1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
|
use std::default::Default;
use bezierflattener::CBezierFlattener;
use crate::{bezierflattener::{CFlatteningSink, GpPointR, HRESULT, S_OK, CBezier}};
mod bezierflattener;
pub mod tri_rasterize;
#[cfg(feature = "c_bindings")]
pub mod c_bindings;
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum Winding {
EvenOdd,
NonZero,
}
#[derive(Clone, Copy, Debug)]
pub enum PathOp {
MoveTo(Point),
LineTo(Point),
QuadTo(Point, Point),
CubicTo(Point, Point, Point),
Close,
}
/// Represents a complete path usable for filling or stroking.
#[derive(Clone, Debug)]
pub struct Path {
pub ops: Vec<PathOp>,
pub winding: Winding,
}
pub type Point = euclid::default::Point2D<f32>;
pub type Transform = euclid::default::Transform2D<f32>;
pub type Vector = euclid::default::Vector2D<f32>;
#[derive(Clone, Copy, PartialEq, Debug)]
#[repr(C)]
pub enum LineCap {
Round,
Square,
Butt,
}
#[derive(Clone, Copy, PartialEq, Debug)]
#[repr(C)]
pub enum LineJoin {
Round,
Miter,
Bevel,
}
#[derive(Clone, PartialEq, Debug)]
#[repr(C)]
pub struct StrokeStyle {
pub width: f32,
pub cap: LineCap,
pub join: LineJoin,
pub miter_limit: f32,
}
impl Default for StrokeStyle {
fn default() -> Self {
StrokeStyle {
width: 1.,
cap: LineCap::Butt,
join: LineJoin::Miter,
miter_limit: 10.,
}
}
}
#[derive(Debug)]
pub struct Vertex {
x: f32,
y: f32,
coverage: f32
}
/// A helper struct used for constructing a `Path`.
pub struct PathBuilder<'z> {
output_buffer: Option<&'z mut [Vertex]>,
output_buffer_offset: usize,
vertices: Vec<Vertex>,
coverage: f32,
aa: bool
}
impl<'z> PathBuilder<'z> {
pub fn new(coverage: f32) -> PathBuilder<'z> {
PathBuilder {
output_buffer: None,
output_buffer_offset: 0,
vertices: Vec::new(),
coverage,
aa: true
}
}
pub fn set_output_buffer(&mut self, output_buffer: &'z mut [Vertex]) {
assert!(self.output_buffer.is_none());
self.output_buffer = Some(output_buffer);
}
pub fn push_tri_with_coverage(&mut self, x1: f32, y1: f32, c1: f32, x2: f32, y2: f32, c2: f32, x3: f32, y3: f32, c3: f32) {
let v1 = Vertex { x: x1, y: y1, coverage: c1 };
let v2 = Vertex { x: x2, y: y2, coverage: c2 };
let v3 = Vertex { x: x3, y: y3, coverage: c3 };
if let Some(output_buffer) = &mut self.output_buffer {
let offset = self.output_buffer_offset;
if offset + 3 <= output_buffer.len() {
output_buffer[offset] = v1;
output_buffer[offset + 1] = v2;
output_buffer[offset + 2] = v3;
}
self.output_buffer_offset = offset + 3;
} else {
self.vertices.push(v1);
self.vertices.push(v2);
self.vertices.push(v3);
}
}
pub fn push_tri(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) {
self.push_tri_with_coverage(x1, y1, self.coverage, x2, y2, self.coverage, x3, y3, self.coverage);
}
// x3, y3 is the full coverage vert
pub fn tri_ramp(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) {
self.push_tri_with_coverage(x1, y1, 0., x2, y2, 0., x3, y3, self.coverage);
}
pub fn quad(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32, x4: f32, y4: f32) {
self.push_tri(x1, y1, x2, y2, x3, y3);
self.push_tri(x3, y3, x4, y4, x1, y1);
}
pub fn ramp(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32, x4: f32, y4: f32) {
self.push_tri_with_coverage(x1, y1, self.coverage, x2, y2, 0., x3, y3, 0.);
self.push_tri_with_coverage(x3, y3, 0., x4, y4, self.coverage, x1, y1, self.coverage);
}
// first edge is outside
pub fn tri(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) {
self.push_tri(x1, y1, x2, y2, x3, y3);
}
pub fn arc_wedge(&mut self, c: Point, radius: f32, a: Vector, b: Vector) {
arc(self, c.x, c.y, radius, a, b);
}
/// Completes the current path
pub fn finish(self) -> Vec<Vertex> {
self.vertices
}
pub fn get_output_buffer_size(&self) -> Option<usize> {
if self.output_buffer.is_some() {
Some(self.output_buffer_offset)
} else {
None
}
}
}
fn compute_normal(p0: Point, p1: Point) -> Option<Vector> {
let ux = p1.x - p0.x;
let uy = p1.y - p0.y;
// this could overflow f32. Skia checks for this and
// uses a double in that situation
let ulen = ux.hypot(uy);
if ulen == 0. {
return None;
}
// the normal is perpendicular to the *unit* vector
Some(Vector::new(-uy / ulen, ux / ulen))
}
fn flip(v: Vector) -> Vector {
Vector::new(-v.x, -v.y)
}
/* Compute a spline approximation of the arc
centered at xc, yc from the angle a to the angle b
The angle between a and b should not be more than a
quarter circle (pi/2)
The approximation is similar to an approximation given in:
"Approximation of a cubic bezier curve by circular arcs and vice versa"
by Alekas Riškus. However that approximation becomes unstable when the
angle of the arc approaches 0.
This approximation is inspired by a discusion with Boris Zbarsky
and essentially just computes:
h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0);
without converting to polar coordinates.
A different way to do this is covered in "Approximation of a cubic bezier
curve by circular arcs and vice versa" by Alekas Riškus. However, the method
presented there doesn't handle arcs with angles close to 0 because it
divides by the perp dot product of the two angle vectors.
*/
fn arc_segment_tri(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) {
let r_sin_a = radius * a.y;
let r_cos_a = radius * a.x;
let r_sin_b = radius * b.y;
let r_cos_b = radius * b.x;
/* bisect the angle between 'a' and 'b' with 'mid' */
let mut mid = a + b;
mid /= mid.length();
/* bisect the angle between 'a' and 'mid' with 'mid2' this is parallel to a
* line with angle (B - A)/4 */
let mid2 = a + mid;
let h = (4. / 3.) * dot(perp(a), mid2) / dot(a, mid2);
let last_point = GpPointR { x: (xc + r_cos_a) as f64, y: (yc + r_sin_a) as f64 };
let initial_normal = GpPointR { x: a.x as f64, y: a.y as f64 };
struct Target<'a, 'b> { last_point: GpPointR, last_normal: GpPointR, xc: f32, yc: f32, path: &'a mut PathBuilder<'b> }
impl<'a, 'b> CFlatteningSink for Target<'a, 'b> {
fn AcceptPointAndTangent(&mut self,
pt: &GpPointR,
// The point
vec: &GpPointR,
// The tangent there
_last: bool
// Is this the last point on the curve?
) -> HRESULT {
if self.path.aa {
let len = vec.Norm();
let normal = *vec/len;
let normal = GpPointR { x: -normal.y, y: normal.x };
// FIXME: we probably need more width here because
// the normals are not perpendicular with the edge
let width = 0.5;
self.path.ramp(
(pt.x - normal.x * width) as f32,
(pt.y - normal.y * width) as f32,
(pt.x + normal.x * width) as f32,
(pt.y + normal.y * width) as f32,
(self.last_point.x + self.last_normal.x * width) as f32,
(self.last_point.y + self.last_normal.y * width) as f32,
(self.last_point.x - self.last_normal.x * width) as f32,
(self.last_point.y - self.last_normal.y * width) as f32, );
self.path.push_tri(
(self.last_point.x - self.last_normal.x * 0.5) as f32,
(self.last_point.y - self.last_normal.y * 0.5) as f32,
(pt.x - normal.x * 0.5) as f32,
(pt.y - normal.y * 0.5) as f32,
self.xc, self.yc);
self.last_normal = normal;
} else {
self.path.push_tri(self.last_point.x as f32, self.last_point.y as f32, pt.x as f32, pt.y as f32, self.xc, self.yc);
}
self.last_point = pt.clone();
return S_OK;
}
fn AcceptPoint(&mut self,
pt: &GpPointR,
// The point
_t: f64,
// Parameter we're at
_aborted: &mut bool,
_last_point: bool) -> HRESULT {
self.path.push_tri(self.last_point.x as f32, self.last_point.y as f32, pt.x as f32, pt.y as f32, self.xc, self.yc);
self.last_point = pt.clone();
return S_OK;
}
}
let bezier = CBezier::new([GpPointR { x: (xc + r_cos_a) as f64, y: (yc + r_sin_a) as f64, },
GpPointR { x: (xc + r_cos_a - h * r_sin_a) as f64, y: (yc + r_sin_a + h * r_cos_a) as f64, },
GpPointR { x: (xc + r_cos_b + h * r_sin_b) as f64, y: (yc + r_sin_b - h * r_cos_b) as f64, },
GpPointR { x: (xc + r_cos_b) as f64, y: (yc + r_sin_b) as f64, }]);
if bezier.is_degenerate() {
return;
}
let mut t = Target{ last_point, last_normal: initial_normal, xc, yc, path };
let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25);
f.Flatten(true);
}
/* The angle between the vectors must be <= pi */
fn bisect(a: Vector, b: Vector) -> Vector {
let mut mid;
if dot(a, b) >= 0. {
/* if the angle between a and b is accute, then we can
* just add the vectors and normalize */
mid = a + b;
} else {
/* otherwise, we can flip a, add it
* and then use the perpendicular of the result */
mid = flip(a) + b;
mid = perp(mid);
}
/* normalize */
/* because we assume that 'a' and 'b' are normalized, we can use
* sqrt instead of hypot because the range of mid is limited */
let mid_len = mid.x * mid.x + mid.y * mid.y;
let len = mid_len.sqrt();
return mid / len;
}
fn arc(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) {
/* find a vector that bisects the angle between a and b */
let mid_v = bisect(a, b);
/* construct the arc using two curve segments */
arc_segment_tri(path, xc, yc, radius, a, mid_v);
arc_segment_tri(path, xc, yc, radius, mid_v, b);
}
/*
fn join_round(path: &mut PathBuilder, center: Point, a: Vector, b: Vector, radius: f32) {
/*
int ccw = dot (perp (b), a) >= 0; // XXX: is this always true?
yes, otherwise we have an interior angle.
assert (ccw);
*/
arc(path, center.x, center.y, radius, a, b);
}*/
fn cap_line(dest: &mut PathBuilder, style: &StrokeStyle, pt: Point, normal: Vector) {
let offset = style.width / 2.;
match style.cap {
LineCap::Butt => {
if dest.aa {
let half_width = offset;
let end = pt;
let v = Vector::new(normal.y, -normal.x);
// end
dest.ramp(
end.x - normal.x * (half_width - 0.5),
end.y - normal.y * (half_width - 0.5),
end.x + v.x - normal.x * (half_width - 0.5),
end.y + v.y - normal.y * (half_width - 0.5),
end.x + v.x + normal.x * (half_width - 0.5),
end.y + v.y + normal.y * (half_width - 0.5),
end.x + normal.x * (half_width - 0.5),
end.y + normal.y * (half_width - 0.5),
);
dest.tri_ramp(
end.x + v.x - normal.x * (half_width - 0.5),
end.y + v.y - normal.y * (half_width - 0.5),
end.x - normal.x * (half_width + 0.5),
end.y - normal.y * (half_width + 0.5),
end.x - normal.x * (half_width - 0.5),
end.y - normal.y * (half_width - 0.5));
dest.tri_ramp(
end.x + v.x + normal.x * (half_width - 0.5),
end.y + v.y + normal.y * (half_width - 0.5),
end.x + normal.x * (half_width + 0.5),
end.y + normal.y * (half_width + 0.5),
end.x + normal.x * (half_width - 0.5),
end.y + normal.y * (half_width - 0.5));
}
}
LineCap::Round => {
dest.arc_wedge(pt, offset, normal, flip(normal));
}
LineCap::Square => {
// parallel vector
let v = Vector::new(normal.y, -normal.x);
let end = pt + v * offset;
if dest.aa {
let half_width = offset;
let offset = offset - 0.5;
dest.ramp(
end.x + normal.x * (half_width - 0.5),
end.y + normal.y * (half_width - 0.5),
end.x + normal.x * (half_width + 0.5),
end.y + normal.y * (half_width + 0.5),
pt.x + normal.x * (half_width + 0.5),
pt.y + normal.y * (half_width + 0.5),
pt.x + normal.x * (half_width - 0.5),
pt.y + normal.y * (half_width - 0.5),
);
dest.quad(pt.x + normal.x * offset, pt.y + normal.y * offset,
end.x + normal.x * offset, end.y + normal.y * offset,
end.x + -normal.x * offset, end.y + -normal.y * offset,
pt.x - normal.x * offset, pt.y - normal.y * offset);
dest.ramp(
pt.x - normal.x * (half_width - 0.5),
pt.y - normal.y * (half_width - 0.5),
pt.x - normal.x * (half_width + 0.5),
pt.y - normal.y * (half_width + 0.5),
end.x - normal.x * (half_width + 0.5),
end.y - normal.y * (half_width + 0.5),
end.x - normal.x * (half_width - 0.5),
end.y - normal.y * (half_width - 0.5));
// end
dest.ramp(
end.x - normal.x * (half_width - 0.5),
end.y - normal.y * (half_width - 0.5),
end.x + v.x - normal.x * (half_width - 0.5),
end.y + v.y - normal.y * (half_width - 0.5),
end.x + v.x + normal.x * (half_width - 0.5),
end.y + v.y + normal.y * (half_width - 0.5),
end.x + normal.x * (half_width - 0.5),
end.y + normal.y * (half_width - 0.5),
);
dest.tri_ramp(
end.x + v.x - normal.x * (half_width - 0.5),
end.y + v.y - normal.y * (half_width - 0.5),
end.x - normal.x * (half_width + 0.5),
end.y - normal.y * (half_width + 0.5),
end.x - normal.x * (half_width - 0.5),
end.y - normal.y * (half_width - 0.5));
dest.tri_ramp(
end.x + v.x + normal.x * (half_width - 0.5),
end.y + v.y + normal.y * (half_width - 0.5),
end.x + normal.x * (half_width + 0.5),
end.y + normal.y * (half_width + 0.5),
end.x + normal.x * (half_width - 0.5),
end.y + normal.y * (half_width - 0.5));
} else {
dest.quad(pt.x + normal.x * offset, pt.y + normal.y * offset,
end.x + normal.x * offset, end.y + normal.y * offset,
end.x + -normal.x * offset, end.y + -normal.y * offset,
pt.x - normal.x * offset, pt.y - normal.y * offset);
}
}
}
}
fn bevel(
dest: &mut PathBuilder,
style: &StrokeStyle,
pt: Point,
s1_normal: Vector,
s2_normal: Vector,
) {
let offset = style.width / 2.;
if dest.aa {
let width = 1.;
let offset = offset - width / 2.;
//XXX: we should be able to just bisect the two norms to get this
let diff = match (s2_normal - s1_normal).try_normalize() {
Some(diff) => diff,
None => return,
};
let edge_normal = perp(diff);
dest.tri(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset,
pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset,
pt.x, pt.y);
dest.tri_ramp(pt.x + s1_normal.x * (offset + width), pt.y + s1_normal.y * (offset + width),
pt.x + s1_normal.x * offset + edge_normal.x, pt.y + s1_normal.y * offset + edge_normal.y,
pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset);
dest.ramp(
pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset,
pt.x + s2_normal.x * offset + edge_normal.x, pt.y + s2_normal.y * offset + edge_normal.y,
pt.x + s1_normal.x * offset + edge_normal.x, pt.y + s1_normal.y * offset + edge_normal.y,
pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset,
);
dest.tri_ramp(pt.x + s2_normal.x * (offset + width), pt.y + s2_normal.y * (offset + width),
pt.x + s2_normal.x * offset + edge_normal.x, pt.y + s2_normal.y * offset + edge_normal.y,
pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset);
} else {
dest.tri(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset,
pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset,
pt.x, pt.y);
}
}
/* given a normal rotate the vector 90 degrees to the right clockwise
* This function has a period of 4. e.g. swap(swap(swap(swap(x) == x */
fn swap(a: Vector) -> Vector {
/* one of these needs to be negative. We choose a.x so that we rotate to the right instead of negating */
Vector::new(a.y, -a.x)
}
fn unperp(a: Vector) -> Vector {
swap(a)
}
/* rotate a vector 90 degrees to the left */
fn perp(v: Vector) -> Vector {
Vector::new(-v.y, v.x)
}
fn dot(a: Vector, b: Vector) -> f32 {
a.x * b.x + a.y * b.y
}
/* Finds the intersection of two lines each defined by a point and a normal.
From "Example 2: Find the intersection of two lines" of
"The Pleasures of "Perp Dot" Products"
F. S. Hill, Jr. */
fn line_intersection(a: Point, a_perp: Vector, b: Point, b_perp: Vector) -> Option<Point> {
let a_parallel = unperp(a_perp);
let c = b - a;
let denom = dot(b_perp, a_parallel);
if denom == 0.0 {
return None;
}
let t = dot(b_perp, c) / denom;
let intersection = Point::new(a.x + t * (a_parallel.x), a.y + t * (a_parallel.y));
Some(intersection)
}
fn is_interior_angle(a: Vector, b: Vector) -> bool {
/* angles of 180 and 0 degress will evaluate to 0, however
* we to treat 180 as an interior angle and 180 as an exterior angle */
dot(perp(a), b) > 0. || a == b /* 0 degrees is interior */
}
fn join_line(
dest: &mut PathBuilder,
style: &StrokeStyle,
pt: Point,
mut s1_normal: Vector,
mut s2_normal: Vector,
) {
if is_interior_angle(s1_normal, s2_normal) {
s2_normal = flip(s2_normal);
s1_normal = flip(s1_normal);
std::mem::swap(&mut s1_normal, &mut s2_normal);
}
// XXX: joining uses `pt` which can cause seams because it lies halfway on a line and the
// rasterizer may not find exactly the same spot
let mut offset = style.width / 2.;
match style.join {
LineJoin::Round => {
dest.arc_wedge(pt, offset, s1_normal, s2_normal);
}
LineJoin::Miter => {
if dest.aa {
offset -= 0.5;
}
let in_dot_out = -s1_normal.x * s2_normal.x + -s1_normal.y * s2_normal.y;
if 2. <= style.miter_limit * style.miter_limit * (1. - in_dot_out) {
let start = pt + s1_normal * offset;
let end = pt + s2_normal * offset;
if let Some(intersection) = line_intersection(start, s1_normal, end, s2_normal) {
// We won't have an intersection if the segments are parallel
if dest.aa {
let ramp_start = pt + s1_normal * (offset + 1.);
let ramp_end = pt + s2_normal * (offset + 1.);
let mid = bisect(s1_normal, s2_normal);
let ramp_intersection = intersection + mid;
let ramp_s1 = line_intersection(ramp_start, s1_normal, ramp_intersection, flip(mid));
let ramp_s2 = line_intersection(ramp_end, s2_normal, ramp_intersection, flip(mid));
if let Some(ramp_s1) = ramp_s1 {
dest.ramp(intersection.x, intersection.y,
ramp_s1.x, ramp_s1.y,
ramp_start.x, ramp_start.y,
pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset,
);
}
if let Some(ramp_s2) = ramp_s2 {
dest.ramp(pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset,
ramp_end.x, ramp_end.y,
ramp_s2.x, ramp_s2.y,
intersection.x, intersection.y);
if let Some(ramp_s1) = ramp_s1 {
dest.tri_ramp(ramp_s1.x, ramp_s1.y, ramp_s2.x, ramp_s2.y, intersection.x, intersection.y);
}
}
// we'll want to intersect the ramps and put a flat cap on the end
dest.quad(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset,
intersection.x, intersection.y,
pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset,
pt.x, pt.y);
} else {
dest.quad(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset,
intersection.x, intersection.y,
pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset,
pt.x, pt.y);
}
}
} else {
bevel(dest, style, pt, s1_normal, s2_normal);
}
}
LineJoin::Bevel => {
bevel(dest, style, pt, s1_normal, s2_normal);
}
}
}
pub struct Stroker<'z> {
stroked_path: PathBuilder<'z>,
cur_pt: Option<Point>,
last_normal: Vector,
half_width: f32,
start_point: Option<(Point, Vector)>,
style: StrokeStyle,
closed_subpath: bool
}
impl<'z> Stroker<'z> {
pub fn new(style: &StrokeStyle) -> Self {
let mut style = style.clone();
let mut coverage = 1.;
if style.width < 1. {
coverage = style.width;
style.width = 1.;
}
Stroker {
stroked_path: PathBuilder::new(coverage),
cur_pt: None,
last_normal: Vector::zero(),
half_width: style.width / 2.,
start_point: None,
style,
closed_subpath: false,
}
}
pub fn set_output_buffer(&mut self, output_buffer: &'z mut [Vertex]) {
self.stroked_path.set_output_buffer(output_buffer);
}
pub fn line_to_capped(&mut self, pt: Point) {
if let Some(cur_pt) = self.cur_pt {
let normal = compute_normal(cur_pt, pt).unwrap_or(self.last_normal);
self.line_to(if self.stroked_path.aa && self.style.cap == LineCap::Butt { pt - flip(normal) * 0.5} else { pt });
if let (Some(cur_pt), Some((_point, _normal))) = (self.cur_pt, self.start_point) {
// cap end
cap_line(&mut self.stroked_path, &self.style, cur_pt, self.last_normal);
}
}
self.start_point = None;
}
pub fn move_to(&mut self, pt: Point, closed_subpath: bool) {
self.start_point = None;
self.cur_pt = Some(pt);
self.closed_subpath = closed_subpath;
}
pub fn line_to(&mut self, pt: Point) {
let cur_pt = self.cur_pt;
let stroked_path = &mut self.stroked_path;
let half_width = self.half_width;
if cur_pt.is_none() {
self.start_point = None;
} else if let Some(cur_pt) = cur_pt {
if let Some(normal) = compute_normal(cur_pt, pt) {
if self.start_point.is_none() {
if !self.closed_subpath {
// cap beginning
cap_line(stroked_path, &self.style, cur_pt, flip(normal));
if stroked_path.aa && self.style.cap == LineCap::Butt {
}
}
self.start_point = Some((cur_pt, normal));
} else {
join_line(stroked_path, &self.style, cur_pt, self.last_normal, normal);
}
if stroked_path.aa {
stroked_path.ramp(
pt.x + normal.x * (half_width - 0.5),
pt.y + normal.y * (half_width - 0.5),
pt.x + normal.x * (half_width + 0.5),
pt.y + normal.y * (half_width + 0.5),
cur_pt.x + normal.x * (half_width + 0.5),
cur_pt.y + normal.y * (half_width + 0.5),
cur_pt.x + normal.x * (half_width - 0.5),
cur_pt.y + normal.y * (half_width - 0.5),
);
stroked_path.quad(
cur_pt.x + normal.x * (half_width - 0.5),
cur_pt.y + normal.y * (half_width - 0.5),
pt.x + normal.x * (half_width - 0.5), pt.y + normal.y * (half_width - 0.5),
pt.x + -normal.x * (half_width - 0.5), pt.y + -normal.y * (half_width - 0.5),
cur_pt.x - normal.x * (half_width - 0.5),
cur_pt.y - normal.y * (half_width - 0.5),
);
stroked_path.ramp(
cur_pt.x - normal.x * (half_width - 0.5),
cur_pt.y - normal.y * (half_width - 0.5),
cur_pt.x - normal.x * (half_width + 0.5),
cur_pt.y - normal.y * (half_width + 0.5),
pt.x - normal.x * (half_width + 0.5),
pt.y - normal.y * (half_width + 0.5),
pt.x - normal.x * (half_width - 0.5),
pt.y - normal.y * (half_width - 0.5),
);
} else {
stroked_path.quad(
cur_pt.x + normal.x * half_width,
cur_pt.y + normal.y * half_width,
pt.x + normal.x * half_width, pt.y + normal.y * half_width,
pt.x + -normal.x * half_width, pt.y + -normal.y * half_width,
cur_pt.x - normal.x * half_width,
cur_pt.y - normal.y * half_width,
);
}
self.last_normal = normal;
}
}
self.cur_pt = Some(pt);
}
pub fn curve_to(&mut self, cx1: Point, cx2: Point, pt: Point) {
self.curve_to_internal(cx1, cx2, pt, false);
}
pub fn curve_to_capped(&mut self, cx1: Point, cx2: Point, pt: Point) {
self.curve_to_internal(cx1, cx2, pt, true);
}
pub fn curve_to_internal(&mut self, cx1: Point, cx2: Point, pt: Point, end: bool) {
struct Target<'a, 'b> { stroker: &'a mut Stroker<'b>, end: bool }
impl<'a, 'b> CFlatteningSink for Target<'a, 'b> {
fn AcceptPointAndTangent(&mut self, _: &GpPointR, _: &GpPointR, _: bool ) -> HRESULT {
panic!()
}
fn AcceptPoint(&mut self,
pt: &GpPointR,
// The point
_t: f64,
// Parameter we're at
_aborted: &mut bool,
last_point: bool) -> HRESULT {
if last_point && self.end {
self.stroker.line_to_capped(Point::new(pt.x as f32, pt.y as f32));
} else {
self.stroker.line_to(Point::new(pt.x as f32, pt.y as f32));
}
return S_OK;
}
}
let cur_pt = self.cur_pt.unwrap_or(cx1);
let bezier = CBezier::new([GpPointR { x: cur_pt.x as f64, y: cur_pt.y as f64, },
GpPointR { x: cx1.x as f64, y: cx1.y as f64, },
GpPointR { x: cx2.x as f64, y: cx2.y as f64, },
GpPointR { x: pt.x as f64, y: pt.y as f64, }]);
let mut t = Target{ stroker: self, end };
let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25);
f.Flatten(false);
}
pub fn close(&mut self) {
let stroked_path = &mut self.stroked_path;
let half_width = self.half_width;
if let (Some(cur_pt), Some((end_point, start_normal))) = (self.cur_pt, self.start_point) {
if let Some(normal) = compute_normal(cur_pt, end_point) {
join_line(stroked_path, &self.style, cur_pt, self.last_normal, normal);
if stroked_path.aa {
stroked_path.ramp(
end_point.x + normal.x * (half_width - 0.5),
end_point.y + normal.y * (half_width - 0.5),
end_point.x + normal.x * (half_width + 0.5),
end_point.y + normal.y * (half_width + 0.5),
cur_pt.x + normal.x * (half_width + 0.5),
cur_pt.y + normal.y * (half_width + 0.5),
cur_pt.x + normal.x * (half_width - 0.5),
cur_pt.y + normal.y * (half_width - 0.5),
);
stroked_path.quad(
cur_pt.x + normal.x * (half_width - 0.5),
cur_pt.y + normal.y * (half_width - 0.5),
end_point.x + normal.x * (half_width - 0.5), end_point.y + normal.y * (half_width - 0.5),
end_point.x + -normal.x * (half_width - 0.5), end_point.y + -normal.y * (half_width - 0.5),
cur_pt.x - normal.x * (half_width - 0.5),
cur_pt.y - normal.y * (half_width - 0.5),
);
stroked_path.ramp(
cur_pt.x - normal.x * (half_width - 0.5),
cur_pt.y - normal.y * (half_width - 0.5),
cur_pt.x - normal.x * (half_width + 0.5),
cur_pt.y - normal.y * (half_width + 0.5),
end_point.x - normal.x * (half_width + 0.5),
end_point.y - normal.y * (half_width + 0.5),
end_point.x - normal.x * (half_width - 0.5),
end_point.y - normal.y * (half_width - 0.5),
);
} else {
stroked_path.quad(
cur_pt.x + normal.x * half_width,
cur_pt.y + normal.y * half_width,
end_point.x + normal.x * half_width, end_point.y + normal.y * half_width,
end_point.x + -normal.x * half_width, end_point.y + -normal.y * half_width,
cur_pt.x - normal.x * half_width,
cur_pt.y - normal.y * half_width,
);
}
join_line(stroked_path, &self.style, end_point, normal, start_normal);
} else {
join_line(stroked_path, &self.style, end_point, self.last_normal, start_normal);
}
}
self.cur_pt = self.start_point.map(|x| x.0);
self.start_point = None;
}
pub fn get_stroked_path(&mut self) -> PathBuilder<'z> {
let mut stroked_path = std::mem::replace(&mut self.stroked_path, PathBuilder::new(1.));
if let (Some(cur_pt), Some((point, normal))) = (self.cur_pt, self.start_point) {
// cap end
cap_line(&mut stroked_path, &self.style, cur_pt, self.last_normal);
// cap beginning
cap_line(&mut stroked_path, &self.style, point, flip(normal));
}
stroked_path
}
pub fn finish(&mut self) -> Vec<Vertex> {
self.get_stroked_path().finish()
}
}
#[test]
fn simple() {
let mut stroker = Stroker::new(&StrokeStyle{
cap: LineCap::Round,
join: LineJoin::Bevel,
width: 20.,
..Default::default()});
stroker.move_to(Point::new(20., 20.), false);
stroker.line_to(Point::new(100., 100.));
stroker.line_to_capped(Point::new(110., 20.));
stroker.move_to(Point::new(120., 20.), true);
stroker.line_to(Point::new(120., 50.));
stroker.line_to(Point::new(140., 50.));
stroker.close();
let stroked = stroker.finish();
assert_eq!(stroked.len(), 330);
}
#[test]
fn curve() {
let mut stroker = Stroker::new(&StrokeStyle{
cap: LineCap::Round,
join: LineJoin::Bevel,
width: 20.,
..Default::default()});
stroker.move_to(Point::new(20., 160.), true);
stroker.curve_to(Point::new(100., 160.), Point::new(100., 180.), Point::new(20., 180.));
stroker.close();
let stroked = stroker.finish();
assert_eq!(stroked.len(), 1089);
}
#[test]
fn width_one_radius_arc() {
// previously this caused us to try to flatten an arc with radius 0
let mut stroker = Stroker::new(&StrokeStyle{
cap: LineCap::Round,
join: LineJoin::Round,
width: 1.,
..Default::default()});
stroker.move_to(Point::new(20., 20.), false);
stroker.line_to(Point::new(30., 160.));
stroker.line_to_capped(Point::new(40., 20.));
stroker.finish();
}
#[test]
fn parallel_line_join() {
// ensure line joins of almost parallel lines don't cause math to fail
for join in [LineJoin::Bevel, LineJoin::Round, LineJoin::Miter] {
let mut stroker = Stroker::new(&StrokeStyle{
cap: LineCap::Butt,
join,
width: 1.0,
..Default::default()});
stroker.move_to(Point::new(19.812500, 71.625000), true);
stroker.line_to(Point::new(19.250000, 72.000000));
stroker.line_to(Point::new(19.062500, 72.125000));
stroker.close();
stroker.finish();
}
}
|