1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
|
// The code is based from libcubeb's cubeb_mixer.cpp,
// which adapts the code from libswresample's rematrix.c
use crate::channel::{Channel, ChannelMap};
use std::fmt::Debug;
const CHANNELS: usize = Channel::count();
#[derive(Debug)]
enum Error {
DuplicateNonSilenceChannel,
AsymmetricChannels,
}
#[derive(Debug)]
struct ChannelLayout {
channels: Vec<Channel>,
channel_map: ChannelMap,
}
impl ChannelLayout {
fn new(channels: &[Channel]) -> Result<Self, Error> {
let channel_map = Self::get_channel_map(channels)?;
Ok(Self {
channels: channels.to_vec(),
channel_map,
})
}
// Except Silence channel, the duplicate channels are not allowed.
fn get_channel_map(channels: &[Channel]) -> Result<ChannelMap, Error> {
let mut map = ChannelMap::empty();
for channel in channels {
let bitmask = ChannelMap::from(*channel);
if channel != &Channel::Silence && map.contains(bitmask) {
return Err(Error::DuplicateNonSilenceChannel);
}
map.insert(bitmask);
}
Ok(map)
}
}
#[derive(Debug)]
pub struct Coefficient<T>
where
T: MixingCoefficient,
T::Coef: Copy,
{
input_layout: ChannelLayout,
output_layout: ChannelLayout,
matrix: Vec<Vec<T::Coef>>,
would_overflow_from_coefficient_value: Option<bool>, // Only used when T is i16
}
impl<T> Coefficient<T>
where
T: MixingCoefficient,
T::Coef: Copy,
{
// Given a M-channel input layout and a N-channel output layout, generate a NxM coefficients
// matrix m such that out_audio = m * in_audio, where in_audio, out_audio are Mx1, Nx1 matrix
// storing input and output audio data in their rows respectively.
//
// data in channel #1 ▸ │ Silence │ │ 0, 0, 0, 0 │ │ FrontRight │ ◂ data in channel #1
// data in channel #2 ▸ │ FrontRight │ = │ 1, C, 0, L │ x │ FrontCenter │ ◂ data in channel #2
// data in channel #3 ▸ │ FrontLeft │ │ 0, C, 1, L │ │ FrontLeft │ ◂ data in channel #3
// ▴ ▴ │ LowFrequency │ ◂ data in channel #4
// ┊ ┊ ▴
// ┊ ┊ ┊
// out_audio mixing matrix m in_audio
//
// The FrontLeft, FrontRight, ... etc label the data for front-left, front-right ... etc channel
// in both input and output audio data buffer.
//
// C and L are coefficients mixing input data from front-center channel and low-frequency channel
// to front-left and front-right.
//
// In math, the in_audio and out_audio should be a 2D-matrix with several rows containing only
// one column. However, the in_audio and out_audio are passed by 1-D matrix here for convenience.
pub fn create(input_channels: &[Channel], output_channels: &[Channel]) -> Self {
let input_layout = ChannelLayout::new(input_channels).expect("Invalid input layout");
let output_layout = ChannelLayout::new(output_channels).expect("Invalid output layout");
let mixing_matrix =
Self::build_mixing_matrix(input_layout.channel_map, output_layout.channel_map)
.unwrap_or_else(|_| Self::get_basic_matrix());
let coefficient_matrix = Self::pick_coefficients(
&input_layout.channels,
&output_layout.channels,
&mixing_matrix,
);
let normalized_matrix = Self::normalize(T::max_coefficients_sum(), coefficient_matrix);
let would_overflow = T::would_overflow_from_coefficient_value(&normalized_matrix);
// Convert the type of the coefficients from f64 to T::Coef.
let matrix = normalized_matrix
.into_iter()
.map(|row| row.into_iter().map(T::coefficient_from_f64).collect())
.collect();
Self {
input_layout,
output_layout,
matrix,
would_overflow_from_coefficient_value: would_overflow,
}
}
// Return the coefficient for mixing input channel data into output channel.
pub fn get(&self, input: usize, output: usize) -> T::Coef {
assert!(output < self.matrix.len());
assert!(input < self.matrix[output].len());
self.matrix[output][input] // Perform copy so T::Coef must implement Copy.
}
pub fn would_overflow_from_coefficient_value(&self) -> Option<bool> {
self.would_overflow_from_coefficient_value
}
pub fn input_channels(&self) -> &[Channel] {
&self.input_layout.channels
}
pub fn output_channels(&self) -> &[Channel] {
&self.output_layout.channels
}
// Given audio input and output channel-maps, generate a CxC mixing coefficients matrix M,
// whose indice are ordered by the values defined in enum Channel, such that
// output_data(i) = Σ M[i][j] * input_data(j), for all j in [0, C),
// where i is in [0, C) and C is the number of channels defined in enum Channel,
// output_data and input_data are buffers containing data for channels that are also ordered
// by the values defined in enum Channel.
//
// │ FrontLeft │ │ 1, 0, ..., 0 │ │ FrontLeft │ ◂ data in front-left channel
// │ FrontRight │ │ 0, 1, ..., 0 │ │ FrontRight │ ◂ data in front-right channel
// │ FrontCenter │ = │ ........., 0 │ x │ FrontCenter │ ◂ data in front-center channel
// │ ........... │ │ ........., 0 | │ ........... │ ◂ ...
// │ Silence │ │ 0, 0, ..., 0 | │ Silence │ ◂ data in silence channel
// ▴ ▴ ▴
// out_audio coef matrix M in_audio
//
// ChannelMap would be used as a hash table to check the existence of channels.
#[allow(clippy::cognitive_complexity)]
fn build_mixing_matrix(
input_map: ChannelMap,
output_map: ChannelMap,
) -> Result<[[f64; CHANNELS]; CHANNELS], Error> {
// Mixing coefficients constants.
use std::f64::consts::FRAC_1_SQRT_2;
use std::f64::consts::SQRT_2;
const CENTER_MIX_LEVEL: f64 = FRAC_1_SQRT_2;
const SURROUND_MIX_LEVEL: f64 = FRAC_1_SQRT_2;
const LFE_MIX_LEVEL: f64 = 1.0;
// The indices of channels in the mixing coefficients matrix.
const FRONT_LEFT: usize = Channel::FrontLeft.number();
const FRONT_RIGHT: usize = Channel::FrontRight.number();
const FRONT_CENTER: usize = Channel::FrontCenter.number();
const LOW_FREQUENCY: usize = Channel::LowFrequency.number();
const BACK_LEFT: usize = Channel::BackLeft.number();
const BACK_RIGHT: usize = Channel::BackRight.number();
const FRONT_LEFT_OF_CENTER: usize = Channel::FrontLeftOfCenter.number();
const FRONT_RIGHT_OF_CENTER: usize = Channel::FrontRightOfCenter.number();
const BACK_CENTER: usize = Channel::BackCenter.number();
const SIDE_LEFT: usize = Channel::SideLeft.number();
const SIDE_RIGHT: usize = Channel::SideRight.number();
// Return true if mixable channels are symmetric.
fn is_symmetric(map: ChannelMap) -> bool {
fn even(map: ChannelMap) -> bool {
map.bits().count_ones() % 2 == 0
}
even(map & ChannelMap::FRONT_2)
&& even(map & ChannelMap::BACK_2)
&& even(map & ChannelMap::FRONT_2_OF_CENTER)
&& even(map & ChannelMap::SIDE_2)
}
if !is_symmetric(input_map) || !is_symmetric(output_map) {
return Err(Error::AsymmetricChannels);
}
let mut matrix = Self::get_basic_matrix();
// Get input channels that are not in the output channels.
let unaccounted_input_map = input_map & !output_map;
// When input has front-center but output has not, and output has front-stereo,
// mix input's front-center to output's front-stereo.
if unaccounted_input_map.contains(ChannelMap::FRONT_CENTER)
&& output_map.contains(ChannelMap::FRONT_2)
{
let coefficient = if input_map.contains(ChannelMap::FRONT_2) {
CENTER_MIX_LEVEL
} else {
FRAC_1_SQRT_2
};
matrix[FRONT_LEFT][FRONT_CENTER] += coefficient;
matrix[FRONT_RIGHT][FRONT_CENTER] += coefficient;
}
// When input has front-stereo but output has not, and output has front-center,
// mix input's front-stereo to output's front-center.
if unaccounted_input_map.contains(ChannelMap::FRONT_2)
&& output_map.contains(ChannelMap::FRONT_CENTER)
{
matrix[FRONT_CENTER][FRONT_LEFT] += FRAC_1_SQRT_2;
matrix[FRONT_CENTER][FRONT_RIGHT] += FRAC_1_SQRT_2;
if input_map.contains(ChannelMap::FRONT_CENTER) {
matrix[FRONT_CENTER][FRONT_CENTER] = CENTER_MIX_LEVEL * SQRT_2;
}
}
// When input has back-center but output has not,
if unaccounted_input_map.contains(ChannelMap::BACK_CENTER) {
// if output has back-stereo, mix input's back-center to output's back-stereo.
if output_map.contains(ChannelMap::BACK_2) {
matrix[BACK_LEFT][BACK_CENTER] += FRAC_1_SQRT_2;
matrix[BACK_RIGHT][BACK_CENTER] += FRAC_1_SQRT_2;
// or if output has side-stereo, mix input's back-center to output's side-stereo.
} else if output_map.contains(ChannelMap::SIDE_2) {
matrix[SIDE_LEFT][BACK_CENTER] += FRAC_1_SQRT_2;
matrix[SIDE_RIGHT][BACK_CENTER] += FRAC_1_SQRT_2;
// or if output has front-stereo, mix input's back-center to output's front-stereo.
} else if output_map.contains(ChannelMap::FRONT_2) {
matrix[FRONT_LEFT][BACK_CENTER] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
matrix[FRONT_RIGHT][BACK_CENTER] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
// or if output has front-center, mix input's back-center to output's front-center.
} else if output_map.contains(ChannelMap::FRONT_CENTER) {
matrix[FRONT_CENTER][BACK_CENTER] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
}
}
// When input has back-stereo but output has not,
if unaccounted_input_map.contains(ChannelMap::BACK_2) {
// if output has back-center, mix input's back-stereo to output's back-center.
if output_map.contains(ChannelMap::BACK_CENTER) {
matrix[BACK_CENTER][BACK_LEFT] += FRAC_1_SQRT_2;
matrix[BACK_CENTER][BACK_RIGHT] += FRAC_1_SQRT_2;
// or if output has side-stereo, mix input's back-stereo to output's side-stereo.
} else if output_map.contains(ChannelMap::SIDE_2) {
let coefficient = if input_map.contains(ChannelMap::SIDE_2) {
FRAC_1_SQRT_2
} else {
1.0
};
matrix[SIDE_LEFT][BACK_LEFT] += coefficient;
matrix[SIDE_RIGHT][BACK_RIGHT] += coefficient;
// or if output has front-stereo, mix input's back-stereo to output's side-stereo.
} else if output_map.contains(ChannelMap::FRONT_2) {
matrix[FRONT_LEFT][BACK_LEFT] += SURROUND_MIX_LEVEL;
matrix[FRONT_RIGHT][BACK_RIGHT] += SURROUND_MIX_LEVEL;
// or if output has front-center, mix input's back-stereo to output's front-center.
} else if output_map.contains(ChannelMap::FRONT_CENTER) {
matrix[FRONT_CENTER][BACK_LEFT] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
matrix[FRONT_CENTER][BACK_RIGHT] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
}
}
// When input has side-stereo but output has not,
if unaccounted_input_map.contains(ChannelMap::SIDE_2) {
// if output has back-stereo, mix input's side-stereo to output's back-stereo.
if output_map.contains(ChannelMap::BACK_2) {
let coefficient = if input_map.contains(ChannelMap::BACK_2) {
FRAC_1_SQRT_2
} else {
1.0
};
matrix[BACK_LEFT][SIDE_LEFT] += coefficient;
matrix[BACK_RIGHT][SIDE_RIGHT] += coefficient;
// or if output has back-center, mix input's side-stereo to output's back-center.
} else if output_map.contains(ChannelMap::BACK_CENTER) {
matrix[BACK_CENTER][SIDE_LEFT] += FRAC_1_SQRT_2;
matrix[BACK_CENTER][SIDE_RIGHT] += FRAC_1_SQRT_2;
// or if output has front-stereo, mix input's side-stereo to output's front-stereo.
} else if output_map.contains(ChannelMap::FRONT_2) {
matrix[FRONT_LEFT][SIDE_LEFT] += SURROUND_MIX_LEVEL;
matrix[FRONT_RIGHT][SIDE_RIGHT] += SURROUND_MIX_LEVEL;
// or if output has front-center, mix input's side-stereo to output's front-center.
} else if output_map.contains(ChannelMap::FRONT_CENTER) {
matrix[FRONT_CENTER][SIDE_LEFT] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
matrix[FRONT_CENTER][SIDE_RIGHT] += SURROUND_MIX_LEVEL * FRAC_1_SQRT_2;
}
}
// When input has front-stereo-of-center but output has not,
if unaccounted_input_map.contains(ChannelMap::FRONT_2_OF_CENTER) {
// if output has front-stereo, mix input's front-stereo-of-center to output's front-stereo.
if output_map.contains(ChannelMap::FRONT_2) {
matrix[FRONT_LEFT][FRONT_LEFT_OF_CENTER] += 1.0;
matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER] += 1.0;
// or if output has front-center, mix input's front-stereo-of-center to output's front-center.
} else if output_map.contains(ChannelMap::FRONT_CENTER) {
matrix[FRONT_CENTER][FRONT_LEFT_OF_CENTER] += FRAC_1_SQRT_2;
matrix[FRONT_CENTER][FRONT_RIGHT_OF_CENTER] += FRAC_1_SQRT_2;
}
}
// When input has low-frequency but output has not,
if unaccounted_input_map.contains(ChannelMap::LOW_FREQUENCY) {
// if output has front-center, mix input's low-frequency to output's front-center.
if output_map.contains(ChannelMap::FRONT_CENTER) {
matrix[FRONT_CENTER][LOW_FREQUENCY] += LFE_MIX_LEVEL;
// or if output has front-stereo, mix input's low-frequency to output's front-stereo.
} else if output_map.contains(ChannelMap::FRONT_2) {
matrix[FRONT_LEFT][LOW_FREQUENCY] += LFE_MIX_LEVEL * FRAC_1_SQRT_2;
matrix[FRONT_RIGHT][LOW_FREQUENCY] += LFE_MIX_LEVEL * FRAC_1_SQRT_2;
}
}
Ok(matrix)
}
// Return a CHANNELSxCHANNELS matrix M that is (CHANNELS-1)x(CHANNELS-1) identity matrix
// padding with one extra row and one column containing only zero values. The result would be:
//
// identity padding
// matrix column
// ▾ ▾
// ┌┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┐ i ┐
// │ 1, 0, 0, ..., 0 ┊, 0 │ ◂ 0 ┊ channel i
// │ 0, 1, 0, ..., 0 ┊, 0 │ ◂ 1 ┊ for
// │ 0, 0, 1, ..., 0 ┊, 0 │ ◂ 2 ┊ audio
// │ 0, 0, 0, ..., 0 ┊, 0 │ . ┊ output
// │ ............... ┊ │ . ┊
// │ 0, 0, 0, ..., 1 ┊, 0 │ ◂ 16 ┊
// ├┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┼┈┈┈┈┤ ◂ 17 ┊
// │ 0, 0, 0, ..., 0 ┊, 0 │ ◂ padding row ◂ 18 ┊
// ▴ ▴ ▴ .... ▴ ▴ ┘
// j 0 1 2 .... 17 18
// └┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┘
// channel j for audio input
//
// Given an audio input buffer, in_audio, and an output buffer, out_audio,
// and their channel data are both ordered by the values defined in enum Channel.
// The generated matrix M makes sure that:
//
// out_audio(i) = in_audio(j), if i == j and both i, j are non-silence channel
// = 0, if i != j or i, j are silence channel
//
// │ FrontLeft │ │ FrontLeft │ ◂ data in front-left channel
// │ FrontRight │ │ FrontRight │ ◂ data in front-right channel
// │ FrontCenter │ = M x │ FrontCenter │ ◂ data in front-center channel
// │ ........... │ │ ........... │ ◂ ...
// │ Silence │ │ Silence │ ◂ data in silence channel
// ▴ ▴
// out_audio in_audio
//
// That is,
// 1. If the input-channel is silence, it won't be mixed into any channel.
// 2. If the output-channel is silence, its output-channel data will be zero (silence).
// 3. If input-channel j is different from output-channel i, audio data in input channel j
// won't be mixed into the audio output data in channel i
// 4. If input-channel j is same as output-channel i, audio data in input channel j will be
// copied to audio output data in channel i
//
fn get_basic_matrix() -> [[f64; CHANNELS]; CHANNELS] {
const SILENCE: usize = Channel::Silence.number();
let mut matrix = [[0.0; CHANNELS]; CHANNELS];
for (i, row) in matrix.iter_mut().enumerate() {
if i != SILENCE {
row[i] = 1.0;
}
}
matrix
}
// Given is an CHANNELSxCHANNELS mixing matrix whose indice are ordered by the values defined
// in enum Channel, and the channel orders of M-channel input and N-channel output, generate a
// mixing matrix m such that output_data(i) = Σ m[i][j] * input_data(j), for all j in [0, M),
// where i is in [0, N) and {input/output}_data(k) means the data of the number k channel in
// the input/output buffer.
fn pick_coefficients(
input_channels: &[Channel],
output_channels: &[Channel],
source: &[[f64; CHANNELS]; CHANNELS],
) -> Vec<Vec<f64>> {
let mut matrix = Vec::with_capacity(output_channels.len());
for output_channel in output_channels {
let output_channel_index = output_channel.clone().number();
let mut coefficients = Vec::with_capacity(input_channels.len());
for input_channel in input_channels {
let input_channel_index = input_channel.clone().number();
coefficients.push(source[output_channel_index][input_channel_index]);
}
matrix.push(coefficients);
}
matrix
}
fn normalize(max_coefficients_sum: f64, mut coefficients: Vec<Vec<f64>>) -> Vec<Vec<f64>> {
let mut max_sum: f64 = 0.0;
for coefs in &coefficients {
max_sum = max_sum.max(coefs.iter().sum());
}
if max_sum != 0.0 && max_sum > max_coefficients_sum {
max_sum /= max_coefficients_sum;
for coefs in &mut coefficients {
for coef in coefs {
*coef /= max_sum;
}
}
}
coefficients
}
}
pub trait MixingCoefficient {
type Coef;
// TODO: These should be private.
fn max_coefficients_sum() -> f64; // Used for normalizing.
fn coefficient_from_f64(value: f64) -> Self::Coef;
// Precheck if overflow occurs when converting value from Self::Coef type to Self type.
fn would_overflow_from_coefficient_value(coefficient: &[Vec<f64>]) -> Option<bool>;
fn to_coefficient_value(value: Self) -> Self::Coef;
fn from_coefficient_value(value: Self::Coef, would_overflow: Option<bool>) -> Self;
}
impl MixingCoefficient for f32 {
type Coef = f32;
fn max_coefficients_sum() -> f64 {
f64::from(std::i32::MAX)
}
fn coefficient_from_f64(value: f64) -> Self::Coef {
value as Self::Coef
}
fn would_overflow_from_coefficient_value(_coefficient: &[Vec<f64>]) -> Option<bool> {
None
}
fn to_coefficient_value(value: Self) -> Self::Coef {
value
}
fn from_coefficient_value(value: Self::Coef, would_overflow: Option<bool>) -> Self {
assert!(would_overflow.is_none());
value
}
}
impl MixingCoefficient for i16 {
type Coef = i32;
fn max_coefficients_sum() -> f64 {
1.0
}
fn coefficient_from_f64(value: f64) -> Self::Coef {
(value * f64::from(1 << 15)).round() as Self::Coef
}
fn would_overflow_from_coefficient_value(coefficient: &[Vec<f64>]) -> Option<bool> {
let mut max_sum: Self::Coef = 0;
for row in coefficient {
let mut sum: Self::Coef = 0;
let mut rem: f64 = 0.0;
for coef in row {
let target = coef * f64::from(1 << 15) + rem;
let value = target.round() as Self::Coef;
rem += target - target.round();
sum += value.abs();
}
max_sum = max_sum.max(sum);
}
Some(max_sum > (1 << 15))
}
fn to_coefficient_value(value: Self) -> Self::Coef {
Self::Coef::from(value)
}
fn from_coefficient_value(value: Self::Coef, would_overflow: Option<bool>) -> Self {
use std::convert::TryFrom;
let would_overflow = would_overflow.expect("would_overflow must have value for i16 type");
let mut converted = (value + (1 << 14)) >> 15;
// clip the signed integer value into the -32768,32767 range.
if would_overflow && ((converted + 0x8000) & !0xFFFF != 0) {
converted = (converted >> 31) ^ 0x7FFF;
}
Self::try_from(converted).expect("Cannot convert coefficient from i32 to i16")
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_create_f32() {
test_create::<f32>(MixDirection::Downmix);
test_create::<f32>(MixDirection::Upmix);
}
#[test]
fn test_create_i16() {
test_create::<i16>(MixDirection::Downmix);
test_create::<i16>(MixDirection::Upmix);
}
fn test_create<T>(direction: MixDirection)
where
T: MixingCoefficient,
T::Coef: Copy + Debug,
{
let (input_channels, output_channels) = get_test_channels(direction);
let coefficient = Coefficient::<T>::create(&input_channels, &output_channels);
println!(
"{:?} = {:?} * {:?}",
output_channels, coefficient.matrix, input_channels
);
}
enum MixDirection {
Downmix,
Upmix,
}
fn get_test_channels(direction: MixDirection) -> (Vec<Channel>, Vec<Channel>) {
let more = vec![
Channel::Silence,
Channel::FrontRight,
Channel::FrontLeft,
Channel::LowFrequency,
Channel::Silence,
Channel::BackCenter,
];
let less = vec![
Channel::FrontLeft,
Channel::Silence,
Channel::FrontRight,
Channel::FrontCenter,
];
match direction {
MixDirection::Downmix => (more, less),
MixDirection::Upmix => (less, more),
}
}
#[test]
fn test_create_with_duplicate_silience_channels_f32() {
test_create_with_duplicate_silience_channels::<f32>()
}
#[test]
fn test_create_with_duplicate_silience_channels_i16() {
test_create_with_duplicate_silience_channels::<i16>()
}
#[test]
#[should_panic]
fn test_create_with_duplicate_input_channels_f32() {
test_create_with_duplicate_input_channels::<f32>()
}
#[test]
#[should_panic]
fn test_create_with_duplicate_input_channels_i16() {
test_create_with_duplicate_input_channels::<i16>()
}
#[test]
#[should_panic]
fn test_create_with_duplicate_output_channels_f32() {
test_create_with_duplicate_output_channels::<f32>()
}
#[test]
#[should_panic]
fn test_create_with_duplicate_output_channels_i16() {
test_create_with_duplicate_output_channels::<i16>()
}
fn test_create_with_duplicate_silience_channels<T>()
where
T: MixingCoefficient,
T::Coef: Copy,
{
// Duplicate of Silence channels is allowed on both input side and output side.
let input_channels = [
Channel::FrontLeft,
Channel::Silence,
Channel::FrontRight,
Channel::FrontCenter,
Channel::Silence,
];
let output_channels = [
Channel::Silence,
Channel::FrontRight,
Channel::FrontLeft,
Channel::BackCenter,
Channel::Silence,
];
let _ = Coefficient::<T>::create(&input_channels, &output_channels);
}
fn test_create_with_duplicate_input_channels<T>()
where
T: MixingCoefficient,
T::Coef: Copy,
{
let input_channels = [
Channel::FrontLeft,
Channel::Silence,
Channel::FrontLeft,
Channel::FrontCenter,
];
let output_channels = [
Channel::Silence,
Channel::FrontRight,
Channel::FrontLeft,
Channel::FrontCenter,
Channel::BackCenter,
];
let _ = Coefficient::<T>::create(&input_channels, &output_channels);
}
fn test_create_with_duplicate_output_channels<T>()
where
T: MixingCoefficient,
T::Coef: Copy,
{
let input_channels = [
Channel::FrontLeft,
Channel::Silence,
Channel::FrontRight,
Channel::FrontCenter,
];
let output_channels = [
Channel::Silence,
Channel::FrontRight,
Channel::FrontLeft,
Channel::FrontCenter,
Channel::FrontCenter,
Channel::BackCenter,
];
let _ = Coefficient::<T>::create(&input_channels, &output_channels);
}
#[test]
fn test_get_redirect_matrix_f32() {
test_get_redirect_matrix::<f32>();
}
#[test]
fn test_get_redirect_matrix_i16() {
test_get_redirect_matrix::<i16>();
}
fn test_get_redirect_matrix<T>()
where
T: MixingCoefficient,
T::Coef: Copy + Debug + PartialEq,
{
// Create a matrix that only redirect the channels from input side to output side,
// without mixing input audio data to output audio data.
fn compute_redirect_matrix<T>(
input_channels: &[Channel],
output_channels: &[Channel],
) -> Vec<Vec<T::Coef>>
where
T: MixingCoefficient,
{
let mut matrix = Vec::with_capacity(output_channels.len());
for output_channel in output_channels {
let mut row = Vec::with_capacity(input_channels.len());
for input_channel in input_channels {
row.push(
if input_channel != output_channel
|| input_channel == &Channel::Silence
|| output_channel == &Channel::Silence
{
0.0
} else {
1.0
},
);
}
matrix.push(row);
}
// Convert the type of the coefficients from f64 to T::Coef.
matrix
.into_iter()
.map(|row| row.into_iter().map(T::coefficient_from_f64).collect())
.collect()
}
let input_channels = [
Channel::FrontLeft,
Channel::Silence,
Channel::FrontRight,
Channel::FrontCenter,
];
let output_channels = [
Channel::Silence,
Channel::FrontLeft,
Channel::Silence,
Channel::FrontCenter,
Channel::BackCenter,
];
// Get a redirect matrix since the output layout is asymmetric.
let coefficient = Coefficient::<T>::create(&input_channels, &output_channels);
let expected = compute_redirect_matrix::<T>(&input_channels, &output_channels);
assert_eq!(coefficient.matrix, expected);
println!(
"{:?} = {:?} * {:?}",
output_channels, coefficient.matrix, input_channels
);
}
#[test]
fn test_normalize() {
use float_cmp::approx_eq;
let m = vec![
vec![1.0_f64, 2.0_f64, 3.0_f64],
vec![4.0_f64, 6.0_f64, 10.0_f64],
];
let mut max_row_sum: f64 = std::f64::MIN;
for row in &m {
max_row_sum = max_row_sum.max(row.iter().sum());
}
// Type of Coefficient doesn't matter here.
// If the first argument of normalize >= max_row_sum, do nothing.
let n = Coefficient::<f32>::normalize(max_row_sum, m.clone());
assert_eq!(n, m);
// If the first argument of normalize < max_row_sum, do normalizing.
let smaller_max = max_row_sum - 0.5_f64;
assert!(smaller_max > 0.0_f64);
let n = Coefficient::<f32>::normalize(smaller_max, m);
let mut max_row_sum: f64 = std::f64::MIN;
for row in &n {
max_row_sum = max_row_sum.max(row.iter().sum());
assert!(row.iter().sum::<f64>() <= smaller_max);
}
assert!(approx_eq!(f64, smaller_max, max_row_sum));
}
}
|