP9()->automaticResizeOn) {
      unsigned int expected_width = send_codec_.width;
      unsigned int expected_height = send_codec_.height;
      int num_active_layers = 0;
      for (int i = 0; i < send_codec_.VP9()->numberOfSpatialLayers; ++i) {
        if (send_codec_.spatialLayers[i].active) {
          ++num_active_layers;
          expected_width = send_codec_.spatialLayers[i].width;
          expected_height = send_codec_.spatialLayers[i].height;
        }
      }
      RTC_DCHECK_LE(num_active_layers, 1)
          << "VP9 quality scaling is enabled for "
             "SVC with several active layers.";
      encoder_stats_observer_->OnEncoderInternalScalerUpdate(
          image_width < expected_width || image_height < expected_height);
    }
  });

  // Encoded is called on whatever thread the real encoder implementation run
  // on. In the case of hardware encoders, there might be several encoders
  // running in parallel on different threads.
  encoder_stats_observer_->OnSendEncodedImage(image_copy, codec_specific_info);

  EncodedImageCallback::Result result =
      sink_->OnEncodedImage(image_copy, codec_specific_info);

  // We are only interested in propagating the meta-data about the image, not
  // encoded data itself, to the post encode function. Since we cannot be sure
  // the pointer will still be valid when run on the task queue, set it to null.
  DataSize frame_size = DataSize::Bytes(image_copy.size());
  image_copy.ClearEncodedData();

  int temporal_index = 0;
  if (codec_specific_info) {
    if (codec_specific_info->codecType == kVideoCodecVP9) {
      temporal_index = codec_specific_info->codecSpecific.VP9.temporal_idx;
    } else if (codec_specific_info->codecType == kVideoCodecVP8) {
      temporal_index = codec_specific_info->codecSpecific.VP8.temporalIdx;
    }
  }
  if (temporal_index == kNoTemporalIdx) {
    temporal_index = 0;
  }

  RunPostEncode(image_copy, clock_->CurrentTime().us(), temporal_index,
                frame_size);

  if (result.error == Result::OK) {
    // In case of an internal encoder running on a separate thread, the
    // decision to drop a frame might be a frame late and signaled via
    // atomic flag. This is because we can't easily wait for the worker thread
    // without risking deadlocks, eg during shutdown when the worker thread
    // might be waiting for the internal encoder threads to stop.
    if (pending_frame_drops_.load() > 0) {
      int pending_drops = pending_frame_drops_.fetch_sub(1);
      RTC_DCHECK_GT(pending_drops, 0);
      result.drop_next_frame = true;
    }
  }

  return result;
}

void VideoStreamEncoder::OnDroppedFrame(DropReason reason) {
  switch (reason) {
    case DropReason::kDroppedByMediaOptimizations:
      encoder_stats_observer_->OnFrameDropped(
          VideoStreamEncoderObserver::DropReason::kMediaOptimization);
      break;
    case DropReason::kDroppedByEncoder:
      encoder_stats_observer_->OnFrameDropped(
          VideoStreamEncoderObserver::DropReason::kEncoder);
      break;
  }
  sink_->OnDroppedFrame(reason);
  encoder_queue_.PostTask([this, reason] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    stream_resource_manager_.OnFrameDropped(reason);
  });
}

DataRate VideoStreamEncoder::UpdateTargetBitrate(DataRate target_bitrate,
                                                 double cwnd_reduce_ratio) {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  DataRate updated_target_bitrate = target_bitrate;

  // Drop frames when congestion window pushback ratio is larger than 1
  // percent and target bitrate is larger than codec min bitrate.
  // When target_bitrate is 0 means codec is paused, skip frame dropping.
  if (cwnd_reduce_ratio > 0.01 && target_bitrate.bps() > 0 &&
      target_bitrate.bps() > send_codec_.minBitrate * 1000) {
    int reduce_bitrate_bps = std::min(
        static_cast<int>(target_bitrate.bps() * cwnd_reduce_ratio),
        static_cast<int>(target_bitrate.bps() - send_codec_.minBitrate * 1000));
    if (reduce_bitrate_bps > 0) {
      // At maximum the congestion window can drop 1/2 frames.
      cwnd_frame_drop_interval_ = std::max(
          2, static_cast<int>(target_bitrate.bps() / reduce_bitrate_bps));
      // Reduce target bitrate accordingly.
      updated_target_bitrate =
          target_bitrate - (target_bitrate / cwnd_frame_drop_interval_.value());
      return updated_target_bitrate;
    }
  }
  cwnd_frame_drop_interval_.reset();
  return updated_target_bitrate;
}

void VideoStreamEncoder::OnBitrateUpdated(DataRate target_bitrate,
                                          DataRate stable_target_bitrate,
                                          DataRate link_allocation,
                                          uint8_t fraction_lost,
                                          int64_t round_trip_time_ms,
                                          double cwnd_reduce_ratio) {
  RTC_DCHECK_GE(link_allocation, target_bitrate);
  if (!encoder_queue_.IsCurrent()) {
    encoder_queue_.PostTask([this, target_bitrate, stable_target_bitrate,
                             link_allocation, fraction_lost, round_trip_time_ms,
                             cwnd_reduce_ratio] {
      DataRate updated_target_bitrate =
          UpdateTargetBitrate(target_bitrate, cwnd_reduce_ratio);
      OnBitrateUpdated(updated_target_bitrate, stable_target_bitrate,
                       link_allocation, fraction_lost, round_trip_time_ms,
                       cwnd_reduce_ratio);
    });
    return;
  }
  RTC_DCHECK_RUN_ON(&encoder_queue_);

  const bool video_is_suspended = target_bitrate == DataRate::Zero();
  const bool video_suspension_changed = video_is_suspended != EncoderPaused();

  if (!video_is_suspended && settings_.encoder_switch_request_callback &&
      encoder_selector_) {
    if (auto encoder = encoder_selector_->OnAvailableBitrate(link_allocation)) {
      settings_.encoder_switch_request_callback->RequestEncoderSwitch(
          *encoder, /*allow_default_fallback=*/false);
    }
  }

  RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active.";

  RTC_LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << target_bitrate.bps()
                      << " stable bitrate = " << stable_target_bitrate.bps()
                      << " link allocation bitrate = " << link_allocation.bps()
                      << " packet loss " << static_cast<int>(fraction_lost)
                      << " rtt " << round_trip_time_ms;

  if (encoder_) {
    encoder_->OnPacketLossRateUpdate(static_cast<float>(fraction_lost) / 256.f);
    encoder_->OnRttUpdate(round_trip_time_ms);
  }

  uint32_t framerate_fps = GetInputFramerateFps();
  frame_dropper_.SetRates((target_bitrate.bps() + 500) / 1000, framerate_fps);

  EncoderRateSettings new_rate_settings{
      VideoBitrateAllocation(), static_cast<double>(framerate_fps),
      link_allocation, target_bitrate, stable_target_bitrate};
  SetEncoderRates(UpdateBitrateAllocation(new_rate_settings));

  if (target_bitrate.bps() != 0)
    encoder_target_bitrate_bps_ = target_bitrate.bps();

  stream_resource_manager_.SetTargetBitrate(target_bitrate);

  if (video_suspension_changed) {
    RTC_LOG(LS_INFO) << "Video suspend state changed to: "
                     << (video_is_suspended ? "suspended" : "not suspended");
    encoder_stats_observer_->OnSuspendChange(video_is_suspended);

    if (!video_is_suspended && pending_frame_ &&
        !DropDueToSize(pending_frame_->size())) {
      // A pending stored frame can be processed.
      int64_t pending_time_us =
          clock_->CurrentTime().us() - pending_frame_post_time_us_;
      if (pending_time_us < kPendingFrameTimeoutMs * 1000)
        EncodeVideoFrame(*pending_frame_, pending_frame_post_time_us_);
      pending_frame_.reset();
    } else if (!video_is_suspended && !pending_frame_ &&
               encoder_paused_and_dropped_frame_) {
      // A frame was enqueued during pause-state, but since it was a native
      // frame we could not store it in `pending_frame_` so request a
      // refresh-frame instead.
      RequestRefreshFrame();
    }
  }
}

bool VideoStreamEncoder::DropDueToSize(uint32_t pixel_count) const {
  if (!encoder_ || !stream_resource_manager_.DropInitialFrames() ||
      !encoder_target_bitrate_bps_.has_value()) {
    return false;
  }

  bool simulcast_or_svc =
      (send_codec_.codecType == VideoCodecType::kVideoCodecVP9 &&
       send_codec_.VP9().numberOfSpatialLayers > 1) ||
      (send_codec_.numberOfSimulcastStreams > 1 ||
       encoder_config_.simulcast_layers.size() > 1);

  if (simulcast_or_svc) {
    if (stream_resource_manager_.SingleActiveStreamPixels()) {
      pixel_count = stream_resource_manager_.SingleActiveStreamPixels().value();
    } else {
      return false;
    }
  }

  uint32_t bitrate_bps =
      stream_resource_manager_.UseBandwidthAllocationBps().value_or(
          encoder_target_bitrate_bps_.value());

  absl::optional<VideoEncoder::ResolutionBitrateLimits> encoder_bitrate_limits =
      GetEncoderInfoWithBitrateLimitUpdate(
          encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_)
          .GetEncoderBitrateLimitsForResolution(pixel_count);

  if (encoder_bitrate_limits.has_value()) {
    // Use bitrate limits provided by encoder.
    return bitrate_bps <
           static_cast<uint32_t>(encoder_bitrate_limits->min_start_bitrate_bps);
  }

  if (bitrate_bps < 300000 /* qvga */) {
    return pixel_count > 320 * 240;
  } else if (bitrate_bps < 500000 /* vga */) {
    return pixel_count > 640 * 480;
  }
  return false;
}

void VideoStreamEncoder::OnVideoSourceRestrictionsUpdated(
    VideoSourceRestrictions restrictions,
    const VideoAdaptationCounters& adaptation_counters,
    rtc::scoped_refptr<Resource> reason,
    const VideoSourceRestrictions& unfiltered_restrictions) {
  RTC_DCHECK_RUN_ON(&encoder_queue_);
  RTC_LOG(LS_INFO) << "Updating sink restrictions from "
                   << (reason ? reason->Name() : std::string("<null>"))
                   << " to " << restrictions.ToString();

  // TODO(webrtc:14451) Split video_source_sink_controller_
  // so that ownership on restrictions/wants is kept on &encoder_queue_
  latest_restrictions_ = restrictions;

  worker_queue_->PostTask(SafeTask(
      task_safety_.flag(), [this, restrictions = std::move(restrictions)]() {
        RTC_DCHECK_RUN_ON(worker_queue_);
        video_source_sink_controller_.SetRestrictions(std::move(restrictions));
        video_source_sink_controller_.PushSourceSinkSettings();
      }));
}

void VideoStreamEncoder::RunPostEncode(const EncodedImage& encoded_image,
                                       int64_t time_sent_us,
                                       int temporal_index,
                                       DataSize frame_size) {
  if (!encoder_queue_.IsCurrent()) {
    encoder_queue_.PostTask([this, encoded_image, time_sent_us, temporal_index,
                             frame_size] {
      RunPostEncode(encoded_image, time_sent_us, temporal_index, frame_size);
    });
    return;
  }

  RTC_DCHECK_RUN_ON(&encoder_queue_);

  absl::optional<int> encode_duration_us;
  if (encoded_image.timing_.flags != VideoSendTiming::kInvalid) {
    encode_duration_us =
        TimeDelta::Millis(encoded_image.timing_.encode_finish_ms -
                          encoded_image.timing_.encode_start_ms)
            .us();
  }

  // Run post encode tasks, such as overuse detection and frame rate/drop
  // stats for internal encoders.
  const bool keyframe =
      encoded_image._frameType == VideoFrameType::kVideoFrameKey;

  if (!frame_size.IsZero()) {
    frame_dropper_.Fill(frame_size.bytes(), !keyframe);
  }

  stream_resource_manager_.OnEncodeCompleted(encoded_image, time_sent_us,
                                             encode_duration_us, frame_size);
  if (bitrate_adjuster_) {
    bitrate_adjuster_->OnEncodedFrame(
        frame_size, encoded_image.SpatialIndex().value_or(0), temporal_index);
  }
}

void VideoStreamEncoder::ReleaseEncoder() {
  if (!encoder_ || !encoder_initialized_) {
    return;
  }
  encoder_->Release();
  encoder_initialized_ = false;
  TRACE_EVENT0("webrtc", "VCMGenericEncoder::Release");
}

VideoStreamEncoder::AutomaticAnimationDetectionExperiment
VideoStreamEncoder::ParseAutomatincAnimationDetectionFieldTrial() const {
  AutomaticAnimationDetectionExperiment result;

  result.Parser()->Parse(
      field_trials_.Lookup("WebRTC-AutomaticAnimationDetectionScreenshare"));

  if (!result.enabled) {
    RTC_LOG(LS_INFO) << "Automatic animation detection experiment is disabled.";
    return result;
  }

  RTC_LOG(LS_INFO) << "Automatic animation detection experiment settings:"
                      " min_duration_ms="
                   << result.min_duration_ms
                   << " min_area_ration=" << result.min_area_ratio
                   << " min_fps=" << result.min_fps;

  return result;
}

void VideoStreamEncoder::CheckForAnimatedContent(
    const VideoFrame& frame,
    int64_t time_when_posted_in_us) {
  if (!automatic_animation_detection_experiment_.enabled ||
      encoder_config_.content_type !=
          VideoEncoderConfig::ContentType::kScreen ||
      stream_resource_manager_.degradation_preference() !=
          DegradationPreference::BALANCED) {
    return;
  }

  if (expect_resize_state_ == ExpectResizeState::kResize && last_frame_info_ &&
      last_frame_info_->width != frame.width() &&
      last_frame_info_->height != frame.height()) {
    // On applying resolution cap there will be one frame with no/different
    // update, which should be skipped.
    // It can be delayed by several frames.
    expect_resize_state_ = ExpectResizeState::kFirstFrameAfterResize;
    return;
  }

  if (expect_resize_state_ == ExpectResizeState::kFirstFrameAfterResize) {
    // The first frame after resize should have new, scaled update_rect.
    if (frame.has_update_rect()) {
      last_update_rect_ = frame.update_rect();
    } else {
      last_update_rect_ = absl::nullopt;
    }
    expect_resize_state_ = ExpectResizeState::kNoResize;
  }

  bool should_cap_resolution = false;
  if (!frame.has_update_rect()) {
    last_update_rect_ = absl::nullopt;
    animation_start_time_ = Timestamp::PlusInfinity();
  } else if ((!last_update_rect_ ||
              frame.update_rect() != *last_update_rect_)) {
    last_update_rect_ = frame.update_rect();
    animation_start_time_ = Timestamp::Micros(time_when_posted_in_us);
  } else {
    TimeDelta animation_duration =
        Timestamp::Micros(time_when_posted_in_us) - animation_start_time_;
    float area_ratio = static_cast<float>(last_update_rect_->width *
                                          last_update_rect_->height) /
                       (frame.width() * frame.height());
    if (animation_duration.ms() >=
            automatic_animation_detection_experiment_.min_duration_ms &&
        area_ratio >=
            automatic_animation_detection_experiment_.min_area_ratio &&
        encoder_stats_observer_->GetInputFrameRate() >=
            automatic_animation_detection_experiment_.min_fps) {
      should_cap_resolution = true;
    }
  }
  if (cap_resolution_due_to_video_content_ != should_cap_resolution) {
    expect_resize_state_ = should_cap_resolution ? ExpectResizeState::kResize
                                                 : ExpectResizeState::kNoResize;
    cap_resolution_due_to_video_content_ = should_cap_resolution;
    if (should_cap_resolution) {
      RTC_LOG(LS_INFO) << "Applying resolution cap due to animation detection.";
    } else {
      RTC_LOG(LS_INFO) << "Removing resolution cap due to no consistent "
                          "animation detection.";
    }
    // TODO(webrtc:14451) Split video_source_sink_controller_
    // so that ownership on restrictions/wants is kept on &encoder_queue_
    if (should_cap_resolution) {
      animate_restrictions_ =
          VideoSourceRestrictions(kMaxAnimationPixels,
                                  /* target_pixels_per_frame= */ absl::nullopt,
                                  /* max_frame_rate= */ absl::nullopt);
    } else {
      animate_restrictions_.reset();
    }

    worker_queue_->PostTask(
        SafeTask(task_safety_.flag(), [this, should_cap_resolution]() {
          RTC_DCHECK_RUN_ON(worker_queue_);
          video_source_sink_controller_.SetPixelsPerFrameUpperLimit(
              should_cap_resolution
                  ? absl::optional<size_t>(kMaxAnimationPixels)
                  : absl::nullopt);
          video_source_sink_controller_.PushSourceSinkSettings();
        }));
  }
}

void VideoStreamEncoder::InjectAdaptationResource(
    rtc::scoped_refptr<Resource> resource,
    VideoAdaptationReason reason) {
  encoder_queue_.PostTask([this, resource = std::move(resource), reason] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    additional_resources_.push_back(resource);
    stream_resource_manager_.AddResource(resource, reason);
  });
}

void VideoStreamEncoder::InjectAdaptationConstraint(
    AdaptationConstraint* adaptation_constraint) {
  rtc::Event event;
  encoder_queue_.PostTask([this, adaptation_constraint, &event] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    if (!resource_adaptation_processor_) {
      // The VideoStreamEncoder was stopped and the processor destroyed before
      // this task had a chance to execute. No action needed.
      return;
    }
    adaptation_constraints_.push_back(adaptation_constraint);
    video_stream_adapter_->AddAdaptationConstraint(adaptation_constraint);
    event.Set();
  });
  event.Wait(rtc::Event::kForever);
}

void VideoStreamEncoder::AddRestrictionsListenerForTesting(
    VideoSourceRestrictionsListener* restrictions_listener) {
  rtc::Event event;
  encoder_queue_.PostTask([this, restrictions_listener, &event] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    RTC_DCHECK(resource_adaptation_processor_);
    video_stream_adapter_->AddRestrictionsListener(restrictions_listener);
    event.Set();
  });
  event.Wait(rtc::Event::kForever);
}

void VideoStreamEncoder::RemoveRestrictionsListenerForTesting(
    VideoSourceRestrictionsListener* restrictions_listener) {
  rtc::Event event;
  encoder_queue_.PostTask([this, restrictions_listener, &event] {
    RTC_DCHECK_RUN_ON(&encoder_queue_);
    RTC_DCHECK(resource_adaptation_processor_);
    video_stream_adapter_->RemoveRestrictionsListener(restrictions_listener);
    event.Set();
  });
  event.Wait(rtc::Event::kForever);
}

}  // namespace webrtc