1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
|
//! Compound types (unions and structs) in our intermediate representation.
use super::analysis::Sizedness;
use super::annotations::Annotations;
use super::context::{BindgenContext, FunctionId, ItemId, TypeId, VarId};
use super::dot::DotAttributes;
use super::item::{IsOpaque, Item};
use super::layout::Layout;
use super::template::TemplateParameters;
use super::traversal::{EdgeKind, Trace, Tracer};
use super::ty::RUST_DERIVE_IN_ARRAY_LIMIT;
use crate::clang;
use crate::codegen::struct_layout::{align_to, bytes_from_bits_pow2};
use crate::ir::derive::CanDeriveCopy;
use crate::parse::ParseError;
use crate::HashMap;
use crate::NonCopyUnionStyle;
use peeking_take_while::PeekableExt;
use std::cmp;
use std::io;
use std::mem;
/// The kind of compound type.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum CompKind {
/// A struct.
Struct,
/// A union.
Union,
}
/// The kind of C++ method.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum MethodKind {
/// A constructor. We represent it as method for convenience, to avoid code
/// duplication.
Constructor,
/// A destructor.
Destructor,
/// A virtual destructor.
VirtualDestructor {
/// Whether it's pure virtual.
pure_virtual: bool,
},
/// A static method.
Static,
/// A normal method.
Normal,
/// A virtual method.
Virtual {
/// Whether it's pure virtual.
pure_virtual: bool,
},
}
impl MethodKind {
/// Is this a destructor method?
pub fn is_destructor(&self) -> bool {
matches!(
*self,
MethodKind::Destructor | MethodKind::VirtualDestructor { .. }
)
}
/// Is this a pure virtual method?
pub fn is_pure_virtual(&self) -> bool {
match *self {
MethodKind::Virtual { pure_virtual } |
MethodKind::VirtualDestructor { pure_virtual } => pure_virtual,
_ => false,
}
}
}
/// A struct representing a C++ method, either static, normal, or virtual.
#[derive(Debug)]
pub struct Method {
kind: MethodKind,
/// The signature of the method. Take into account this is not a `Type`
/// item, but a `Function` one.
///
/// This is tricky and probably this field should be renamed.
signature: FunctionId,
is_const: bool,
}
impl Method {
/// Construct a new `Method`.
pub fn new(
kind: MethodKind,
signature: FunctionId,
is_const: bool,
) -> Self {
Method {
kind,
signature,
is_const,
}
}
/// What kind of method is this?
pub fn kind(&self) -> MethodKind {
self.kind
}
/// Is this a constructor?
pub fn is_constructor(&self) -> bool {
self.kind == MethodKind::Constructor
}
/// Is this a virtual method?
pub fn is_virtual(&self) -> bool {
matches!(
self.kind,
MethodKind::Virtual { .. } | MethodKind::VirtualDestructor { .. }
)
}
/// Is this a static method?
pub fn is_static(&self) -> bool {
self.kind == MethodKind::Static
}
/// Get the id for the `Function` signature for this method.
pub fn signature(&self) -> FunctionId {
self.signature
}
/// Is this a const qualified method?
pub fn is_const(&self) -> bool {
self.is_const
}
}
/// Methods common to the various field types.
pub trait FieldMethods {
/// Get the name of this field.
fn name(&self) -> Option<&str>;
/// Get the type of this field.
fn ty(&self) -> TypeId;
/// Get the comment for this field.
fn comment(&self) -> Option<&str>;
/// If this is a bitfield, how many bits does it need?
fn bitfield_width(&self) -> Option<u32>;
/// Is this feild declared public?
fn is_public(&self) -> bool;
/// Get the annotations for this field.
fn annotations(&self) -> &Annotations;
/// The offset of the field (in bits)
fn offset(&self) -> Option<usize>;
}
/// A contiguous set of logical bitfields that live within the same physical
/// allocation unit. See 9.2.4 [class.bit] in the C++ standard and [section
/// 2.4.II.1 in the Itanium C++
/// ABI](http://itanium-cxx-abi.github.io/cxx-abi/abi.html#class-types).
#[derive(Debug)]
pub struct BitfieldUnit {
nth: usize,
layout: Layout,
bitfields: Vec<Bitfield>,
}
impl BitfieldUnit {
/// Get the 1-based index of this bitfield unit within its containing
/// struct. Useful for generating a Rust struct's field name for this unit
/// of bitfields.
pub fn nth(&self) -> usize {
self.nth
}
/// Get the layout within which these bitfields reside.
pub fn layout(&self) -> Layout {
self.layout
}
/// Get the bitfields within this unit.
pub fn bitfields(&self) -> &[Bitfield] {
&self.bitfields
}
}
/// A struct representing a C++ field.
#[derive(Debug)]
pub enum Field {
/// A normal data member.
DataMember(FieldData),
/// A physical allocation unit containing many logical bitfields.
Bitfields(BitfieldUnit),
}
impl Field {
/// Get this field's layout.
pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> {
match *self {
Field::Bitfields(BitfieldUnit { layout, .. }) => Some(layout),
Field::DataMember(ref data) => {
ctx.resolve_type(data.ty).layout(ctx)
}
}
}
}
impl Trace for Field {
type Extra = ();
fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &())
where
T: Tracer,
{
match *self {
Field::DataMember(ref data) => {
tracer.visit_kind(data.ty.into(), EdgeKind::Field);
}
Field::Bitfields(BitfieldUnit { ref bitfields, .. }) => {
for bf in bitfields {
tracer.visit_kind(bf.ty().into(), EdgeKind::Field);
}
}
}
}
}
impl DotAttributes for Field {
fn dot_attributes<W>(
&self,
ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
match *self {
Field::DataMember(ref data) => data.dot_attributes(ctx, out),
Field::Bitfields(BitfieldUnit {
layout,
ref bitfields,
..
}) => {
writeln!(
out,
r#"<tr>
<td>bitfield unit</td>
<td>
<table border="0">
<tr>
<td>unit.size</td><td>{}</td>
</tr>
<tr>
<td>unit.align</td><td>{}</td>
</tr>
"#,
layout.size, layout.align
)?;
for bf in bitfields {
bf.dot_attributes(ctx, out)?;
}
writeln!(out, "</table></td></tr>")
}
}
}
}
impl DotAttributes for FieldData {
fn dot_attributes<W>(
&self,
_ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
writeln!(
out,
"<tr><td>{}</td><td>{:?}</td></tr>",
self.name().unwrap_or("(anonymous)"),
self.ty()
)
}
}
impl DotAttributes for Bitfield {
fn dot_attributes<W>(
&self,
_ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
writeln!(
out,
"<tr><td>{} : {}</td><td>{:?}</td></tr>",
self.name().unwrap_or("(anonymous)"),
self.width(),
self.ty()
)
}
}
/// A logical bitfield within some physical bitfield allocation unit.
#[derive(Debug)]
pub struct Bitfield {
/// Index of the bit within this bitfield's allocation unit where this
/// bitfield's bits begin.
offset_into_unit: usize,
/// The field data for this bitfield.
data: FieldData,
/// Name of the generated Rust getter for this bitfield.
///
/// Should be assigned before codegen.
getter_name: Option<String>,
/// Name of the generated Rust setter for this bitfield.
///
/// Should be assigned before codegen.
setter_name: Option<String>,
}
impl Bitfield {
/// Construct a new bitfield.
fn new(offset_into_unit: usize, raw: RawField) -> Bitfield {
assert!(raw.bitfield_width().is_some());
Bitfield {
offset_into_unit,
data: raw.0,
getter_name: None,
setter_name: None,
}
}
/// Get the index of the bit within this bitfield's allocation unit where
/// this bitfield begins.
pub fn offset_into_unit(&self) -> usize {
self.offset_into_unit
}
/// Get the mask value that when &'ed with this bitfield's allocation unit
/// produces this bitfield's value.
pub fn mask(&self) -> u64 {
use std::u64;
let unoffseted_mask =
if self.width() as u64 == mem::size_of::<u64>() as u64 * 8 {
u64::MAX
} else {
(1u64 << self.width()) - 1u64
};
unoffseted_mask << self.offset_into_unit()
}
/// Get the bit width of this bitfield.
pub fn width(&self) -> u32 {
self.data.bitfield_width().unwrap()
}
/// Name of the generated Rust getter for this bitfield.
///
/// Panics if called before assigning bitfield accessor names or if
/// this bitfield have no name.
pub fn getter_name(&self) -> &str {
assert!(
self.name().is_some(),
"`Bitfield::getter_name` called on anonymous field"
);
self.getter_name.as_ref().expect(
"`Bitfield::getter_name` should only be called after\
assigning bitfield accessor names",
)
}
/// Name of the generated Rust setter for this bitfield.
///
/// Panics if called before assigning bitfield accessor names or if
/// this bitfield have no name.
pub fn setter_name(&self) -> &str {
assert!(
self.name().is_some(),
"`Bitfield::setter_name` called on anonymous field"
);
self.setter_name.as_ref().expect(
"`Bitfield::setter_name` should only be called\
after assigning bitfield accessor names",
)
}
}
impl FieldMethods for Bitfield {
fn name(&self) -> Option<&str> {
self.data.name()
}
fn ty(&self) -> TypeId {
self.data.ty()
}
fn comment(&self) -> Option<&str> {
self.data.comment()
}
fn bitfield_width(&self) -> Option<u32> {
self.data.bitfield_width()
}
fn is_public(&self) -> bool {
self.data.is_public()
}
fn annotations(&self) -> &Annotations {
self.data.annotations()
}
fn offset(&self) -> Option<usize> {
self.data.offset()
}
}
/// A raw field might be either of a plain data member or a bitfield within a
/// bitfield allocation unit, but we haven't processed it and determined which
/// yet (which would involve allocating it into a bitfield unit if it is a
/// bitfield).
#[derive(Debug)]
struct RawField(FieldData);
impl RawField {
/// Construct a new `RawField`.
fn new(
name: Option<String>,
ty: TypeId,
comment: Option<String>,
annotations: Option<Annotations>,
bitfield_width: Option<u32>,
public: bool,
offset: Option<usize>,
) -> RawField {
RawField(FieldData {
name,
ty,
comment,
annotations: annotations.unwrap_or_default(),
bitfield_width,
public,
offset,
})
}
}
impl FieldMethods for RawField {
fn name(&self) -> Option<&str> {
self.0.name()
}
fn ty(&self) -> TypeId {
self.0.ty()
}
fn comment(&self) -> Option<&str> {
self.0.comment()
}
fn bitfield_width(&self) -> Option<u32> {
self.0.bitfield_width()
}
fn is_public(&self) -> bool {
self.0.is_public()
}
fn annotations(&self) -> &Annotations {
self.0.annotations()
}
fn offset(&self) -> Option<usize> {
self.0.offset()
}
}
/// Convert the given ordered set of raw fields into a list of either plain data
/// members, and/or bitfield units containing multiple bitfields.
///
/// If we do not have the layout for a bitfield's type, then we can't reliably
/// compute its allocation unit. In such cases, we return an error.
fn raw_fields_to_fields_and_bitfield_units<I>(
ctx: &BindgenContext,
raw_fields: I,
packed: bool,
) -> Result<(Vec<Field>, bool), ()>
where
I: IntoIterator<Item = RawField>,
{
let mut raw_fields = raw_fields.into_iter().fuse().peekable();
let mut fields = vec![];
let mut bitfield_unit_count = 0;
loop {
// While we have plain old data members, just keep adding them to our
// resulting fields. We introduce a scope here so that we can use
// `raw_fields` again after the `by_ref` iterator adaptor is dropped.
{
let non_bitfields = raw_fields
.by_ref()
.peeking_take_while(|f| f.bitfield_width().is_none())
.map(|f| Field::DataMember(f.0));
fields.extend(non_bitfields);
}
// Now gather all the consecutive bitfields. Only consecutive bitfields
// may potentially share a bitfield allocation unit with each other in
// the Itanium C++ ABI.
let mut bitfields = raw_fields
.by_ref()
.peeking_take_while(|f| f.bitfield_width().is_some())
.peekable();
if bitfields.peek().is_none() {
break;
}
bitfields_to_allocation_units(
ctx,
&mut bitfield_unit_count,
&mut fields,
bitfields,
packed,
)?;
}
assert!(
raw_fields.next().is_none(),
"The above loop should consume all items in `raw_fields`"
);
Ok((fields, bitfield_unit_count != 0))
}
/// Given a set of contiguous raw bitfields, group and allocate them into
/// (potentially multiple) bitfield units.
fn bitfields_to_allocation_units<E, I>(
ctx: &BindgenContext,
bitfield_unit_count: &mut usize,
fields: &mut E,
raw_bitfields: I,
packed: bool,
) -> Result<(), ()>
where
E: Extend<Field>,
I: IntoIterator<Item = RawField>,
{
assert!(ctx.collected_typerefs());
// NOTE: What follows is reverse-engineered from LLVM's
// lib/AST/RecordLayoutBuilder.cpp
//
// FIXME(emilio): There are some differences between Microsoft and the
// Itanium ABI, but we'll ignore those and stick to Itanium for now.
//
// Also, we need to handle packed bitfields and stuff.
//
// TODO(emilio): Take into account C++'s wide bitfields, and
// packing, sigh.
fn flush_allocation_unit<E>(
fields: &mut E,
bitfield_unit_count: &mut usize,
unit_size_in_bits: usize,
unit_align_in_bits: usize,
bitfields: Vec<Bitfield>,
packed: bool,
) where
E: Extend<Field>,
{
*bitfield_unit_count += 1;
let align = if packed {
1
} else {
bytes_from_bits_pow2(unit_align_in_bits)
};
let size = align_to(unit_size_in_bits, 8) / 8;
let layout = Layout::new(size, align);
fields.extend(Some(Field::Bitfields(BitfieldUnit {
nth: *bitfield_unit_count,
layout,
bitfields,
})));
}
let mut max_align = 0;
let mut unfilled_bits_in_unit = 0;
let mut unit_size_in_bits = 0;
let mut unit_align = 0;
let mut bitfields_in_unit = vec![];
// TODO(emilio): Determine this from attributes or pragma ms_struct
// directives. Also, perhaps we should check if the target is MSVC?
const is_ms_struct: bool = false;
for bitfield in raw_bitfields {
let bitfield_width = bitfield.bitfield_width().unwrap() as usize;
let bitfield_layout =
ctx.resolve_type(bitfield.ty()).layout(ctx).ok_or(())?;
let bitfield_size = bitfield_layout.size;
let bitfield_align = bitfield_layout.align;
let mut offset = unit_size_in_bits;
if !packed {
if is_ms_struct {
if unit_size_in_bits != 0 &&
(bitfield_width == 0 ||
bitfield_width > unfilled_bits_in_unit)
{
// We've reached the end of this allocation unit, so flush it
// and its bitfields.
unit_size_in_bits =
align_to(unit_size_in_bits, unit_align * 8);
flush_allocation_unit(
fields,
bitfield_unit_count,
unit_size_in_bits,
unit_align,
mem::take(&mut bitfields_in_unit),
packed,
);
// Now we're working on a fresh bitfield allocation unit, so reset
// the current unit size and alignment.
offset = 0;
unit_align = 0;
}
} else if offset != 0 &&
(bitfield_width == 0 ||
(offset & (bitfield_align * 8 - 1)) + bitfield_width >
bitfield_size * 8)
{
offset = align_to(offset, bitfield_align * 8);
}
}
// According to the x86[-64] ABI spec: "Unnamed bit-fields’ types do not
// affect the alignment of a structure or union". This makes sense: such
// bit-fields are only used for padding, and we can't perform an
// un-aligned read of something we can't read because we can't even name
// it.
if bitfield.name().is_some() {
max_align = cmp::max(max_align, bitfield_align);
// NB: The `bitfield_width` here is completely, absolutely
// intentional. Alignment of the allocation unit is based on the
// maximum bitfield width, not (directly) on the bitfields' types'
// alignment.
unit_align = cmp::max(unit_align, bitfield_width);
}
// Always keep all bitfields around. While unnamed bitifields are used
// for padding (and usually not needed hereafter), large unnamed
// bitfields over their types size cause weird allocation size behavior from clang.
// Therefore, all bitfields needed to be kept around in order to check for this
// and make the struct opaque in this case
bitfields_in_unit.push(Bitfield::new(offset, bitfield));
unit_size_in_bits = offset + bitfield_width;
// Compute what the physical unit's final size would be given what we
// have seen so far, and use that to compute how many bits are still
// available in the unit.
let data_size = align_to(unit_size_in_bits, bitfield_align * 8);
unfilled_bits_in_unit = data_size - unit_size_in_bits;
}
if unit_size_in_bits != 0 {
// Flush the last allocation unit and its bitfields.
flush_allocation_unit(
fields,
bitfield_unit_count,
unit_size_in_bits,
unit_align,
bitfields_in_unit,
packed,
);
}
Ok(())
}
/// A compound structure's fields are initially raw, and have bitfields that
/// have not been grouped into allocation units. During this time, the fields
/// are mutable and we build them up during parsing.
///
/// Then, once resolving typerefs is completed, we compute all structs' fields'
/// bitfield allocation units, and they remain frozen and immutable forever
/// after.
#[derive(Debug)]
enum CompFields {
Before(Vec<RawField>),
After {
fields: Vec<Field>,
has_bitfield_units: bool,
},
Error,
}
impl Default for CompFields {
fn default() -> CompFields {
CompFields::Before(vec![])
}
}
impl CompFields {
fn append_raw_field(&mut self, raw: RawField) {
match *self {
CompFields::Before(ref mut raws) => {
raws.push(raw);
}
_ => {
panic!(
"Must not append new fields after computing bitfield allocation units"
);
}
}
}
fn compute_bitfield_units(&mut self, ctx: &BindgenContext, packed: bool) {
let raws = match *self {
CompFields::Before(ref mut raws) => mem::take(raws),
_ => {
panic!("Already computed bitfield units");
}
};
let result = raw_fields_to_fields_and_bitfield_units(ctx, raws, packed);
match result {
Ok((fields, has_bitfield_units)) => {
*self = CompFields::After {
fields,
has_bitfield_units,
};
}
Err(()) => {
*self = CompFields::Error;
}
}
}
fn deanonymize_fields(&mut self, ctx: &BindgenContext, methods: &[Method]) {
let fields = match *self {
CompFields::After { ref mut fields, .. } => fields,
// Nothing to do here.
CompFields::Error => return,
CompFields::Before(_) => {
panic!("Not yet computed bitfield units.");
}
};
fn has_method(
methods: &[Method],
ctx: &BindgenContext,
name: &str,
) -> bool {
methods.iter().any(|method| {
let method_name = ctx.resolve_func(method.signature()).name();
method_name == name || ctx.rust_mangle(method_name) == name
})
}
struct AccessorNamesPair {
getter: String,
setter: String,
}
let mut accessor_names: HashMap<String, AccessorNamesPair> = fields
.iter()
.flat_map(|field| match *field {
Field::Bitfields(ref bu) => &*bu.bitfields,
Field::DataMember(_) => &[],
})
.filter_map(|bitfield| bitfield.name())
.map(|bitfield_name| {
let bitfield_name = bitfield_name.to_string();
let getter = {
let mut getter =
ctx.rust_mangle(&bitfield_name).to_string();
if has_method(methods, ctx, &getter) {
getter.push_str("_bindgen_bitfield");
}
getter
};
let setter = {
let setter = format!("set_{}", bitfield_name);
let mut setter = ctx.rust_mangle(&setter).to_string();
if has_method(methods, ctx, &setter) {
setter.push_str("_bindgen_bitfield");
}
setter
};
(bitfield_name, AccessorNamesPair { getter, setter })
})
.collect();
let mut anon_field_counter = 0;
for field in fields.iter_mut() {
match *field {
Field::DataMember(FieldData { ref mut name, .. }) => {
if name.is_some() {
continue;
}
anon_field_counter += 1;
*name = Some(format!(
"{}{}",
ctx.options().anon_fields_prefix,
anon_field_counter
));
}
Field::Bitfields(ref mut bu) => {
for bitfield in &mut bu.bitfields {
if bitfield.name().is_none() {
continue;
}
if let Some(AccessorNamesPair { getter, setter }) =
accessor_names.remove(bitfield.name().unwrap())
{
bitfield.getter_name = Some(getter);
bitfield.setter_name = Some(setter);
}
}
}
}
}
}
}
impl Trace for CompFields {
type Extra = ();
fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, _: &())
where
T: Tracer,
{
match *self {
CompFields::Error => {}
CompFields::Before(ref fields) => {
for f in fields {
tracer.visit_kind(f.ty().into(), EdgeKind::Field);
}
}
CompFields::After { ref fields, .. } => {
for f in fields {
f.trace(context, tracer, &());
}
}
}
}
}
/// Common data shared across different field types.
#[derive(Clone, Debug)]
pub struct FieldData {
/// The name of the field, empty if it's an unnamed bitfield width.
name: Option<String>,
/// The inner type.
ty: TypeId,
/// The doc comment on the field if any.
comment: Option<String>,
/// Annotations for this field, or the default.
annotations: Annotations,
/// If this field is a bitfield, and how many bits does it contain if it is.
bitfield_width: Option<u32>,
/// If the C++ field is declared `public`
public: bool,
/// The offset of the field (in bits)
offset: Option<usize>,
}
impl FieldMethods for FieldData {
fn name(&self) -> Option<&str> {
self.name.as_deref()
}
fn ty(&self) -> TypeId {
self.ty
}
fn comment(&self) -> Option<&str> {
self.comment.as_deref()
}
fn bitfield_width(&self) -> Option<u32> {
self.bitfield_width
}
fn is_public(&self) -> bool {
self.public
}
fn annotations(&self) -> &Annotations {
&self.annotations
}
fn offset(&self) -> Option<usize> {
self.offset
}
}
/// The kind of inheritance a base class is using.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum BaseKind {
/// Normal inheritance, like:
///
/// ```cpp
/// class A : public B {};
/// ```
Normal,
/// Virtual inheritance, like:
///
/// ```cpp
/// class A: public virtual B {};
/// ```
Virtual,
}
/// A base class.
#[derive(Clone, Debug)]
pub struct Base {
/// The type of this base class.
pub ty: TypeId,
/// The kind of inheritance we're doing.
pub kind: BaseKind,
/// Name of the field in which this base should be stored.
pub field_name: String,
/// Whether this base is inherited from publically.
pub is_pub: bool,
}
impl Base {
/// Whether this base class is inheriting virtually.
pub fn is_virtual(&self) -> bool {
self.kind == BaseKind::Virtual
}
/// Whether this base class should have it's own field for storage.
pub fn requires_storage(&self, ctx: &BindgenContext) -> bool {
// Virtual bases are already taken into account by the vtable
// pointer.
//
// FIXME(emilio): Is this always right?
if self.is_virtual() {
return false;
}
// NB: We won't include zero-sized types in our base chain because they
// would contribute to our size given the dummy field we insert for
// zero-sized types.
if self.ty.is_zero_sized(ctx) {
return false;
}
true
}
/// Whether this base is inherited from publically.
pub fn is_public(&self) -> bool {
self.is_pub
}
}
/// A compound type.
///
/// Either a struct or union, a compound type is built up from the combination
/// of fields which also are associated with their own (potentially compound)
/// type.
#[derive(Debug)]
pub struct CompInfo {
/// Whether this is a struct or a union.
kind: CompKind,
/// The members of this struct or union.
fields: CompFields,
/// The abstract template parameters of this class. Note that these are NOT
/// concrete template arguments, and should always be a
/// `Type(TypeKind::TypeParam(name))`. For concrete template arguments, see
/// `TypeKind::TemplateInstantiation`.
template_params: Vec<TypeId>,
/// The method declarations inside this class, if in C++ mode.
methods: Vec<Method>,
/// The different constructors this struct or class contains.
constructors: Vec<FunctionId>,
/// The destructor of this type. The bool represents whether this destructor
/// is virtual.
destructor: Option<(MethodKind, FunctionId)>,
/// Vector of classes this one inherits from.
base_members: Vec<Base>,
/// The inner types that were declared inside this class, in something like:
///
/// class Foo {
/// typedef int FooTy;
/// struct Bar {
/// int baz;
/// };
/// }
///
/// static Foo::Bar const = {3};
inner_types: Vec<TypeId>,
/// Set of static constants declared inside this class.
inner_vars: Vec<VarId>,
/// Whether this type should generate an vtable (TODO: Should be able to
/// look at the virtual methods and ditch this field).
has_own_virtual_method: bool,
/// Whether this type has destructor.
has_destructor: bool,
/// Whether this type has a base type with more than one member.
///
/// TODO: We should be able to compute this.
has_nonempty_base: bool,
/// If this type has a template parameter which is not a type (e.g.: a
/// size_t)
has_non_type_template_params: bool,
/// Whether this type has a bit field member whose width couldn't be
/// evaluated (e.g. if it depends on a template parameter). We generate an
/// opaque type in this case.
has_unevaluable_bit_field_width: bool,
/// Whether we saw `__attribute__((packed))` on or within this type.
packed_attr: bool,
/// Used to know if we've found an opaque attribute that could cause us to
/// generate a type with invalid layout. This is explicitly used to avoid us
/// generating bad alignments when parsing types like max_align_t.
///
/// It's not clear what the behavior should be here, if generating the item
/// and pray, or behave as an opaque type.
found_unknown_attr: bool,
/// Used to indicate when a struct has been forward declared. Usually used
/// in headers so that APIs can't modify them directly.
is_forward_declaration: bool,
}
impl CompInfo {
/// Construct a new compound type.
pub fn new(kind: CompKind) -> Self {
CompInfo {
kind,
fields: CompFields::default(),
template_params: vec![],
methods: vec![],
constructors: vec![],
destructor: None,
base_members: vec![],
inner_types: vec![],
inner_vars: vec![],
has_own_virtual_method: false,
has_destructor: false,
has_nonempty_base: false,
has_non_type_template_params: false,
has_unevaluable_bit_field_width: false,
packed_attr: false,
found_unknown_attr: false,
is_forward_declaration: false,
}
}
/// Compute the layout of this type.
///
/// This is called as a fallback under some circumstances where LLVM doesn't
/// give us the correct layout.
///
/// If we're a union without known layout, we try to compute it from our
/// members. This is not ideal, but clang fails to report the size for these
/// kind of unions, see test/headers/template_union.hpp
pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> {
// We can't do better than clang here, sorry.
if self.kind == CompKind::Struct {
return None;
}
// By definition, we don't have the right layout information here if
// we're a forward declaration.
if self.is_forward_declaration() {
return None;
}
// empty union case
if !self.has_fields() {
return None;
}
let mut max_size = 0;
// Don't allow align(0)
let mut max_align = 1;
self.each_known_field_layout(ctx, |layout| {
max_size = cmp::max(max_size, layout.size);
max_align = cmp::max(max_align, layout.align);
});
Some(Layout::new(max_size, max_align))
}
/// Get this type's set of fields.
pub fn fields(&self) -> &[Field] {
match self.fields {
CompFields::Error => &[],
CompFields::After { ref fields, .. } => fields,
CompFields::Before(..) => {
panic!("Should always have computed bitfield units first");
}
}
}
fn has_fields(&self) -> bool {
match self.fields {
CompFields::Error => false,
CompFields::After { ref fields, .. } => !fields.is_empty(),
CompFields::Before(ref raw_fields) => !raw_fields.is_empty(),
}
}
fn each_known_field_layout(
&self,
ctx: &BindgenContext,
mut callback: impl FnMut(Layout),
) {
match self.fields {
CompFields::Error => {}
CompFields::After { ref fields, .. } => {
for field in fields.iter() {
if let Some(layout) = field.layout(ctx) {
callback(layout);
}
}
}
CompFields::Before(ref raw_fields) => {
for field in raw_fields.iter() {
let field_ty = ctx.resolve_type(field.0.ty);
if let Some(layout) = field_ty.layout(ctx) {
callback(layout);
}
}
}
}
}
fn has_bitfields(&self) -> bool {
match self.fields {
CompFields::Error => false,
CompFields::After {
has_bitfield_units, ..
} => has_bitfield_units,
CompFields::Before(_) => {
panic!("Should always have computed bitfield units first");
}
}
}
/// Returns whether we have a too large bitfield unit, in which case we may
/// not be able to derive some of the things we should be able to normally
/// derive.
pub fn has_too_large_bitfield_unit(&self) -> bool {
if !self.has_bitfields() {
return false;
}
self.fields().iter().any(|field| match *field {
Field::DataMember(..) => false,
Field::Bitfields(ref unit) => {
unit.layout.size > RUST_DERIVE_IN_ARRAY_LIMIT
}
})
}
/// Does this type have any template parameters that aren't types
/// (e.g. int)?
pub fn has_non_type_template_params(&self) -> bool {
self.has_non_type_template_params
}
/// Do we see a virtual function during parsing?
/// Get the has_own_virtual_method boolean.
pub fn has_own_virtual_method(&self) -> bool {
self.has_own_virtual_method
}
/// Did we see a destructor when parsing this type?
pub fn has_own_destructor(&self) -> bool {
self.has_destructor
}
/// Get this type's set of methods.
pub fn methods(&self) -> &[Method] {
&self.methods
}
/// Get this type's set of constructors.
pub fn constructors(&self) -> &[FunctionId] {
&self.constructors
}
/// Get this type's destructor.
pub fn destructor(&self) -> Option<(MethodKind, FunctionId)> {
self.destructor
}
/// What kind of compound type is this?
pub fn kind(&self) -> CompKind {
self.kind
}
/// Is this a union?
pub fn is_union(&self) -> bool {
self.kind() == CompKind::Union
}
/// The set of types that this one inherits from.
pub fn base_members(&self) -> &[Base] {
&self.base_members
}
/// Construct a new compound type from a Clang type.
pub fn from_ty(
potential_id: ItemId,
ty: &clang::Type,
location: Option<clang::Cursor>,
ctx: &mut BindgenContext,
) -> Result<Self, ParseError> {
use clang_sys::*;
assert!(
ty.template_args().is_none(),
"We handle template instantiations elsewhere"
);
let mut cursor = ty.declaration();
let mut kind = Self::kind_from_cursor(&cursor);
if kind.is_err() {
if let Some(location) = location {
kind = Self::kind_from_cursor(&location);
cursor = location;
}
}
let kind = kind?;
debug!("CompInfo::from_ty({:?}, {:?})", kind, cursor);
let mut ci = CompInfo::new(kind);
ci.is_forward_declaration =
location.map_or(true, |cur| match cur.kind() {
CXCursor_ParmDecl => true,
CXCursor_StructDecl | CXCursor_UnionDecl |
CXCursor_ClassDecl => !cur.is_definition(),
_ => false,
});
let mut maybe_anonymous_struct_field = None;
cursor.visit(|cur| {
if cur.kind() != CXCursor_FieldDecl {
if let Some((ty, clang_ty, public, offset)) =
maybe_anonymous_struct_field.take()
{
if cur.kind() == CXCursor_TypedefDecl &&
cur.typedef_type().unwrap().canonical_type() ==
clang_ty
{
// Typedefs of anonymous structs appear later in the ast
// than the struct itself, that would otherwise be an
// anonymous field. Detect that case here, and do
// nothing.
} else {
let field = RawField::new(
None, ty, None, None, None, public, offset,
);
ci.fields.append_raw_field(field);
}
}
}
match cur.kind() {
CXCursor_FieldDecl => {
if let Some((ty, clang_ty, public, offset)) =
maybe_anonymous_struct_field.take()
{
let mut used = false;
cur.visit(|child| {
if child.cur_type() == clang_ty {
used = true;
}
CXChildVisit_Continue
});
if !used {
let field = RawField::new(
None, ty, None, None, None, public, offset,
);
ci.fields.append_raw_field(field);
}
}
let bit_width = if cur.is_bit_field() {
let width = cur.bit_width();
// Make opaque type if the bit width couldn't be
// evaluated.
if width.is_none() {
ci.has_unevaluable_bit_field_width = true;
return CXChildVisit_Break;
}
width
} else {
None
};
let field_type = Item::from_ty_or_ref(
cur.cur_type(),
cur,
Some(potential_id),
ctx,
);
let comment = cur.raw_comment();
let annotations = Annotations::new(&cur);
let name = cur.spelling();
let is_public = cur.public_accessible();
let offset = cur.offset_of_field().ok();
// Name can be empty if there are bitfields, for example,
// see tests/headers/struct_with_bitfields.h
assert!(
!name.is_empty() || bit_width.is_some(),
"Empty field name?"
);
let name = if name.is_empty() { None } else { Some(name) };
let field = RawField::new(
name,
field_type,
comment,
annotations,
bit_width,
is_public,
offset,
);
ci.fields.append_raw_field(field);
// No we look for things like attributes and stuff.
cur.visit(|cur| {
if cur.kind() == CXCursor_UnexposedAttr {
ci.found_unknown_attr = true;
}
CXChildVisit_Continue
});
}
CXCursor_UnexposedAttr => {
ci.found_unknown_attr = true;
}
CXCursor_EnumDecl |
CXCursor_TypeAliasDecl |
CXCursor_TypeAliasTemplateDecl |
CXCursor_TypedefDecl |
CXCursor_StructDecl |
CXCursor_UnionDecl |
CXCursor_ClassTemplate |
CXCursor_ClassDecl => {
// We can find non-semantic children here, clang uses a
// StructDecl to note incomplete structs that haven't been
// forward-declared before, see [1].
//
// Also, clang seems to scope struct definitions inside
// unions, and other named struct definitions inside other
// structs to the whole translation unit.
//
// Let's just assume that if the cursor we've found is a
// definition, it's a valid inner type.
//
// [1]: https://github.com/rust-lang/rust-bindgen/issues/482
let is_inner_struct =
cur.semantic_parent() == cursor || cur.is_definition();
if !is_inner_struct {
return CXChildVisit_Continue;
}
// Even if this is a definition, we may not be the semantic
// parent, see #1281.
let inner = Item::parse(cur, Some(potential_id), ctx)
.expect("Inner ClassDecl");
// If we avoided recursion parsing this type (in
// `Item::from_ty_with_id()`), then this might not be a
// valid type ID, so check and gracefully handle this.
if ctx.resolve_item_fallible(inner).is_some() {
let inner = inner.expect_type_id(ctx);
ci.inner_types.push(inner);
// A declaration of an union or a struct without name
// could also be an unnamed field, unfortunately.
if cur.is_anonymous() && cur.kind() != CXCursor_EnumDecl
{
let ty = cur.cur_type();
let public = cur.public_accessible();
let offset = cur.offset_of_field().ok();
maybe_anonymous_struct_field =
Some((inner, ty, public, offset));
}
}
}
CXCursor_PackedAttr => {
ci.packed_attr = true;
}
CXCursor_TemplateTypeParameter => {
let param = Item::type_param(None, cur, ctx).expect(
"Item::type_param should't fail when pointing \
at a TemplateTypeParameter",
);
ci.template_params.push(param);
}
CXCursor_CXXBaseSpecifier => {
let is_virtual_base = cur.is_virtual_base();
ci.has_own_virtual_method |= is_virtual_base;
let kind = if is_virtual_base {
BaseKind::Virtual
} else {
BaseKind::Normal
};
let field_name = match ci.base_members.len() {
0 => "_base".into(),
n => format!("_base_{}", n),
};
let type_id =
Item::from_ty_or_ref(cur.cur_type(), cur, None, ctx);
ci.base_members.push(Base {
ty: type_id,
kind,
field_name,
is_pub: cur.access_specifier() ==
clang_sys::CX_CXXPublic,
});
}
CXCursor_Constructor | CXCursor_Destructor |
CXCursor_CXXMethod => {
let is_virtual = cur.method_is_virtual();
let is_static = cur.method_is_static();
debug_assert!(!(is_static && is_virtual), "How?");
ci.has_destructor |= cur.kind() == CXCursor_Destructor;
ci.has_own_virtual_method |= is_virtual;
// This used to not be here, but then I tried generating
// stylo bindings with this (without path filters), and
// cried a lot with a method in gfx/Point.h
// (ToUnknownPoint), that somehow was causing the same type
// to be inserted in the map two times.
//
// I couldn't make a reduced test case, but anyway...
// Methods of template functions not only used to be inlined,
// but also instantiated, and we wouldn't be able to call
// them, so just bail out.
if !ci.template_params.is_empty() {
return CXChildVisit_Continue;
}
// NB: This gets us an owned `Function`, not a
// `FunctionSig`.
let signature =
match Item::parse(cur, Some(potential_id), ctx) {
Ok(item)
if ctx
.resolve_item(item)
.kind()
.is_function() =>
{
item
}
_ => return CXChildVisit_Continue,
};
let signature = signature.expect_function_id(ctx);
match cur.kind() {
CXCursor_Constructor => {
ci.constructors.push(signature);
}
CXCursor_Destructor => {
let kind = if is_virtual {
MethodKind::VirtualDestructor {
pure_virtual: cur.method_is_pure_virtual(),
}
} else {
MethodKind::Destructor
};
ci.destructor = Some((kind, signature));
}
CXCursor_CXXMethod => {
let is_const = cur.method_is_const();
let method_kind = if is_static {
MethodKind::Static
} else if is_virtual {
MethodKind::Virtual {
pure_virtual: cur.method_is_pure_virtual(),
}
} else {
MethodKind::Normal
};
let method =
Method::new(method_kind, signature, is_const);
ci.methods.push(method);
}
_ => unreachable!("How can we see this here?"),
}
}
CXCursor_NonTypeTemplateParameter => {
ci.has_non_type_template_params = true;
}
CXCursor_VarDecl => {
let linkage = cur.linkage();
if linkage != CXLinkage_External &&
linkage != CXLinkage_UniqueExternal
{
return CXChildVisit_Continue;
}
let visibility = cur.visibility();
if visibility != CXVisibility_Default {
return CXChildVisit_Continue;
}
if let Ok(item) = Item::parse(cur, Some(potential_id), ctx)
{
ci.inner_vars.push(item.as_var_id_unchecked());
}
}
// Intentionally not handled
CXCursor_CXXAccessSpecifier |
CXCursor_CXXFinalAttr |
CXCursor_FunctionTemplate |
CXCursor_ConversionFunction => {}
_ => {
warn!(
"unhandled comp member `{}` (kind {:?}) in `{}` ({})",
cur.spelling(),
clang::kind_to_str(cur.kind()),
cursor.spelling(),
cur.location()
);
}
}
CXChildVisit_Continue
});
if let Some((ty, _, public, offset)) = maybe_anonymous_struct_field {
let field =
RawField::new(None, ty, None, None, None, public, offset);
ci.fields.append_raw_field(field);
}
Ok(ci)
}
fn kind_from_cursor(
cursor: &clang::Cursor,
) -> Result<CompKind, ParseError> {
use clang_sys::*;
Ok(match cursor.kind() {
CXCursor_UnionDecl => CompKind::Union,
CXCursor_ClassDecl | CXCursor_StructDecl => CompKind::Struct,
CXCursor_CXXBaseSpecifier |
CXCursor_ClassTemplatePartialSpecialization |
CXCursor_ClassTemplate => match cursor.template_kind() {
CXCursor_UnionDecl => CompKind::Union,
_ => CompKind::Struct,
},
_ => {
warn!("Unknown kind for comp type: {:?}", cursor);
return Err(ParseError::Continue);
}
})
}
/// Get the set of types that were declared within this compound type
/// (e.g. nested class definitions).
pub fn inner_types(&self) -> &[TypeId] {
&self.inner_types
}
/// Get the set of static variables declared within this compound type.
pub fn inner_vars(&self) -> &[VarId] {
&self.inner_vars
}
/// Have we found a field with an opaque type that could potentially mess up
/// the layout of this compound type?
pub fn found_unknown_attr(&self) -> bool {
self.found_unknown_attr
}
/// Is this compound type packed?
pub fn is_packed(
&self,
ctx: &BindgenContext,
layout: Option<&Layout>,
) -> bool {
if self.packed_attr {
return true;
}
// Even though `libclang` doesn't expose `#pragma packed(...)`, we can
// detect it through its effects.
if let Some(parent_layout) = layout {
let mut packed = false;
self.each_known_field_layout(ctx, |layout| {
packed = packed || layout.align > parent_layout.align;
});
if packed {
info!("Found a struct that was defined within `#pragma packed(...)`");
return true;
}
if self.has_own_virtual_method && parent_layout.align == 1 {
return true;
}
}
false
}
/// Returns true if compound type has been forward declared
pub fn is_forward_declaration(&self) -> bool {
self.is_forward_declaration
}
/// Compute this compound structure's bitfield allocation units.
pub fn compute_bitfield_units(
&mut self,
ctx: &BindgenContext,
layout: Option<&Layout>,
) {
let packed = self.is_packed(ctx, layout);
self.fields.compute_bitfield_units(ctx, packed)
}
/// Assign for each anonymous field a generated name.
pub fn deanonymize_fields(&mut self, ctx: &BindgenContext) {
self.fields.deanonymize_fields(ctx, &self.methods);
}
/// Returns whether the current union can be represented as a Rust `union`
///
/// Requirements:
/// 1. Current RustTarget allows for `untagged_union`
/// 2. Each field can derive `Copy` or we use ManuallyDrop.
/// 3. It's not zero-sized.
///
/// Second boolean returns whether all fields can be copied (and thus
/// ManuallyDrop is not needed).
pub fn is_rust_union(
&self,
ctx: &BindgenContext,
layout: Option<&Layout>,
name: &str,
) -> (bool, bool) {
if !self.is_union() {
return (false, false);
}
if !ctx.options().rust_features().untagged_union {
return (false, false);
}
if self.is_forward_declaration() {
return (false, false);
}
let union_style = if ctx.options().bindgen_wrapper_union.matches(name) {
NonCopyUnionStyle::BindgenWrapper
} else if ctx.options().manually_drop_union.matches(name) {
NonCopyUnionStyle::ManuallyDrop
} else {
ctx.options().default_non_copy_union_style
};
let all_can_copy = self.fields().iter().all(|f| match *f {
Field::DataMember(ref field_data) => {
field_data.ty().can_derive_copy(ctx)
}
Field::Bitfields(_) => true,
});
if !all_can_copy && union_style == NonCopyUnionStyle::BindgenWrapper {
return (false, false);
}
if layout.map_or(false, |l| l.size == 0) {
return (false, false);
}
(true, all_can_copy)
}
}
impl DotAttributes for CompInfo {
fn dot_attributes<W>(
&self,
ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
writeln!(out, "<tr><td>CompKind</td><td>{:?}</td></tr>", self.kind)?;
if self.has_own_virtual_method {
writeln!(out, "<tr><td>has_vtable</td><td>true</td></tr>")?;
}
if self.has_destructor {
writeln!(out, "<tr><td>has_destructor</td><td>true</td></tr>")?;
}
if self.has_nonempty_base {
writeln!(out, "<tr><td>has_nonempty_base</td><td>true</td></tr>")?;
}
if self.has_non_type_template_params {
writeln!(
out,
"<tr><td>has_non_type_template_params</td><td>true</td></tr>"
)?;
}
if self.packed_attr {
writeln!(out, "<tr><td>packed_attr</td><td>true</td></tr>")?;
}
if self.is_forward_declaration {
writeln!(
out,
"<tr><td>is_forward_declaration</td><td>true</td></tr>"
)?;
}
if !self.fields().is_empty() {
writeln!(out, r#"<tr><td>fields</td><td><table border="0">"#)?;
for field in self.fields() {
field.dot_attributes(ctx, out)?;
}
writeln!(out, "</table></td></tr>")?;
}
Ok(())
}
}
impl IsOpaque for CompInfo {
type Extra = Option<Layout>;
fn is_opaque(&self, ctx: &BindgenContext, layout: &Option<Layout>) -> bool {
if self.has_non_type_template_params ||
self.has_unevaluable_bit_field_width
{
return true;
}
// When we do not have the layout for a bitfield's type (for example, it
// is a type parameter), then we can't compute bitfield units. We are
// left with no choice but to make the whole struct opaque, or else we
// might generate structs with incorrect sizes and alignments.
if let CompFields::Error = self.fields {
return true;
}
// Bitfields with a width that is larger than their unit's width have
// some strange things going on, and the best we can do is make the
// whole struct opaque.
if self.fields().iter().any(|f| match *f {
Field::DataMember(_) => false,
Field::Bitfields(ref unit) => unit.bitfields().iter().any(|bf| {
let bitfield_layout = ctx
.resolve_type(bf.ty())
.layout(ctx)
.expect("Bitfield without layout? Gah!");
bf.width() / 8 > bitfield_layout.size as u32
}),
}) {
return true;
}
if !ctx.options().rust_features().repr_packed_n {
// If we don't have `#[repr(packed(N)]`, the best we can
// do is make this struct opaque.
//
// See https://github.com/rust-lang/rust-bindgen/issues/537 and
// https://github.com/rust-lang/rust/issues/33158
if self.is_packed(ctx, layout.as_ref()) &&
layout.map_or(false, |l| l.align > 1)
{
warn!("Found a type that is both packed and aligned to greater than \
1; Rust before version 1.33 doesn't have `#[repr(packed(N))]`, so we \
are treating it as opaque. You may wish to set bindgen's rust target \
version to 1.33 or later to enable `#[repr(packed(N))]` support.");
return true;
}
}
false
}
}
impl TemplateParameters for CompInfo {
fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> {
self.template_params.clone()
}
}
impl Trace for CompInfo {
type Extra = Item;
fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item)
where
T: Tracer,
{
for p in item.all_template_params(context) {
tracer.visit_kind(p.into(), EdgeKind::TemplateParameterDefinition);
}
for ty in self.inner_types() {
tracer.visit_kind(ty.into(), EdgeKind::InnerType);
}
for &var in self.inner_vars() {
tracer.visit_kind(var.into(), EdgeKind::InnerVar);
}
for method in self.methods() {
tracer.visit_kind(method.signature.into(), EdgeKind::Method);
}
if let Some((_kind, signature)) = self.destructor() {
tracer.visit_kind(signature.into(), EdgeKind::Destructor);
}
for ctor in self.constructors() {
tracer.visit_kind(ctor.into(), EdgeKind::Constructor);
}
// Base members and fields are not generated for opaque types (but all
// of the above things are) so stop here.
if item.is_opaque(context, &()) {
return;
}
for base in self.base_members() {
tracer.visit_kind(base.ty.into(), EdgeKind::BaseMember);
}
self.fields.trace(context, tracer, &());
}
}
|