1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
|
//! Determining which types for which we cannot emit `#[derive(Trait)]`.
use std::fmt;
use super::{generate_dependencies, ConstrainResult, MonotoneFramework};
use crate::ir::analysis::has_vtable::HasVtable;
use crate::ir::comp::CompKind;
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::derive::CanDerive;
use crate::ir::function::FunctionSig;
use crate::ir::item::{IsOpaque, Item};
use crate::ir::layout::Layout;
use crate::ir::template::TemplateParameters;
use crate::ir::traversal::{EdgeKind, Trace};
use crate::ir::ty::RUST_DERIVE_IN_ARRAY_LIMIT;
use crate::ir::ty::{Type, TypeKind};
use crate::{Entry, HashMap, HashSet};
/// Which trait to consider when doing the `CannotDerive` analysis.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum DeriveTrait {
/// The `Copy` trait.
Copy,
/// The `Debug` trait.
Debug,
/// The `Default` trait.
Default,
/// The `Hash` trait.
Hash,
/// The `PartialEq` and `PartialOrd` traits.
PartialEqOrPartialOrd,
}
/// An analysis that finds for each IR item whether a trait cannot be derived.
///
/// We use the monotone constraint function `cannot_derive`, defined as follows
/// for type T:
///
/// * If T is Opaque and the layout of the type is known, get this layout as an
/// opaquetype and check whether it can derive using trivial checks.
///
/// * If T is Array, a trait cannot be derived if the array is incomplete,
/// if the length of the array is larger than the limit (unless the trait
/// allows it), or the trait cannot be derived for the type of data the array
/// contains.
///
/// * If T is Vector, a trait cannot be derived if the trait cannot be derived
/// for the type of data the vector contains.
///
/// * If T is a type alias, a templated alias or an indirection to another type,
/// the trait cannot be derived if the trait cannot be derived for type T
/// refers to.
///
/// * If T is a compound type, the trait cannot be derived if the trait cannot
/// be derived for any of its base members or fields.
///
/// * If T is an instantiation of an abstract template definition, the trait
/// cannot be derived if any of the template arguments or template definition
/// cannot derive the trait.
///
/// * For all other (simple) types, compiler and standard library limitations
/// dictate whether the trait is implemented.
#[derive(Debug, Clone)]
pub struct CannotDerive<'ctx> {
ctx: &'ctx BindgenContext,
derive_trait: DeriveTrait,
// The incremental result of this analysis's computation.
// Contains information whether particular item can derive `derive_trait`
can_derive: HashMap<ItemId, CanDerive>,
// Dependencies saying that if a key ItemId has been inserted into the
// `cannot_derive_partialeq_or_partialord` set, then each of the ids
// in Vec<ItemId> need to be considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// can derive `derive_trait`.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}
type EdgePredicate = fn(EdgeKind) -> bool;
fn consider_edge_default(kind: EdgeKind) -> bool {
match kind {
// These are the only edges that can affect whether a type can derive
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::TypeReference |
EdgeKind::VarType |
EdgeKind::TemplateArgument |
EdgeKind::TemplateDeclaration |
EdgeKind::TemplateParameterDefinition => true,
EdgeKind::Constructor |
EdgeKind::Destructor |
EdgeKind::FunctionReturn |
EdgeKind::FunctionParameter |
EdgeKind::InnerType |
EdgeKind::InnerVar |
EdgeKind::Method |
EdgeKind::Generic => false,
}
}
impl<'ctx> CannotDerive<'ctx> {
fn insert<Id: Into<ItemId>>(
&mut self,
id: Id,
can_derive: CanDerive,
) -> ConstrainResult {
let id = id.into();
trace!(
"inserting {:?} can_derive<{}>={:?}",
id,
self.derive_trait,
can_derive
);
if let CanDerive::Yes = can_derive {
return ConstrainResult::Same;
}
match self.can_derive.entry(id) {
Entry::Occupied(mut entry) => {
if *entry.get() < can_derive {
entry.insert(can_derive);
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
Entry::Vacant(entry) => {
entry.insert(can_derive);
ConstrainResult::Changed
}
}
}
fn constrain_type(&mut self, item: &Item, ty: &Type) -> CanDerive {
if !self.ctx.allowlisted_items().contains(&item.id()) {
let can_derive = self
.ctx
.blocklisted_type_implements_trait(item, self.derive_trait);
match can_derive {
CanDerive::Yes => trace!(
" blocklisted type explicitly implements {}",
self.derive_trait
),
CanDerive::Manually => trace!(
" blocklisted type requires manual implementation of {}",
self.derive_trait
),
CanDerive::No => trace!(
" cannot derive {} for blocklisted type",
self.derive_trait
),
}
return can_derive;
}
if self.derive_trait.not_by_name(self.ctx, item) {
trace!(
" cannot derive {} for explicitly excluded type",
self.derive_trait
);
return CanDerive::No;
}
trace!("ty: {:?}", ty);
if item.is_opaque(self.ctx, &()) {
if !self.derive_trait.can_derive_union() &&
ty.is_union() &&
self.ctx.options().rust_features().untagged_union
{
trace!(
" cannot derive {} for Rust unions",
self.derive_trait
);
return CanDerive::No;
}
let layout_can_derive =
ty.layout(self.ctx).map_or(CanDerive::Yes, |l| {
l.opaque().array_size_within_derive_limit(self.ctx)
});
match layout_can_derive {
CanDerive::Yes => {
trace!(
" we can trivially derive {} for the layout",
self.derive_trait
);
}
_ => {
trace!(
" we cannot derive {} for the layout",
self.derive_trait
);
}
};
return layout_can_derive;
}
match *ty.kind() {
// Handle the simple cases. These can derive traits without further
// information.
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Complex(..) |
TypeKind::Float(..) |
TypeKind::Enum(..) |
TypeKind::TypeParam |
TypeKind::UnresolvedTypeRef(..) |
TypeKind::Reference(..) |
TypeKind::ObjCInterface(..) |
TypeKind::ObjCId |
TypeKind::ObjCSel => {
return self.derive_trait.can_derive_simple(ty.kind());
}
TypeKind::Pointer(inner) => {
let inner_type =
self.ctx.resolve_type(inner).canonical_type(self.ctx);
if let TypeKind::Function(ref sig) = *inner_type.kind() {
self.derive_trait.can_derive_fnptr(sig)
} else {
self.derive_trait.can_derive_pointer()
}
}
TypeKind::Function(ref sig) => {
self.derive_trait.can_derive_fnptr(sig)
}
// Complex cases need more information
TypeKind::Array(t, len) => {
let inner_type =
self.can_derive.get(&t.into()).cloned().unwrap_or_default();
if inner_type != CanDerive::Yes {
trace!(
" arrays of T for which we cannot derive {} \
also cannot derive {}",
self.derive_trait,
self.derive_trait
);
return CanDerive::No;
}
if len == 0 && !self.derive_trait.can_derive_incomplete_array()
{
trace!(
" cannot derive {} for incomplete arrays",
self.derive_trait
);
return CanDerive::No;
}
if self.derive_trait.can_derive_large_array(self.ctx) {
trace!(" array can derive {}", self.derive_trait);
return CanDerive::Yes;
}
if len > RUST_DERIVE_IN_ARRAY_LIMIT {
trace!(
" array is too large to derive {}, but it may be implemented", self.derive_trait
);
return CanDerive::Manually;
}
trace!(
" array is small enough to derive {}",
self.derive_trait
);
CanDerive::Yes
}
TypeKind::Vector(t, len) => {
let inner_type =
self.can_derive.get(&t.into()).cloned().unwrap_or_default();
if inner_type != CanDerive::Yes {
trace!(
" vectors of T for which we cannot derive {} \
also cannot derive {}",
self.derive_trait,
self.derive_trait
);
return CanDerive::No;
}
assert_ne!(len, 0, "vectors cannot have zero length");
self.derive_trait.can_derive_vector()
}
TypeKind::Comp(ref info) => {
assert!(
!info.has_non_type_template_params(),
"The early ty.is_opaque check should have handled this case"
);
if !self.derive_trait.can_derive_compound_forward_decl() &&
info.is_forward_declaration()
{
trace!(
" cannot derive {} for forward decls",
self.derive_trait
);
return CanDerive::No;
}
// NOTE: Take into account that while unions in C and C++ are copied by
// default, the may have an explicit destructor in C++, so we can't
// defer this check just for the union case.
if !self.derive_trait.can_derive_compound_with_destructor() &&
self.ctx.lookup_has_destructor(
item.id().expect_type_id(self.ctx),
)
{
trace!(
" comp has destructor which cannot derive {}",
self.derive_trait
);
return CanDerive::No;
}
if info.kind() == CompKind::Union {
if self.derive_trait.can_derive_union() {
if self.ctx.options().rust_features().untagged_union &&
// https://github.com/rust-lang/rust/issues/36640
(!info.self_template_params(self.ctx).is_empty() ||
!item.all_template_params(self.ctx).is_empty())
{
trace!(
" cannot derive {} for Rust union because issue 36640", self.derive_trait
);
return CanDerive::No;
}
// fall through to be same as non-union handling
} else {
if self.ctx.options().rust_features().untagged_union {
trace!(
" cannot derive {} for Rust unions",
self.derive_trait
);
return CanDerive::No;
}
let layout_can_derive =
ty.layout(self.ctx).map_or(CanDerive::Yes, |l| {
l.opaque()
.array_size_within_derive_limit(self.ctx)
});
match layout_can_derive {
CanDerive::Yes => {
trace!(
" union layout can trivially derive {}",
self.derive_trait
);
}
_ => {
trace!(
" union layout cannot derive {}",
self.derive_trait
);
}
};
return layout_can_derive;
}
}
if !self.derive_trait.can_derive_compound_with_vtable() &&
item.has_vtable(self.ctx)
{
trace!(
" cannot derive {} for comp with vtable",
self.derive_trait
);
return CanDerive::No;
}
// Bitfield units are always represented as arrays of u8, but
// they're not traced as arrays, so we need to check here
// instead.
if !self.derive_trait.can_derive_large_array(self.ctx) &&
info.has_too_large_bitfield_unit() &&
!item.is_opaque(self.ctx, &())
{
trace!(
" cannot derive {} for comp with too large bitfield unit",
self.derive_trait
);
return CanDerive::No;
}
let pred = self.derive_trait.consider_edge_comp();
self.constrain_join(item, pred)
}
TypeKind::ResolvedTypeRef(..) |
TypeKind::TemplateAlias(..) |
TypeKind::Alias(..) |
TypeKind::BlockPointer(..) => {
let pred = self.derive_trait.consider_edge_typeref();
self.constrain_join(item, pred)
}
TypeKind::TemplateInstantiation(..) => {
let pred = self.derive_trait.consider_edge_tmpl_inst();
self.constrain_join(item, pred)
}
TypeKind::Opaque => unreachable!(
"The early ty.is_opaque check should have handled this case"
),
}
}
fn constrain_join(
&mut self,
item: &Item,
consider_edge: EdgePredicate,
) -> CanDerive {
let mut candidate = None;
item.trace(
self.ctx,
&mut |sub_id, edge_kind| {
// Ignore ourselves, since union with ourself is a
// no-op. Ignore edges that aren't relevant to the
// analysis.
if sub_id == item.id() || !consider_edge(edge_kind) {
return;
}
let can_derive = self.can_derive
.get(&sub_id)
.cloned()
.unwrap_or_default();
match can_derive {
CanDerive::Yes => trace!(" member {:?} can derive {}", sub_id, self.derive_trait),
CanDerive::Manually => trace!(" member {:?} cannot derive {}, but it may be implemented", sub_id, self.derive_trait),
CanDerive::No => trace!(" member {:?} cannot derive {}", sub_id, self.derive_trait),
}
*candidate.get_or_insert(CanDerive::Yes) |= can_derive;
},
&(),
);
if candidate.is_none() {
trace!(
" can derive {} because there are no members",
self.derive_trait
);
}
candidate.unwrap_or_default()
}
}
impl DeriveTrait {
fn not_by_name(&self, ctx: &BindgenContext, item: &Item) -> bool {
match self {
DeriveTrait::Copy => ctx.no_copy_by_name(item),
DeriveTrait::Debug => ctx.no_debug_by_name(item),
DeriveTrait::Default => ctx.no_default_by_name(item),
DeriveTrait::Hash => ctx.no_hash_by_name(item),
DeriveTrait::PartialEqOrPartialOrd => {
ctx.no_partialeq_by_name(item)
}
}
}
fn consider_edge_comp(&self) -> EdgePredicate {
match self {
DeriveTrait::PartialEqOrPartialOrd => consider_edge_default,
_ => |kind| matches!(kind, EdgeKind::BaseMember | EdgeKind::Field),
}
}
fn consider_edge_typeref(&self) -> EdgePredicate {
match self {
DeriveTrait::PartialEqOrPartialOrd => consider_edge_default,
_ => |kind| kind == EdgeKind::TypeReference,
}
}
fn consider_edge_tmpl_inst(&self) -> EdgePredicate {
match self {
DeriveTrait::PartialEqOrPartialOrd => consider_edge_default,
_ => |kind| {
matches!(
kind,
EdgeKind::TemplateArgument | EdgeKind::TemplateDeclaration
)
},
}
}
fn can_derive_large_array(&self, ctx: &BindgenContext) -> bool {
if ctx.options().rust_features().larger_arrays {
!matches!(self, DeriveTrait::Default)
} else {
matches!(self, DeriveTrait::Copy)
}
}
fn can_derive_union(&self) -> bool {
matches!(self, DeriveTrait::Copy)
}
fn can_derive_compound_with_destructor(&self) -> bool {
!matches!(self, DeriveTrait::Copy)
}
fn can_derive_compound_with_vtable(&self) -> bool {
!matches!(self, DeriveTrait::Default)
}
fn can_derive_compound_forward_decl(&self) -> bool {
matches!(self, DeriveTrait::Copy | DeriveTrait::Debug)
}
fn can_derive_incomplete_array(&self) -> bool {
!matches!(
self,
DeriveTrait::Copy |
DeriveTrait::Hash |
DeriveTrait::PartialEqOrPartialOrd
)
}
fn can_derive_fnptr(&self, f: &FunctionSig) -> CanDerive {
match (self, f.function_pointers_can_derive()) {
(DeriveTrait::Copy, _) | (DeriveTrait::Default, _) | (_, true) => {
trace!(" function pointer can derive {}", self);
CanDerive::Yes
}
(DeriveTrait::Debug, false) => {
trace!(" function pointer cannot derive {}, but it may be implemented", self);
CanDerive::Manually
}
(_, false) => {
trace!(" function pointer cannot derive {}", self);
CanDerive::No
}
}
}
fn can_derive_vector(&self) -> CanDerive {
match self {
DeriveTrait::PartialEqOrPartialOrd => {
// FIXME: vectors always can derive PartialEq, but they should
// not derive PartialOrd:
// https://github.com/rust-lang-nursery/packed_simd/issues/48
trace!(" vectors cannot derive PartialOrd");
CanDerive::No
}
_ => {
trace!(" vector can derive {}", self);
CanDerive::Yes
}
}
}
fn can_derive_pointer(&self) -> CanDerive {
match self {
DeriveTrait::Default => {
trace!(" pointer cannot derive Default");
CanDerive::No
}
_ => {
trace!(" pointer can derive {}", self);
CanDerive::Yes
}
}
}
fn can_derive_simple(&self, kind: &TypeKind) -> CanDerive {
match (self, kind) {
// === Default ===
(DeriveTrait::Default, TypeKind::Void) |
(DeriveTrait::Default, TypeKind::NullPtr) |
(DeriveTrait::Default, TypeKind::Enum(..)) |
(DeriveTrait::Default, TypeKind::Reference(..)) |
(DeriveTrait::Default, TypeKind::TypeParam) |
(DeriveTrait::Default, TypeKind::ObjCInterface(..)) |
(DeriveTrait::Default, TypeKind::ObjCId) |
(DeriveTrait::Default, TypeKind::ObjCSel) => {
trace!(" types that always cannot derive Default");
CanDerive::No
}
(DeriveTrait::Default, TypeKind::UnresolvedTypeRef(..)) => {
unreachable!(
"Type with unresolved type ref can't reach derive default"
)
}
// === Hash ===
(DeriveTrait::Hash, TypeKind::Float(..)) |
(DeriveTrait::Hash, TypeKind::Complex(..)) => {
trace!(" float cannot derive Hash");
CanDerive::No
}
// === others ===
_ => {
trace!(" simple type that can always derive {}", self);
CanDerive::Yes
}
}
}
}
impl fmt::Display for DeriveTrait {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let s = match self {
DeriveTrait::Copy => "Copy",
DeriveTrait::Debug => "Debug",
DeriveTrait::Default => "Default",
DeriveTrait::Hash => "Hash",
DeriveTrait::PartialEqOrPartialOrd => "PartialEq/PartialOrd",
};
s.fmt(f)
}
}
impl<'ctx> MonotoneFramework for CannotDerive<'ctx> {
type Node = ItemId;
type Extra = (&'ctx BindgenContext, DeriveTrait);
type Output = HashMap<ItemId, CanDerive>;
fn new(
(ctx, derive_trait): (&'ctx BindgenContext, DeriveTrait),
) -> CannotDerive<'ctx> {
let can_derive = HashMap::default();
let dependencies = generate_dependencies(ctx, consider_edge_default);
CannotDerive {
ctx,
derive_trait,
can_derive,
dependencies,
}
}
fn initial_worklist(&self) -> Vec<ItemId> {
// The transitive closure of all allowlisted items, including explicitly
// blocklisted items.
self.ctx
.allowlisted_items()
.iter()
.cloned()
.flat_map(|i| {
let mut reachable = vec![i];
i.trace(
self.ctx,
&mut |s, _| {
reachable.push(s);
},
&(),
);
reachable
})
.collect()
}
fn constrain(&mut self, id: ItemId) -> ConstrainResult {
trace!("constrain: {:?}", id);
if let Some(CanDerive::No) = self.can_derive.get(&id).cloned() {
trace!(" already know it cannot derive {}", self.derive_trait);
return ConstrainResult::Same;
}
let item = self.ctx.resolve_item(id);
let can_derive = match item.as_type() {
Some(ty) => {
let mut can_derive = self.constrain_type(item, ty);
if let CanDerive::Yes = can_derive {
let is_reached_limit =
|l: Layout| l.align > RUST_DERIVE_IN_ARRAY_LIMIT;
if !self.derive_trait.can_derive_large_array(self.ctx) &&
ty.layout(self.ctx).map_or(false, is_reached_limit)
{
// We have to be conservative: the struct *could* have enough
// padding that we emit an array that is longer than
// `RUST_DERIVE_IN_ARRAY_LIMIT`. If we moved padding calculations
// into the IR and computed them before this analysis, then we could
// be precise rather than conservative here.
can_derive = CanDerive::Manually;
}
}
can_derive
}
None => self.constrain_join(item, consider_edge_default),
};
self.insert(id, can_derive)
}
fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where
F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}
impl<'ctx> From<CannotDerive<'ctx>> for HashMap<ItemId, CanDerive> {
fn from(analysis: CannotDerive<'ctx>) -> Self {
extra_assert!(analysis
.can_derive
.values()
.all(|v| *v != CanDerive::Yes));
analysis.can_derive
}
}
/// Convert a `HashMap<ItemId, CanDerive>` into a `HashSet<ItemId>`.
///
/// Elements that are not `CanDerive::Yes` are kept in the set, so that it
/// represents all items that cannot derive.
pub fn as_cannot_derive_set(
can_derive: HashMap<ItemId, CanDerive>,
) -> HashSet<ItemId> {
can_derive
.into_iter()
.filter_map(|(k, v)| if v != CanDerive::Yes { Some(k) } else { None })
.collect()
}
|